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Background. The role of miRNAs in the pathogenesis of cutaneous lupus has not been studied. Objective. It was to assess the levels
of a selected panel of circulating miRNAs that could be involved in the regulation of the immune response, inflammation, and
fibrosis in cutaneous lupus. Methods. It was a cross-sectional study. We included 22 patients with subacute (SCLE) and 20 with
discoid (DLE) lesions, and 19 healthy donors (HD). qRT-PCR for miRNA analysis, flow cytometry in peripheral blood, and skin
immunohistochemistry were performed to determine the distribution of CD4 T cells and regulatory cells and their correlation
with circulating miRNAs. Results. miR-150, miR-1246, miR-21, miR-23b, and miR-146 levels were downregulated in SCLE vs.
HD. miR-150, miR-1246, and miR-21 levels were downregulated in DLE vs. HD. Peripheral CD4+/CD25-/IL-4+ cells and
CD4+/CD25hi/Foxp3+ were negatively associated with miR-23b, and CD4+/CD25-/IFN-γ+ with miR-1246 in SCLE, whereas
CD123+/CD196+/IDO+ cells were positively associated with miR-150 in DLE. In the tissue, CD4+/IL-4+ and CD20+/IL-10+ cells
were positively associated with miR-21 and CD4+/IFN-γ+ with miR-31 in SCLE, whereas CD4+/IL-4+ cells were positively
associated with miR-150, and CD20+/IL-10+ cells with miR-1246 and miR-146a in DLE. In the SCLE, lower miR-150 levels were
correlated with higher CLASI scores. The KEGG pathway enrichment analysis revealed that cell cycle regulation pathways, p53,
TGF-β, thyroid hormone, and cancer signaling pathways were shared between miR-21, miR-31, miR-23b, miR-146a, miR-1246,
and miR-150. Conclusions. A downregulation of miR-150, miR-1246, and miR-21 in both CLE varieties vs. HD was determined.

1. Introduction

Cutaneous lupus erythematosus (CLE) is an autoimmune
condition that comprehends a wide range of dermatological
manifestations and clinical phenotypes. Its pathogenesis is
multifactorial and involves genetic predisposition, environ-
mental factors (ultraviolet light B), and abnormalities in the

innate and adaptive immune response. In this context, the
participation of some proinflammatory cytokines such as
IFN-α, IL-1, IL-6, and TNF-α has been also recognized
[1, 2]. Histological analysis of CLE skin is characterized
by a dense periadnexal and perivascular lymphocytic infil-
trate, mainly composed by CD4+ helper T cells, CD8+ cyto-
toxic T cells, B cells, and macrophages [1]. Moreover, the
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participation of Th17 and Th22 CD4+ T cells as well as regu-
latory T cells has been recently described [3, 4]. In addition,
the activation of pathways via pattern recognition receptor
(PRR) signaling, Janus kinase- (JAK-) signal transducer and
activator of transcription (STAT) signaling, and nuclear fac-
tor-κB (NF-κB) signaling also have a role in CLE [5].

Recent studies have revealed the potential contribution
of microRNAs (miRNAs) in diverse autoimmune diseases
[6]. miRNAs are a class of small noncoding RNAs that
modulate gene expression at the posttranscriptional level.
They bind to the target messenger RNA, leading either
to translational repression or to degradation. miRNAs
regulate diverse physiologic processes, and their dysregula-
tion can result in aberrant responses including impaired
immune function [6–8].

For instance, in systemic lupus erythematosus (SLE),
miRNA expression has been detected in the plasma [9],
serum [10], urine, and peripheral blood mononuclear cells
(PBMCs) [11]. Diverse miRNA patterns have been associated
with a certain feature such as renal involvement (miR-146a),
childhood onset (miR-516a-3p, miR-629, and miR-525-5p),
and overall disease activity (miR-21 and miR-146a) [9–11]
and recently, in discoid lupus (DLE) (miR-31 and miR-485-
3p) [12]. Indeed, a study suggested miR-29b as a potential
SLE diagnostic biomarker. The authors in that study, using
a ROC curve analysis, showed an AUC of 0.75 (95% CI
0.64–0.86) for diagnosing SLE [13].

On the other hand, research focused on understanding
the role of miRNAs in the regulation of signaling pathways
may lead to develop new biomarkers and new therapeutic
approach. In this sense, circulating miR-29b was also pro-
posed as a biomarker to estimate lupus activity as it positively
correlated with the SLEDAI score and anti-dsDNA titer and
inversely correlated with complement C3 level and clinical
response after treatment [13].

