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the whole proteome for vaccine
design: An application to
Clostridium perfringens
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Clostridium perfringens is a dangerous bacterium and known biological

warfare weapon associated with several diseases, whose lethal toxins can

produce necrosis in humans. However, there is no safe and fully effective

vaccine against C. perfringens for humans yet. To address this problem, we

computationally screened its whole proteome, identifying highly immunogenic

proteins, domains, and epitopes. First, we identified that the proteins with the

highest epitope density are Collagenase A, Exo-alpha-sialidase, alpha n-

acetylglucosaminidase and hyaluronoglucosaminidase, representing potential

recombinant vaccine candidates. Second, we further explored the toxins,

finding that the non-toxic domain of Perfringolysin O is enriched in CTL and

HTL epitopes. This domain could be used as a potential sub-unit vaccine to

combat gas gangrene. And third, we designed a multi-epitope protein

containing 24 HTL-epitopes and 34 CTL-epitopes from extracellular regions

of transmembrane proteins. Also, we analyzed the structural properties of this

novel protein using molecular dynamics. Altogether, we are presenting a

thorough immunoinformatic exploration of the whole proteome of C.

perfringens, as well as promising whole-protein, domain-based and multi-

epitope vaccine candidates. These can be evaluated in preclinical trials to

assess their immunogenicity and protection against C. perfringens infection.
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Introduction

Clostridium perfringens is a Gram-positive bacterium

frequently associated with systemic and enteric diseases (1). In

humans, C. perfringens is one of the most common food-

poisoning causing bacteria, responsible for 1,000,000 cases per

year in the US (2). Over a thousand cases result in gas gangrene,

which can take from hours to weeks to develop depending on the

tissue oxygen levels (3). It has a 10-30% mortality rate when

treated, but 100% when untreated (4). Moreover, it is a pathogen

known as a biological warfare weapon (5, 6). Therefore, it is

necessary to develop preventive tools, like the identification of

proteins and domains that can be used for molecular diagnostics

and vaccines.

The histotoxic infections caused by this bacterium include

gas gangrene in contaminated wounds, and several symptoms of

human gastrointestinal diseases by either food- or non-food-

borne C. perfringens infection (7, 8). C. perfringens isolates are

classified into five toxinotypes, based on the production of four

major toxins: a, b, ϵ and i (1). C. perfringens type A is the main

toxinotype that infects humans, producing gas gangrene, food

poisoning, and non-foodborne gastrointestinal disease (9). Its

main mechanism of cell invasion depends on the formation of a

pore in the host cell membrane. The phospholipase C (cpa) and

perfringolysin O (pfo) are involved in histotoxic infections, while

the enterotoxin (etx), the b toxin (cpb) and the b-like toxin, the
epsilon toxin (cpe) are involved in intestinal diseases (9, 10).

When C. perfringens toxins enter host cells, they are cut into

small peptides by the proteasomes (11). Similarly, the whole

bacterium can also be phagocytized and degraded by the

endolysosomes into peptides. In both scenarios, the HLA

(human leukocyte antigen) molecules (class I and class II,

respectively) bind to these peptides and display them on the

cell surface. Then, the HLA-peptide complexes are recognized by

the TCR receptor in the surface of CD8+ and CD4+ immature

T-cells, respectively, triggering an adaptive immune response.

They will mature into cytotoxic T (CTL) and T-helper (HTL)

lymphocytes. CTLs will produce a cytotoxic response against the

infected cells, whereas HTL will stimulate the proliferation of

antigen-specific B cells by clonal expansion, generating specific

antibodies against the pathogen (12).

Vaccination is the most cost-effective method to prevent

diseases (13). Although there is a vaccine available against C.

perfringens for sheep and goats (14), there is no one approved for

humans (5). Traditional vaccine development approaches are

based on whole attenuated or dead microorganisms, and

inactivated bacterial toxins. Nevertheless, they present the risk

of potential reactivation or recombination of the vaccine strain,

as well as offering limited protective effectiveness and immunity

versus newer technologies (13). An alternative is subunit-based

vaccines, consisting in one or more domains of antigenic

proteins. Generally, these protein domains should be easily
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accessible, such as the external region of membrane proteins.

As example, the NVX-CoV2373, a protein subunit-based

vaccine producing the recombinant Spike protein, have

demonstrated to neutralize the virus in different organism

models and in humans (15, 16).

A new kind of vaccine, called the multi-epitope vaccine, has

gained popularity in recent years (17). It consists of a novel

protein connecting immunogenic epitopes. This kind of vaccine

provides certain advantages over classical vaccines and single-

epitope vaccines, such as a broader spectrum of pathogen

variants, an optimized design that elicits both CTL, HTL, and

B cell responses, and reduced adverse effects (18). It relies on the

identification of epitopes through computational prediction and

experimental testing. Epitopes are selected based on different

criteria and assembled into a construct for their delivery to the

immune system machinery. Multi-epitopes vaccines have

already shown good results when tested in human clinical

trials. For example, EMD640744 and Reniale have shown

immunologic efficacy against advanced solid tumors (19) and

in reducing tumor progression (20), respectively. Also, multi-

epitope vaccines developed to trigger cross-immunity against

different strains of influenza have shown great immunogenicity

(21). Additionally, in mice, a multi-epitope vaccine has shown

protective immunity against Toxoplasma gondii (22).

Nowadays, immunoinformatics tools help to massively

screen protein sequences. They allow the computational

identification of antigenic proteins and epitopes, reducing

development time and cost (23). They rely on experimental

data, which is available in databases like the Immune Epitope

Database (IEDB) (24). It collects data of antibodies and CTL-,

HTL- and B-epitopes, detected or evaluated in humans and

other animal species (24, 25). Furthermore, there are predictors

of CTL- and HTL-epitopes based on artificial intelligence tools

and trained on experimental information. Among them, we have

NetMHCpan I and II (26, 27) and MHCFlurry (28), which are

currently the best according to independent evaluations (29).

Additionally, Epitope-Evaluator performs comparative analysis

of the outputs of these predictors, allowing an easy and graphical

identification of highly antigenic proteins, as well as conserved

promiscuous epitopes (30). Protein modeling and molecular

dynamics (MD) allow studying structural characteristics of

antigenic proteins, such as flexibility, disorder degree, and

solvent accessibility, among others. These features are related

to the immune response elicited (31–34). This could be because

flexible and disordered antigens have more different

conformations available at the moment of binding to the

immune sys tem molecu le s , max imiz ing favorab le

interactions (33).

In the present study, we predicted immunogenic epitopes

from the 2721 proteins that comprise the known proteome of C.

perfringens type A, to identify vaccine candidates following 3

different approaches. First, we used epitope prediction to identify
frontiersin.org
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the proteins containing the highest number of epitopes that may

elicit a good immunogenic response when used as recombinant

vaccines. Second, we analyzed only the toxins and determined

which non-toxic regions of these proteins are rich in HTL-

epitopes and could be used as a vaccine, without the histotoxic

damage. Third, using the best candidate epitopes, we generated

synthetic constructs and studied their structural characteristics

such as the flexibility and the accessibility of the epitopes

through molecular dynamics. As result, we are presenting

novel candidates for further testing as potential vaccines.
Material and methods

Data retrieval

Protein sequences and selection
We downloaded amino acid sequences of the 2721 proteins

reported for C. perfringens Type A in the UniProt database, using the

reference proteome with ID:UP000000818 (Supplementary Table 1).

We explored the proteome, following three approaches (Figure 1).