Herein, we hypothesized that the expression of a circu-
lating miRNA signature might distinguish CLE patients
and its subtypes. Therefore, our main objective was to
evaluate the circulating levels of a selected panel of miR-
NAs based on their possible participation in the regulation
of the immune response, inflammation, and fibrosis
among patients with CLE. Specifically, we evaluated the
following miRNAs: miR-29 family that regulates T cell
polarization [14]; miR-150 involved in B and Th17 cell
differentiation and TGF-β signaling [15]; miR-23b related
to IL-17, TNF-α, and IL-1β expression [16]; miR-1246
which is associated to B cell activation [17]; miR-21 inked
with Th2 and Th17 differentiation and Foxp3+ expression
[18]; miR-31 that regulates Treg cells, NF-κB activation,
and fibrosis [19]; miR-146 that appears to downregulate
NF-κB and TLR/MyD88 proinflammatory signal pathways
[20, 21]; miR-155 that contributes to Th1 and Th17 differ-
entiation [22]; miR-485 that participates in Th2 differenti-
ation [12]; and miR-197 that allows the IL-22 responses
[23]. Moreover, we also correlated these serum miRNAs
with T, B, and regulatory cell subpopulations in the skin
tissue and peripheral blood as well as with the CLASI
activity score. Finally, we elucidated their possible partici-
pation in CLE pathogenesis applying bioinformatics.

2. Materials and Methods

2.1. Patients. This was a cross-sectional study conducted in a
tertiary care center. We included 42 consecutive patients with
CLE: 22 with subacute cutaneous lupus (SCLE) and 20 with
DLE. To be eligible, patients also had to meet the classifica-
tion criteria for SLE according to the ACR criteria [24] and
to have an active lupus-specific lesion compatible with SCLE
or DLE. The diagnosis of CLE was established in consensus
by a rheumatologist and a dermatologist, as well as by biopsy.
In addition, patients should not be under topical treatment
including steroids within the last 6 weeks. However, patients
could maintain their basal oral steroids and immunosuppres-
sants. Patients were excluded if they had any concomitant
cutaneous lesion not attributed to lupus or an overlap auto-
immune condition.

We included 19 healthy donors (HD) as controls. The
control group did not have any autoimmune disease and/or
concurrent infection and did not receive prednisone or
immunosuppressants.

We measured the CLASI, a validated index to quantify
disease severity [25]. As this instrument measures both
activity and damage, for the present study, we only used the
activity domain that ranges from 0 to 70 (higher scores are
indicative of more severity).

In addition, patients’ clinical records were carefully
reviewed according to a preestablished protocol to collect
demographics as well as other clinical and serologic features.

2.2. Skin Samples. Skin punch biopsies (4mm diameter)
were performed, fixed in formalin, and evaluated with
hematoxylin-eosin staining for the assessment of classic
histologic cutaneous lupus features. Then, the rest of the
specimen was stored for immunohistochemistry. Micro-
scopic review was performed in a blinded manner to the
diagnosis by one blinded observer.

Overall, most of the cutaneous lupus biopsies corre-
sponded to photoexposed areas localized at the arms, thorax,
or scalp. Control tissue biopsies were also taken from photo-
exposed areas and, if possible, from the same anatomical
zone.

2.3. Immunohistochemistry. We followed the methods of
Méndez-Flores et al. [26]. Briefly, IL-22-expressing cells were
determined in 4μm thick sections of tissue. After deparaffini-
zation and demasking of antigens, tissues were blocked with
3% H2O2. Then, nonspecific background staining was
avoided with the IHC background blocker (Enzo Life
Sciences). Tissues were incubated with goat polyclonal anti-
human IL-22 antibody (Santa Cruz Biotechnology, Santa
Cruz, CA, USA) at 10μg/ml. Binding was identified with bio-
tinylated donkey anti-goat IgG antibody (ABC Staining Sys-
tem; Santa Cruz Biotechnology). Slides were incubated with
horseradish peroxidase- (HRP-) streptavidin, followed by
incubation with the peroxidase substrate 3,3-diaminobenzi-
dine (DAB) (Sigma-Aldrich) for 10min. The sections were
counterstained with hematoxylin. Negative control staining
was performed with normal human serum diluted 1 : 100,
instead of primary antibody, and the IHC universal negative
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control reagent (IHC universal negative control reagent,
Enzo Life Sciences). The reactive blank was incubated with
phosphate buffer saline-egg albumin (Sigma-Aldrich) instead
of the primary antibody. Both controls excluded nonspecific
staining or endogenous enzymatic activities [26]. Spleen and
ganglion samples were used as a positive control (Figure S1).