In the first approach, we sought to identify proteins with

most epitopes. So, the “epitope density” of each protein was
A

B

C

FIGURE 1

Flowchart of the immunoinformatic exploration of pathogens for vaccine d
immunogenic proteins for protein-based vaccines, (B) protein domains enr
for the design of novel multi-epitope protein vaccines. The proteins obtaine
immunodiagnostic tests.
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calculated, which was defined as the number of epitopes of the

protein divided by the length (in aa) of the protein. This was

calculated using the tool “Epitope Density” from Epitope-

Evaluator (https://fuxmanlab.shinyapps.io/Epitope-Evaluator/)

(30). Only proteins longer than 100aa with “evidence at

protein level” according to the UniProt database were

considered in this approach (Figure 1A).

In the second approach, the epitopes within toxins were

analyzed, using the following protein sequences: perfringolysin

O (P0C2E9), enterotoxin A (Q8XKY4), enterotoxin B

(Q8XKP0), enterotoxin D (Q8XMT2), beta2-toxin (Q93MD0)

and phospholipase C (P0C216), as previously reported (10, 35).

To propose a subunit-based vaccine that induces an appropriate

humoral response, we further studied the HTL-epitopes in the

non-toxic domains of these proteins. Among them, only the

non-toxic domain of Perfringolysin O is well characterized, so

we further studied this region. This protein is one of the most

immunogenic toxins of C. perfringens (35), and its non-toxic

domain is between the amino acid position 1 and 363, while the

toxic and binding domains are reported to be between 363 and

472 (35, 36). This analysis was performed using the “Epitope

Location” tool of Epitope-Evaluator (30) and the tridimensional

model obtained by AlphaFold2 (Figure 1B).
evelopment. We present three workflows to identify: (A)
iched in HTL epitopes for subunit vaccines, and (C) nested epitopes
d in these three approaches might be used as well in
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In the third approach, we started with all the epitopes in the

proteins of C. perfringens Type A and applied consecutive filters,

as described below (see Figure 1C).

Selection of HLA class-I and -II alleles
Each population has a different distribution of HLA class I and

II alleles (37, 38). Therefore, to maximize the potential use of our

construct across populations, the HLA “supertype” alleles were

considered as they are representative of the most frequent HLAs

class I and II alleles worldwide. For HLA class -I, these are: HLA-

A*01:01 (A1), HLA-A*26:01 (A1), HLA-A*02:01 (A2), HLA-

A*03:01 (A3), HLA-A*24:02 (A24), HLA-B*07:02 (B7), HLA-

B*08:01 (B8), HLA-B*27:05 (B27), HLA-B*39:01 (B27), HLA-

B*40:01 (B44), HLA-B*58:01 (B58) and HLA-B*15:01 (B62) (39).

And for HLA class-II: DRB1*03:01, DRB1*04:01, DRB1*04:05,

DRB1*08:02, DRB1*11:01, DRB1*13:02 and DRB3*01:01 and

DRB3*02:02 (9, 10, 40).
Prediction and selection of candidate
epitopes

Prediction of CTL- and HTL-epitopes
Epitopes of 8, 9, and 10 amino acids (aa) were predicted in C.

perfringens proteins for the HLA class-I supertype alleles using

NetMHCpan v4.1 (27) and MHCFlurry 2.0 (28), selecting based

on the consensus of these predictors. For HLA class-II, epitopes

of 15 aa were predicted using the NetMHCIIpan v4.0 (26). A

threshold of rank ≤ 2% was used for all these software. With the

prediction results, the epitope promiscuity (number of HLA

alleles each epitope is predicted to bind to) was calculated,

identifying epitopes that can bind to many alleles.

Discarding epitopes present in the
host proteome

A previous study has shown that epitopes present in both

proteins of the pathogen and proteins of the host may trigger an

auto-immune response (41). To prevent this, all predicted

epitopes matching human proteins with 100% identity and

sequence coverage were removed.

In the first and second approaches described in 2.1.1, the

whole protein was discarded. In the third approach, just the

epitope was discarded. All the proteoforms of the human

proteome (UniProt ID: UP000005640) were used as reference.
Multi-epitope vaccine design

Identification of nested epitopes
To keep the artificial multi-epitope protein small while

maximizing the number and quality of epitopes in the
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construct, highly immunogenic overlapping candidate epitopes

were selected, which we called “nested epitopes”. These were

defined as linear HTL-epitopes containing linear CTL-epitopes

in its sequence. Previous studies have also used this approach to

induce both CD4+ and CD8+ T-cell responses (40, 41).

Filtering proteins by the number of
transmembrane helices and UniProt evidence

To further filter the list of nested epitopes, only predicted

epitopes belonging to proteins having two or more predicted

external transmembrane regions with epitopes within were

considered. Transmembrane helices were predicted using

TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) (42,

43), and the presence of epitopes in external regions was

checked with a custom script in Python. Additionally, only

proteins with the following evidence categories according

UniProt were considered: “Experimental evidence at protein

level”, “Experimental evidence at transcript level” and “Protein

inferred from homology”. The annotation found in UniProt was

independently verified for correctness.

Selection of nested epitopes with high
immunogenicity

From the proteins filtered above, only those nested epitopes

predicted to bind 5 or more HLA-II supertype alleles were

selected. Adjacent nested epitopes with overlap were merged

to reduce the number of peptides while extending the predicted

immunogenic regions. Non-overlapping nested epitopes

were discarded.

Determination of highly conserved epitopes
Pathogens frequently mutate as an adaptation mechanism to

environmental and immunological pressure, generating multiple

variants (44). Selecting conserved regions may extend the

validity of vaccines over time and confer protection against

different strains. For this purpose, we performed BLASTp of our

nested epitopes against C. perfringens. Epitopes with 90% of

conservation or higher in the alignment were selected as

candidate epitopes.

In addition, the conservation of each candidate nested

epitope among the five C. perfringens toxinotypes was

calculated. For each of the proteins having any of our

candidate nested epitopes, a sequence alignment of the protein

and its corresponding homologous proteins in the other

toxinotypes was made. First, to find the homologous proteins,

a Blast alignment was performed between the C. perfringens type

A protein and the whole proteome of each toxinotype

(Supplementary Table 2). Next, multiple global alignments

were performed by protein using ClustalX2 (45). The

alignments were visualized using CLC Sequence Viewer, where

the regions corresponding to nested epitopes were extracted.
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Design of multi-epitope vaccine candidates
Multi-epitope constructs were designed by concatenating the

candidate epitopes in different orders. However, when

assembling the constructs, neoepitopes that can bind to the

HLA supertype alleles may appear at the interface of two

candidate epitopes joined. Therefore, we need to know which

epitope connections are allowed. This problem was modeled

using a directed graph, where the nested candidate epitopes were

represented as nodes, connected by directed edges representing

the order of precedence in which the epitopes can be

concatenated. To determine which directed edges are allowed

in the graph, all the candidate epitopes were concatenated in a

“pyramidal order”, which is a single sequence containing all

possible connections (see Figure 4A). This sequence was

submitted to NetMHCIIpan to predict if there are strong

binder epitopes located in the interface between two nested

epitopes. Thus, the edges (connections) harboring unwanted

neoepitopes were removed from the directed graph. Then, all the

semi and complete Hamiltonian paths were found using

EpiSorter, a python-based toolset for multi-epitope assembly

(Figure 4B). Finally, those candidate epitopes either

disconnected from the rest of the graph or with no edges

enabling the generation of a complete path were discarded.
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Additionally, neoepitopes at the interface of two candidate

epitopes may be present in the host proteome, which may result

in unwanted immune responses potentially leading to auto-

immune reactions or tolerance. To prevent this, the multi-

epitope constructs were sliced in all the possible fragments of

15 aa and we evaluated if they were present in any human

protein using BLASTp against the human proteome. This was

performed using BioPython and the following parameters:

program = “blastp”, database = “nr”, entrez_query =

“txid9606ORGN, expect = 20000, alignments = 100”. For any

15-mer, if scores of 100% of coverage and 100% of identity were

obtained, the corresponding construct was discarded.
Structural analysis of the vaccine
constructs