2.4. Double-Staining Procedure. We followed the methods of
Méndez-Flores et al. [26]. To determine the subpopulation of
CD4+/IL-17A+–, CD4+/IL-4+–, CD4+/IFN-γ+-expressing T
cells, CD25+/Foxp3+ regulatory T cells, CD20+/IL-10+-pro-
ducing B cells, and CD123+/IDO+ pDC cell subpopulations,
a simultaneous detection was performed (MultiView
(mouse-HRP/rabbit-AP) Enzo Life Sciences). After deparaf-
finization and demasking of antigens with the antigen
retrieval reagent (Enzo Life Sciences), tissues were blocked
with 3% H2O2. The procedure is a sequential double staining
where the first antigen (normal serum as negative control,
rabbit polyclonal anti-IL-17A, anti-IL-4, anti-IFN-γ, anti-
IDO IgG antibody, or mouse monoclonal anti-IL-10 or
anti-Foxp3 IgG1 antibody (Santa Cruz Biotechnology) at
10μg/ml) was visualized using horseradish peroxidase
(HRP)/3′3′-diaminobenzidine (DAB) and the second anti-
gen (normal serum as negative control or second primary
rabbit polyclonal anti-CD20, anti-CD25 IgG antibody or
mouse monoclonal anti-CD4, anti-IgG1 antibody (Santa
Cruz Biotechnology), or anti-CD123 IgG antibody (Abcam
pcl, CA, UK) at 10μg/ml) was visualized using alkaline phos-
phatase (AP)/Permanent Red. Tissues were counterstained
with Mayer’s hematoxylin and mounted in aqueous mount-
ing medium. Cytokine-expressing cells as well as double pos-
itive cells were assessed by estimating the number of
positively staining cells in two fields (X320) and were
reported as the percentage of immunoreactive cells of the
inflammatory infiltrates located at the epidermis and dermis.
Results are expressed as the mean ± standard error of the
mean (SEM) of cells quantified by the program Image Pro
Plus version 5·1·1 [26].

2.5. Peripheral Blood Samples. A venous blood sample was
drawn from each subject to perform flow cytometry analysis
and RNA isolation.

2.6. Flow Cytometry. Peripheral blood mononuclear cells
(PBMCs) were obtained by gradient centrifugation on Lym-
phoprep (Axis-Shield PoC AS, Oslo, Norway). Cell pellet
was resuspended in 1ml RPMI at 1‐2 × 106 cell/ml, and cell
suspension was treated with 2μl of a cell activation cocktail
of phorbol-12myristate 13-acetate (40.5μM) and ionomycin
(669.3μM) in DMSO (500x) and brefeldin A (BioLegend
Inc., San Diego, CA, USA) for 6 hours at 37°C in a CO2
incubator.

PBMCs were incubated with 5μl of Human TruStain
FcX™ (BioLegend Inc.) per million cells in 100ml PBS for
10 minutes, and then, they were labeled with 5μl of antihu-
man CD3-FITC-labeled, antihuman CD4-PeCy5-labeled,
and antihuman CD161-APC-conjugated monoclonal anti-
bodies (BD Biosciences, San Jose, CA); antihuman CD3-
FITC-labeled, antihuman CD4-PeCy5-labeled, and antihu-

man CD25-APC-conjugated monoclonal antibodies (BD
Biosciences); antihuman CD19-APC-labeled, antihuman
CD24-FITC-conjugated, and antihuman CD38-PeCy5-
labeled monoclonal antibodies (BD Biosciences); or antihu-
man CCR6-PerCP/Cy5.5-conjugated and antihuman
CD123-FITC-labeled monoclonal antibodies (BD Biosci-
ences) in separated tubes during 20min at 37°C in the dark.
Cells were permeabilized with 200μl of cytofix/cytoperm
solution (BD Biosciences) at 4°C for 30min. Intracellular
staining was performed with an anti-human IL-22-PE-, IL-
17A-PE-, IL-4-PE-, IFN-γ-PE-, Foxp3-PE-, IL-10-PE-, and
IDO-PE-labeled mouse monoclonal antibodies (BD Biosci-
ences) for 30min at 4°C in the dark. An electronic gate was
made for CD3+/CD4+/CD161- cells, CD3+/CD4+/CD161+

cells, CD3+/CD4+/CD25- cells, CD3+/CD4+/CD25hi cells,
CD19+/CD38hi/CD24hi cells, and CD123hi/CD196+ cells.
Results are expressed as the relative percentage of IL-22+,
IL-17A+, IL-4+, IFN-γ+, Foxp3+, IL-10+, and IDO+ express-
ing cells in each gate. As isotype control, IgG1-FITC/IgG1-
PE/CD45-PeCy5 mouse IgG1 kappa (BD Tritest, BD Biosci-
ences) was used to set the threshold and gates in the cyt-
ometer. We ran an unstained (autofluorescence control)
and permeabilized PBMC sample. Autofluorescence control
was compared to single-stained cell-positive controls to
confirm that the stained cells were on scale for each
parameter. Besides, BD Calibrate 3 beads were used to
adjust instrument settings, set fluorescence compensation,
and check instrument sensitivity (BD calibrates, BD Bio-
sciences). Fluorescence minus one (FMO) controls were
stained in parallel using the panel of antibodies with
sequential omission of one antibody, except for the anti-
IL-22, anti-IL-17A, anti-IL-4, anti-IFN-γ, anti-Foxp3,
anti-IL-10, and anti-IDO antibody, which was replaced
by an isotype control rather than simply omitted. Finally,
T subsets were analyzed by flow cytometry with an Accuri
C6 (BD Biosciences). A total of 500,000–1,000,000 events
were recorded for each sample and analyzed with the
FlowJo X software (Tree Star, Inc.) [26].