Prediction of physicochemical properties
The physicochemical properties of the multi-epitope

vaccines were calculated using ProtParam (https://web.expasy.

org/protparam/) (46), which computes the molecular weight,

theoretical isoelectric point, grand average of hydropathicity

(GRAVY), among other metrics.
A B

D

E F

C

FIGURE 2

Description of the predicted epitopes in C. perfringens. (A) Correlation between the number of epitopes and protein length. Blue: CTL-epitopes.
Red: HTL-epitopes. (B) Correlation between the number of HTL- and CTL-epitopes. (C) Comparison of the number of epitopes per protein, for
different epitope lengths of CTL- (8, 9 and 10 aa) and HTL- (15 aa) epitopes. (D) Lasso regression of the number of CTL- (blue) and HTL- (red)
epitopes across the proteome of C. perfringens. (E) Correlation between protein length and number of CTL- and HTL-epitopes in the protein
(top and bottom, respectively). Proteins with more than 500 CTL- and 200 HTL-epitopes (above the dashed line) are labeled. (F) Bar plot
showing the number of CTL- and HTL-epitopes (top and bottom, respectively) by HLA allele within, for the four proteins highlighted on panel
(E). **** means p-value < 0.0001.
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Structural modeling
The structure of the multi-epitope proteins were predicted

with AlphaFold v. 2.1.0 (47), using all the databases to search for

templates and the model “monomer_casp14” to infer the 3D

coordinates. For each multi-epitope construct, its possible 3D

structures were ranked by mean pLDDT and the best five

structures were refined by restrained energy minimization with

AMBER99SB, as implemented in the AlphaFold2 pipeline. Thus,

selecting the structure with highest confidence for each multi-

epitope construct. Then, the two multi-epitope proteins with the

highest mean pLDDT were selected to analyze their structural

conformation through MD simulation.
Frontiers in Immunology 06
Molecular dynamics
We performed 1.2 ms of MD for each multi-epitope structure.

First, the structures were submitted to the PDB2PQR web server

(48) to add the corresponding hydrogens at pH 7.4. Then, MD

was carried out using NAMD 2.14 (49) with the CHARMM36

force field (50). Accordingly, NaCl ions were included on the

surface of the protein based on its Coulombic potential using the

package cIonize 2.0 (51). Next, ions located 20 Å farther from the

protein were removed. Finally, the protein was solvated in a size-

optimized box with 15 Å of padding and a salt concentration of

0.154 M, using the Autoionize Plugin v.1.5 (https://www.ks.uiuc.

edu/Research/vmd/plugins/autoionize/).
A B

D E

F

C

FIGURE 3

Evaluation of epitopes in C. perfringens toxins. (A) Correlation between the number of HTL-epitopes and protein length. (B) Correlation between
HTL-epitope density and protein length. (C) Number of HTL-epitopes within toxins binding each of the HLA-II supertype alleles. (D) Location of the
HTL-epitopes along the enterotoxin (D) Epitopes are colored in a gradient from yellow to red, representing the number of HLA alleles they bind. (E)
Number of HTL-epitopes in the whole Perfringolysin O toxin (in gray) and its non-toxic domain (red) that are predicted to bind each of the HLA-II
supertype alleles. (F) Structure of the Perfingolysin O. The toxic-domain is represented in blue. The non-toxic domain in red, highlighting the most
promiscuous epitopes in cyan.
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Initially, only the water atoms were minimized for 5000 steps

using the conjugate gradient algorithm. Then, MD of these

atoms was performed at 0 K for 30 ps. Next, the whole system

was minimized for 5000 steps, equilibrating the temperature to

298.15 K and the pressure 1 bar, as previously described (52). For

this process, the Langevin thermostat and the Nosé-Hoover

Langevin barostat were used in the NPT ensemble. Briefly, the

system was heated from 50 K to 298 K, increasing the

temperature by 4 K every 10 ps and applying harmonic

restraints to the backbone with a force constant of 5 kcal/mol.