2.7. RNA Isolation and Quantitative Real-Time PCR Analyses
of MicroRNAs. Total serum RNA was isolated with TRIzol
reagent (Invitrogen) according to the manufacturer’s
instructions. The concentration and quality of total RNA
were measured by a NanoDrop 1000 Spectrophotometer
(NanoDrop Technologies, Waltham, Mass). To quantify
miRNAs, cDNA was synthesized using a Mir-X miRNA
first-strand synthesis kit (Clontech) according to the man-
ufacturer’s instructions. Complementary DNA (cDNA)
was amplified by real-time PCR with a SYBR green-
based fluorescent method using the Maxima SYBR Green/-
ROX qPCR Master Mix (2X) (Thermo Scientific). U6 was
used as an endogenous control to normalize the expres-
sion values. We chose the following panel of miRNAs,
for their effect reported in the literature in the different
regulatory cells studied here. Primer sequences used for
real-time PCR were as follows: hsa-miR-21-5p, 5′-TAGC
TTATCAGACTGATGTTGA-3′; hsa-miR-29a, 5′-TAGC
ACCATCTGAAATCGGTTA-3′; hsa-miR-29b, 5′-TAGC
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ACCATTTGAAATCAGTGTT-3′; hsa-miR23b, 5′-TGGG
TTCCTGGCATGCTGATTT-3′; hsa-miR-31, 5′-AGGC
AAGATGCTGGCATAGCT-3′; hsa-miR-146a, 5′-TGAG
AACTGAATTCCATGGGTT-3′; hsa-miR-155, 5′-TTAA
TGCTAATCGTGATAGGGGT-3′; hsa-miR-150, 5′-TCTC
CCAACCCTTGTACCAGTG-3′; hsa-miR-1246, 5′-AATG
GATTTTTGGAGCAGG-3′; hsa-miR-197-3p, 5′TTCACC
ACCTTCTCCACCCAGC-3′; hsa-miR-485-p, 5′AGAGGC
TGGCCGTGATGAATTC-3′; and U6 forward, 5′-GCTT
CGGCAGCACATATACTAAAAT-3′ and U6 reverse, 5′
-CGCTTCACGAATTTGCGTGTCAT-3′.

qRT-PCR assays were performed in a StepOne real-time
PCR instrument (Life Technologies, Foster City, CA). The
reactions were carried out with a 10min incubation at 95°C
followed by 40 cycles of 95°C for 15 s and 60°C for 1min.
All reactions were run in triplicate, and the average threshold
cycle and SD values were calculated. The transcript levels
were calculated based on the threshold cycle (Ct) using the
delta-delta Ct method that measures the relative of a target
RNA between two samples by comparing them to a normal-
ization control RNA (U6).

2.8. Target Gene and Pathway Enrichment Analysis. We
determined the gene targets of identified miRNAs using
DIANA-TarBase v8 (http://www.microrna.gr/tarbase),
which is a database containing experimentally validated
miRNA-target interactions. We used DIANA-miRPath v3.0
(http://www.microrna.gr/miRPathv3) and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database for the
identification of the networks and pathway enrichment of
the selected miRNA target genes. Enriched pathways show-
ing statistical significance (P ≤ 0:05) were subjected to further
molecular analysis and interactome network construction.
Interactome networks were constructed to connect miRNAs
to their putative target genes (or to enrichment pathways)
within the selected enriched pathways; the resulting networks
were exported to Cytoscape v3.1.0 (http://cytoscape.org/
index.php) for visualization.

2.9. Ethical Considerations. This work was performed
according to the principles expressed in the Declaration of
Helsinki. The study was approved (Reference 822) by the
Ethical Committee from the Instituto Nacional de Ciencias
Médicas y Nutrición Salvador Zubirán, and a written
informed consent was obtained from all subjects.

2.10. Statistical Analysis. Descriptive statistic was performed,
and categorical variables were compared using the Chi-2 test
or Fisher’s exact test. We used Mann-Whitney U-test for
comparison of two medians. One-way analysis of variance
on ranks Kruskal-Wallis, if the Kruskal-Wallis test was sig-
nificant, a post hoc analysis (Dunn’s test) was performed
for all pairwise multiple comparison procedures. The relative
expression of miRNAs was reported as medians and ranges
(5th/95th percentiles). We reported nonparametric correla-
tions using Spearman coefficients among serological relative
expression of miRNAs and CLASI score. A strong correlation
was defined as a Spearman coefficient between ±0.50 and ±1,

a medium correlation between ±0.30 and ±0.49, and a weak
correlation below 0.29. We also performed a multiple linear
regression analysis to evaluate the possible association of
the meaningful miRNAs and the peripheral and skin cell sub-
populations among CLE varieties.

All the statistical tests were performed 2-sided; P values
less than 0.05 were considered statistically significant. SPSS
(v. 21.0) and GraphPad Prism (v. 5) software was used for
statistical analysis.