Subsequently, the restraints were reduced by 10% every 0.05 ns.

Finally, 1.2 ms of unrestrained MD of the NPT ensemble was

performed at 298.15 K. Changes of temperature, potential

energy, and density along the simulation were examined to

verify convergence. All the processes described were

performed in periodic boundary conditions with an

integration time of 2 fs/timestep and Particle Mesh Ewald

(PME) grid spacing of 1.0 Å. The cut-off for non-bonded

interactions was set at 12 Å.
Assessing conformational convergence
For each trajectory, the alpha carbon root mean square

deviation (Ca-RMSD) of all frames was calculated with an in-

house Tcl script that uses VMD functions and the module

“bigdcd”. The frame 0 was used as reference point. The

structural compactness was quantified by the radius of

gyration (Rg), which was calculated using an in-house Tcl

script similar to the one described above. Trajectories where

the RMSD and Rg did not converge were discarded. The

remaining trajectories were trimmed to only include the

interval where the RMSD and Rg converged.

It is known that two completely different structures could

have the same Ca-RMSD when compared against the same
Frontiers in Immunology 07
reference. Therefore, we complemented our graphical approach

with a Ca-RMSD-based clustering in Wordom v.0.22 (53). This

method assigns conformations to the same cluster if every pair in

the group has a Ca-RMSD less or equal to a given threshold

(cluster diameter) (54), which we set as 2.5 Å. Therefore, finding

a cluster much bigger than the rest suggests that a dominant

conformation was produced by the simulation, suggesting

conformational convergence.

Final refinement and evaluation of the
structural quality

The centroid of the most populated cluster of each

remaining multi-epitope MD was subjected to a two-step final

refinement. First, main-chain and fast all-atom energy

minimizations were conducted using the web server

ModRefiner (55), without a reference structure. Second, the

protein was solvated, followed by a minimization and MD of

only water atoms using the methodology described above. Then,

the output was minimized for 5000 steps in explicit solvent with

NAMD and the CHARMM36 force field, applying harmonic

restraints to all protein atoms with a force constant of 1 kcal/

mol. The refined structures were uploaded to the web server

MolProbity to construct Ramachandran plots. In addition, the

web implementations of ProSA (56) and ERRAT (57) were used

to further assess the structural quality.

Analysis of epitope flexibility and accessibility
in MEP_12 structure

For each MD of the multi-epitope constructs, the centroids

of the five most populated clusters were compared against each

other. First, to have all the structures in the same coordinate

system, all the centroids were RMS-aligned against the initial

AlphaFold2 model in Pymol v.2.4.1 (58). Then, the AlphaFold2
frontiersin.org
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FIGURE 4

Selection of epitopes for the design of a multi-epitope construct. (A) An example of the pyramidal order for 5 epitopes, showing how they should
be concatenated into a new protein, to evaluate the presence of neoepitopes in all the connections in just a single prediction step. (B) Allowed
connections (without neoepitopes) are represented in the directed graph. The Hamiltonian path (in red) exemplifies a solution containing all the
nodes. (C) Graph representing the nested epitopes (nodes) and its allowed connections (edges), selected in this study for the construction of the
multi-epitope construct. Epitopes discarded from the design are marked in red.
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model was removed and Pymol selection algebra was used to

obtain a list of residues forming the same secondary structure in

all the centroids.

To identify the most rigid and accessible epitope within the

multi-epitope construct, the convergent trimmed trajectories

were analyzed, identifying the most flexible protein regions by

computing the Ca-RMSF of the trimmed trajectory in VMD.