3. Results

3.1. Clinical and Demographic Characteristics. Clinical and
demographic characteristics of the groups are summarized
in Table 1. Most of the participants were females and had a
similar age. We did not find significant differences regarding
SLE duration, prednisone dose, and use of antimalarials and
immunosuppressants among the groups with CLE. However,
as expected, the median of the CLASI activity score in SCLE
patients was higher than the score of DLE patients.

3.2. miRNA Profiling in SCLE and DLE Patients. The analysis
revealed differential circulating levels of six miRNAs (miR-
150, miR-23b, miR-1246, miR-21, miR-31, and miR-146)
among the patients’ groups and controls (Figure 1). In this
regard, circulating levels of miR-1246 (372.7-fold decrease),
miR-150 (183.1-fold decrease), miR-21 (14.7-fold decrease),
miR-23b (14-fold decrease), and miR-146 (13-fold decrease)
were considerably lower in patients with SCLE than in
healthy controls. Patients with DLE also had lower levels of
miR-21 (4.6-fold decrease), miR-1246 (3.8-fold decrease),
and miR-150 (1.7-fold decrease) than healthy controls.
When we compared the group with SCLE versus DLE, the
SCLE group had lower levels of miR-1246 (75.5-fold
decrease), miR-146 (40.6-fold decrease), and miR23b (23.2-
fold decrease).

3.3. Correlation between miRNAs and CLASI Activity Score.
Except for miR-150 in the subgroup of patients with SCLE
(ρ = −0:64 CI 95% -0.78 to -0.11, P = 0:01), we did not find
any correlation among the CLASI activity score and other
circulating miRNA levels.

3.4. Associations of miRNAs and Circulating and Skin Cell
Subpopulations.We performed a multiple regression analysis
to evaluate the association of the different miRNAs and the
circulating and skin cell subsets.

At peripheral blood, in the group of SCLE, we observed a
negative association with CD4+/CD25-/IL-4+ cells and
CD4+/CD25hi/Foxp3+ and miR-23b (Figures 2(a), 2(e), and
2(g), Table 2) and CD4+/CD25-/IFN-γ+ with miR-1246
(Figures 2(a) and 2(f), Table 2). In the group of DLE patients,
there was a positive association with CD123+/CD196+/IDO+

plasmacytoid dendritic cells with miR-150 (Figures 2(b) and
2(i), Table 3).

At the skin, in the group of SCLE, a positive association
was determined between miR-21 and CD4+/IL-4+

(Figure 3(c), Table 2); and CD20+/IL-10+ (Figure 3(f),
Table 2) and CD4+/IFN-γ+ with miR-31 (Figure 3(d),
Table 2). In the DLE patients’ group, CD4+/IL-4+ cells were
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associated positively with miR-150 (Figure 3(c), Table 3),
and CD20+/IL-10+ cells with miR-1246 and miR-146a
(Figure 3(f), Table 3).

3.5. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment Analysis of miRNAs Differentially
Expressed in Patients with SCLE and DLE. The predicted tar-
gets and pathways of the differentially expressed miRNAs
and their correlation with specific circulating and skin T cell
subpopulations in both clinical conditions (SCLE: miR-21,
miR-31, and miR-23b and DLE: miR-150, miR-1246, and
miR-146a) were analyzed by using the KEGG pathway

enrichment strategy. The analysis of the predicted targets
and pathways revealed that in SCLE, miR-21 was linked with
Hippo signaling, bacterial invasion of epithelial cells, tran-
scriptional regulation of cancer, prolactin signaling, FoxO
signaling, and biosynthesis and degradation of fatty acids.
Interestingly, miR-31 also was connected with cancer
pathways associated with miR-21 and miR-23b. In addi-
tion, we found that miR-31 was significantly associated
with TNF signaling.

Regarding DLE, miR-146a expression was significantly
linked to immune relevant pathways including NF-kappa
B signaling, Toll-like receptor signaling. miR-1246 was
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Figure 1: Expression of differentially expressed miRNAs in cutaneous lupus. ∗The results are expressed as the median and range (5th/95th
percentiles). Kruskal-Wallis test and post hoc analysis (Dunn’s test). SCLE: subacute cutaneous lupus erythematosus; DLE: discoid lupus
erythematosus; HD: healthy donors.
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associated with apoptosis and viral carcinogenesis. Finally,
miR-150 in CLE was closely related to HIF-1 signaling and
cancer pathways.

Interestingly, the interactome analysis showed a group of
pathways that were linked with specific miRNAs expressed in

SCLE and DLE patients. In this context, cell cycle regulation,
p53 signaling, TGF-β signaling, thyroid hormone signaling,
and cancer pathways were shared between miR-21, miR-31,
and miR-23b (expressed in SCLE) and miR-146a, miR-
1246, and miR-150 expressed in DLE patients (Figure 4).