The trimmed trajectory was loaded with a step of 5 and aligned

against frame 0, then the Ca-RMSF measured using these

modified coordinates. Finally, the Solvent Accessible Surface

Area (SASA) per epitope was measured during the trimmed

trajectory using an in-house Tcl script. Then, the module

“bigdcd” was used to load the complete trimmed trajectory

and examine the changes of SASA along it, assessing the

convergence of each epitope. For each epitope whose SASA

converged, the mean SASA over the entire trajectory was

computed and 95% confidence intervals calculated by

computing the statistical inefficiency with the block averaging

approach (59).

Evaluation of MEP_12 innate
response potential

The potential of MEP_12 to trigger an innate response was

tested based on its interaction with TLR1/TLR2 and TLR4/MD2.

The representative conformation of MEP_12, from MD Ca-

RMSD-based clustering, was docked against the ectodomains of

TLR1/TLR2 (PDB ID: 2Z7X) and TLR4/MD-2 (TLR4/MD-2,

PDB ID: 3FXI) using Haddock v.2.4 (60). The structures of these

TLRs were submitted to PDBfixer to complete the missing

sections and remove irrelevant heteroatoms (61). As TLR

ectodomains are glycosylated in vivo (62), the covalently

attached glycans of the structures were kept in order to obtain

a TLR-MEP_12 interaction closer to real conditions.

As information about the possible interaction sites was not

available, a blind docking approach was followed. Haddock ab-

initio mode was used to scan the surface of MEP_12 and the

corresponding TLR ectodomain, to find the most favorable

interacting pose. This was performed during the rigid docking

phase. Fifty thousand structures were computed for this step, to

ensure that the whole surface of each protein will be sampled.

Then, the best 500 structures were selected based on the

Haddock scores, which were calculated from the semi-flexible

simulated annealing and the final energy minimization

refinement. The solutions of both docking steps were clustered

by Fraction of Common Contacts (FCC), using 0.6 Å as

threshold. Cluster-mean Haddock scores were computed using

the structures with the four lowest values. Then, the clusters were

ranked, where those with lower mean Haddock scores were the

most favorable.

The most favorable clusters that had overlapping error bars

(one standard deviation) of their Haddock-scores were selected.

Protein-protein interaction analysis of the epitopes was

performed using a custom Python pipeline, evaluating the
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plausibility of the solution based on prior structural data. After

selecting one cluster, its most favorable structure was submitted

to the web servers PDBsum and PRODIGY to map the

interacting residues and to compute the protein-protein

binding energy, respectively (63, 64).
Simulating the immune response
The immune response profile by immunization with the multi-

epitope vaccine was simulated using C-IMMSIM (https://kraken.

iac.rm.cnr.it/C-IMMSIM/). Three vaccinations with a dose of 1000

unit of the multi-epitope vaccine and 100 of adjuvant without LPS

were administrated as described in Figure 10A. The most frequent

HLA alleles were considered: HLA-A*0101, HLA-B*08:01, HLA-

B*15:01, DRB1-11:01 and DRB3-02:02. One thousand timesteps of

8 hours were simulated, representing ~11 months. Vaccine doses

were administered four weeks apart, as commonly recommended

(65), corresponding to days 3, 30 and 60. Pathogen challenge was

introduced on day 111 by inoculating 1000 units of those proteins

of C. perfringens type A harboring epitopes of the vaccine, with a

pathogen multiplication factor of 0.2 (Figure 10A).
Multi-epitope sequence design and codon
optimization

Codon optimization was performed to improve the

expression efficiency of the vaccine construct in Escherichia

coli for production. The codon usage table of E. coli K12

strain, available in the Codon Usage Database (https://www.

kazusa.or.jp/codon/), was used for reverse translation. The

CAIcal SERVER (http://genomes.urv.es/CAIcal/) was used to

calculate the Codon Adaptation Index (CAI). The cDNA

sequence obtained was analyzed with NEBcutter (http://nc2.

neb.com/NEBcutter2/), identifying cleavage sites of

commercially available restriction enzymes.
Results

Identification of proteins with high
epitope density

A total of 429809 CTL- and 121450 HTL-epitopes were

predicted from the proteome of C. perfringens Type A. The

number of CTL- and HTL-epitopes predicted were strongly

correlated with the protein length (CTL: p < 2.2e-16, r = 0.97;

HTL: p < 2.2e-16, r = 0.91, Pearson correlation) (Figure 2A).