(%
)

CD4+/CD25hi/Foxp3+

0

2

4

6

8

10

12

a HD versus SCLE
b HD versus DLE
c SCLE versus DLE
⁎ P < 0.05 
⁎⁎ P < 0.001

SCLE (n = 22)
DLE (n = 20)
HD (n = 19)
Median
Mean
5th/95th percentiles

(g)

CD19+/CD38hi/CD24hi/IL-10+

(%
)

0
2
4
6
8

10
12
14
16
18

b⁎, c⁎⁎

a HD versus SCLE
b HD versus DLE
c SCLE versus DLE
⁎ P < 0.05 
⁎⁎ P < 0.001

SCLE (n = 22)
DLE (n = 20)
HD (n = 19)
Median
Mean
5th/95th percentiles

(h)

(%
)

CD123+/CD196+/IDO+

a⁎

b⁎⁎, c⁎⁎

0

10

20

30

40

50

a HD versus SCLE
b HD versus DLE
c SCLE versus DLE
⁎ P < 0.05 
⁎⁎ P < 0.001

SCLE (n = 22)
DLE (n = 20)
HD (n = 19)
Median
Mean
5th/95th percentiles

(i)

Figure 2: (a) Representative gating strategy of each cell population of CD4 effector T cells. (b) Representative gating strategy of each cell
population of regulatory cells of a DLE patient. Percentages of circulating (c) CD4+/CD161-/IL-22+ cells, (d) CD4+/CD161+/IL-17A+ cells,
(e) CD4+/CD25-/IL-4+ cells, (f) CD4+/CD25-/IFN-γ+ cells, (g) CD4+/CD25hi/Foxp3+ cells, (h) CD19+/CD38hi/IL-10+ cells, and (i)
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percentiles ∗P < 0:05 and ∗∗P < 0:001. SCLE: subacute cutaneous lupus erythematosus; DLE: discoid lupus erythematosus; HD: healthy
donors.
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Importantly, the degree of association between the differ-
entially expressed miRNA signatures and specific T cell sub-
populations observed in SCLE and DLE patients and their
enrichment with the aforementioned pathways are shown
in Figure 5. Detailed P values and the degree of association
of specific miRNAs and functional pathways are enlisted in
Figures S2 and S3.

4. Discussion

miRNAs are key determinants in the posttranscriptional
regulation of genome [27, 28] and are involved in the con-
trol of many biological processes including inflammation
[29]. It is well known that an uncontrolled immune
inflammatory response might contribute to the pathogene-
sis of autoimmunity.

In the present work, we explored if the expression of
circulating miRNA signature might identify patients with
CLE and their varieties, as was described by Solé et al.
for miR-31 and miR-485-3p overexpression in DLE com-
pared to SCLE [12]. Our most relevant findings were that
miR-150, miR-1246, miR-21, miR-23b, and miR-146 were
downregulated in SCLE than in healthy controls. Further-
more, miR-1246, miR-23b, and miR-146 expression was
lower in SCLE than in DLE. We observed some differences
regarding the association of peripheral and tissue subpop-

ulation expression and the miRNAs according to CLE
varieties. Notwithstanding in the SCLE group, miR-23b
and miR1246 drove a Th2 and Th1 peripheral response;
whereas in the DLE group, miR-1246 was associated with
infiltrates of IL-10-producing B cells.

miR-150 is expressed in different lineages of immune
cells and is involved in cellular maturation from pro-B to
pre-B lymphocytes, as well as in the development and func-
tional activity of NK and iNKT cell lineages [30, 31]. Regard-
ing the participation of miR-150 at the skin biology, it has
been demonstrated that its downregulation promotes kerati-
nocyte proliferation in hypoxic conditions through targeting
HIF-1α and VEGF-A [32]. Besides, miR-150 downregulation
is associated with the constitutive type I collagen overexpres-
sion in scleroderma dermal fibroblasts via the induction of
integrin β3 [33]. miR-150 seems to play an important role
in the induction of myofibroblast proliferation and its resis-
tance to apoptosis [34]. Moreover, miR-150 is also downreg-
ulated in other autoimmune diseases with skin involvement,
including psoriasis and diffuse cutaneous systemic sclerosis
(SSc) skin lesions [32]. Specifically, in SSc, downregulation
promotes TGF-β signaling and Smad3 phosphorylation,
resulting in the transcriptional activation of type I collagen
gene and tissue fibrosis [32]. In this vein, a study described
that patients with DLE exhibited a distinctive overexpression
signature of profibrotic markers including TGF-β and

Table 2: Multiple linear regression models for patients with SCLE.

Model miRNAs R R square β t Sig. (P)
95% IC for β

Lower Up

Peripheral cells

CD3+/CD4+/CD25-/IL-4+ 1 miR-23b 0.493 0.244 -0.493 -2.407 0.027 -0.901 -0.061

CD3+/CD4+/CD25+/IFN-γ+ 1 miR-1246 0.431 0.186 -0.431 -2.908 0.006 -0.399 -0.071

CD3+/CD4+/CD25hi/Foxp3+ 1 miR-23b 0.449 0.201 -0.449 -2.13 0.047 -1.47 -0.01

Tissue cells

IL-4-expressing CD4+ cells (epidermis) 1 miR-21 0.487 0.237 0.487 2.365 0.029 0.425 7.171

IFN-γ-expressing CD4+ cells (dermis) 1 miR-31 0.467 0.218 0.467 2.238 0.038 0.717 22.62

IL-10-expressing CD20+ cells (epidermis) 1 miR-21 0.492 0.242 0.492 2.396 0.028 0.61 9.298

SCLE: subacute cutaneous lupus erythematosus; DLE: discoid lupus erythematosus; HD: healthy donors.

Table 3: Multiple linear regression models for patients with DLE.

Model miRNAs R R square β t Sig. (P)
95% IC for β

Lower Up

Peripheral cells

CD123hi/CD196+/IDO+ 1 miR-150 0.448 0.201 0.448 2.125 0.048 0.009 1.54

Tissue cells

IL-4-expressing CD4+ cells (dermis) 1 miR-150 0.517 0.267 0.517 2.562 0.020 0.27 2.728

IL-10-expressing CD20+ cells (epidermis)

1 miR-1246 0.75 0.563 0.75 4.811 <0.001 0.613 1.563

2
miR-1246

0.809 0.655
0.859 5.672 <0.001 0.782 1.709

miR-146a -0.322 -2.13 0.048 -0.165 -0.001

IL-10-expressing CD20+ cells (epidermis) 1 miR-1246 0.736 0.542 0.736 4.611 <0.001 0.83 2.22

2 miR-1246
0.673 0.634

0.866 5.874 <0.001 1.15 2.439

miR-146a -0.385 -2.612 0.018 -0.256 -0.027

SCLE: subacute cutaneous lupus erythematosus; DLE: discoid lupus erythematosus; HD: healthy donors.
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SMAD3 [12]. Also, in line with these studies, our findings
suggest that the downregulation of miR-150 in CLE might
influence the activation of chronic inflammatory and profi-
brotic pathways.

On the other hand, the role of miR-1246 in normal
skin and autoimmune disorders is still poorly character-
ized. In patients with SLE, it was found downregulated.
This low expression might be related to commitment
hyperactivation of B cells. Interestingly, B cells from non-
active SLE patients have similar expression levels of miR-
1246 when compared with healthy volunteers [17]. More-
over, it has been demonstrated that miR-1246 promotes
UVB-induced apoptosis by downregulating RTKN2
expression in keratinocytes [35]. Herein, we observed that
this miRNA was also downregulated in patients with SCLE
and DLE.

Concerning miR-146, it has been observed that mela-
noma lesions overexpress it [36]. In patients with psoria-
sis, miR-146a is positively correlated with IL-17
expression in skin lesions and PBMCs [37]. Furthermore,
miR-146a regulates the proinflammatory TLR/MyD88
pathway by targeting IRAK1 and TRAF6 [38]. miR-146a
also contributes to the development of SLE, due to the
reason that it is a negative regulator of type I IFN pathway
by targeting IRF5, STAT1, IRAK1, and TRAF6 [34]. As in
patients with SLE, herein, we observed a downexpression
in CLE. Thus, the decreased expression of miR-146a in
PBMCs might contribute to the enhanced production of
type I IFN (IFN-α/β) in human lupus.

miR-23b, which is a differentiation marker of human
keratinocytes (through repression of TGIF1 and activation

of the TGF-β-SMAD2 signaling pathway), is remarkably
upregulated after UVA irradiation of human primary ker-
atinocytes and acts through targeting-related RAS viral
oncogene homolog 2 (RRAS2), which is strongly expressed
in highly aggressive malignant skin cancer [39, 40]. More-
over, miR-23b promotes cutaneous wound healing through
inhibition of the inflammatory responses by targeting
ASK1 [41].

Furthermore, we reported a downexpression of miR-21
among CLE patients but not of miR-31. miR-21, as well as
miR-31, are master regulators of T cell activation in SLE
[42]. Several studies have demonstrated that aberrant expres-
sion of miR-21 is involved in the pathogenesis of SSc and
psoriasis. miR-21 regulates genes such as SMAD3, SMAD7,
and type I collagen, all involved in fibrosis [34]. Moreover,
it has been demonstrated a reciprocal regulation between
thyroid hormone and miR-21 where miR21 downregulates
hedgehog pathway-driven skin tumorigenesis (basal cell car-
cinoma) [43]. Overexpression of miR-21 also inhibits the
growth and metastasis of melanoma cells by targeting
MKK3 [44].

In SLE patients, miR-31 was downregulated and nega-
tively associated with disease activity and proteinuria,
whereas miR-21 high expression correlated with the SLEDAI
score and proteinuria. In addition, a reduced expression of
miR-31 appears to alter the production of IL-2 by T cells in
SLE patients, possibly influencing the expression of nuclear
factor of activated T cells (NFAT) [45].

On the other hand, a recent study described a specific
miRNA skin signature for DLE that included miR-31 and
miR-485-3p. It demonstrated that the overexpression of
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Figure 3: Representative immunostaining of (a) IL-22-expressing cells, (b) IL-17A-expressing CD4 T cells, (c) IL-4-expressing CD4 T cells,
(d) IFN-γ-expressing CD4 T cells, (e) Foxp3-expressing CD25 T cells, (f) IL-10-expressing CD20 B cells, and (g) IDO-expressing CD123
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DLE), healthy donors ((C) HD). Arrowheads show single staining (in brown or red), and arrows depict double staining (in burgundy).
Original magnification was ×600. (h–n) Percentage of immunoreactive cells per microscopic field. The results are expressed as the mean
(horizontal yellow line), median (horizontal black line), and 5th/95th percentiles. ∗P < 0:05 and ∗∗P < 0:001. SCLE: subacute cutaneous
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miR-31 was stimulated by UV and TGF-β and this miRNA
activated NF-κB signaling stimulating proinflammatory
responses resulting in neutrophil and macrophage infiltrates
in skin [2]. miR-31 is a key regulator for promoting keratino-
cyte proliferation and migration during wound healing [46],
and it is overexpressed in SSc, a systemic disease character-
ized by extensive fibrosis [47, 48].

Finally, the participation of some immune response
pathways including PRR signaling, JAK-signal transducer,
STAT signaling, NF-κB signaling, and mitogen-activated
protein kinase (MAPK) signaling cascade has been
described in CLE [5]. Herein, several pathways were linked
with the circulating miRNAs differentially expressed in
CLE. Interactome network analysis revealed a strong con-
nection between circulating miRNAs in SCLE and DLE
groups with a particularly solid network connection such
as cell cycle regulation pathways, p53 signaling, TGF-β
signaling, NF-κB signaling, HIF-1 pathway, thyroid hor-
mone signaling, and cancer pathways, among others. Some
of them, as previously mentioned, had been described in
CLE, but others did not, opening new areas of research.
Overall, new insights into the pathogenesis of CLE might
allow the development of new target treatments such as
the inhibition of these immune pathways.

Certainly, we acknowledge that our study has the fol-
lowing limitations: first, a limited sample size and the lack

of a replication cohort. Notwithstanding, our sample was
carefully clinically selected and was able to detect differ-
ences in the expression of miRNAs among the different
groups of CLE patients. Second, we did not evaluate the
presence of miRNAs in skin biopsies. However, we were
interested in studying circulating miRNAs with the pur-
pose of further using them as future potential blood-
based biomarkers to assess relapses and response to treat-
ment, without the need of a skin biopsy. Finally, at the
analysis of peripheral and skin subpopulations, none of
the downregulated circulating miRNAs were associated
with Th17 and Th22 cells previously recognized as partic-
ipants in CLE pathogenesis. Thus, it is highly probable
that other miRNAs might be also implicated in the regula-
tion of these cell subpopulations. Besides these limitations,
we consider that our current manuscript is of relevance
particularly for the scant information regarding the patho-
genesis of CLE.

Summing up, we determined downregulation of miR-
150, miR-1246, and miR-21 in CLE patients. SCLE variety
had the lowest levels of miR-1246, miR-146, and miR-23b.
Overall, these miRNAs drove the presence of different
peripheral and skin subpopulations and participated in
diverse pathways. Further research is needed to validate our
results in other populations and to evaluate the role of these
miRNAs as clinical biomarkers.
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Figure 5: (a) Heat map of KEGG pathways enriched with gene regulated by a combination of hsa-miR-23b-3p, hsa-miR-21-5p, and hsa-miR-
31-5p (SCLE); (b) heat map of KEGG pathways enriched with gene regulated by a combination of hsa-miR-150-5p, hsa-miR-1246, and hsa-
miR-146a-5p (DLE).
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Data Availability

Data will be provided based on requirement.

Additional Points

What Is Already Known About This Topic. (1) Cutaneous
lupus erythematosus (CLE) is an autoimmune condition that
comprehends a wide range of dermatological manifestations
that can appear independently, or precede, systemic lupus
erythematosus. (2) The pathogenesis of CLE is multifactorial
and involves genetic predisposition, environmental factors,
and abnormalities in the innate and adaptive immune
response. (3) Recent studies have revealed the potential con-
tribution of miRNAs in the regulation of signaling pathways.
What Does This Study Add. (1) Circulating miR-150, miR-
1246, and miR-21 were decreased in CLE patients. (2) SCLE
variety was associated with lower levels of miR-21, miR-23b,
and miR-31. (3) DLE variety was associated with lower levels
of miR-146, miR-150, and miR-1246. These miRNAs drove
the presence of different peripheral and skin subpopulations
and participated in diverse pathways. What Is the Transla-
tional Message. (1) Circulating miRNAs could be used as
future potential blood-based biomarkers to assess relapses
and response to treatment, without the need of a skin biopsy.
(2) Regulation of circulating miRNAs could be useful in the
treatment of CLE.
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