There is also a positive correlation between the number of CTL-

and HTL-epitopes predicted by protein (p < 2.2e-16, r = 0.87,

Pearson correlation) (Figure 2B), indicating that C. perfringens

proteins containing a higher number of predicted CTL-epitopes

tend to contain more HTL-predicted epitopes as well.

Regarding the epitope length, we found a significantly

greater number of 9-mer than 8-mer or 10-mer predicted
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CTL-epitopes (Wilcoxon test, p value < 2.2e-16), as biologically

expected. Additionally, the number of 9-mer CTL epitopes

predicted by protein was higher than the number of HTL-

epitopes (Figure 2C). These observations were statistically

significant even when normalizing by protein length

(Wilcoxon test, p < 2.2e-16) (Supplementary Figure 1A).

The distribution of predicted epitopes across the proteome

was explored by randomly concatenating the sequences of all the

2721 proteins and calculating the epitope density along it. Local

peaks were detected, showing that the predicted epitopes were

not evenly distributed across the proteome and that not all

proteins have the same epitope density (Figure 2D).

Epitopes that were either duplicated (i.e. appearing in two or

more different proteins) or present in any human protein were

removed, resulting in 121244 (99.83%) HTL- and 427944

(99.56%) predicted CTL-epitopes left (Supplementary Table 3).

This comprises 59578, 237664 and 130702 CTL-epitopes

predicted of 8, 9 and 10 aa, respectively (Supplementary

Figure 1B). Regarding the epitope promiscuity (i.e. the number

of alleles an epitope can bind to), we found that the majority of

the CTL-epitopes predicted (312032 out of 427944) bind to only

one HLA-I allele. Similarly, 67080 of the 121244 HTL-epitopes

were predicted to bind just one HLA-II. Noteworthy, there were

2 promiscuous CTL-epitopes binding to 11 HLA-I alleles, and 33

HTL-epitopes binding to 8 HLA-II alleles (Supplementary

Figures 1C, D).

The evidence status of the proteins with at least 1 epitope

predicted was retrieved from UniProt, obtaining 32 with

“evidence at protein level”, 1 with “evidence at transcript

level”, 1064 with “inferred from homology”, 1623 “predicted”,

and 1 “uncertain”. The set of proteins with “evidence at protein

level”, when compared with the set of proteins “inferred from

homology”, showed no significant difference in the number of

epitopes (p = 0.33) but in epitope density (p < 0.02)

(Supplementary Figures 1E, F).

Among the proteins with “evidence at protein level”, 25 show

an epitope density above 0.5 (Supplementary Table 4). Notoriously,

each of the proteins Collagenase A, Exo-alpha-sialidase, alpha-n-

acetylglucosaminidase and hyaluronoglucosaminidase contain

more than 500 CTL- and 200 HTL-epitopes (Figure 2E), and

more than 15 epitopes per HLA supertype allele (Figure 2F).
Evaluation of the HTL-epitopes in
C. perfringens toxins

The six toxins evaluated have a different number (45–157)

but similar density (0.15-0.25) of HTL-epitopes. Notably,

enterotoxin D contains the highest number of HTL-epitopes

even not being the largest toxin. Contrarily, beta2-toxin showed

the lowest number of HTL-epitopes (Figure 3A). In terms of
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HTL-epitope density, the enterotoxins A and D showed the

lowest and highest values, respectively (Figure 3B).

All the toxins, except the beta2-toxin, contained several

epitopes by HLA allele. Among the HLA-II alleles used,

DRB3*02:02 and DRB1*11:01 were found to recognize the

highest and the lowest number of epitopes from toxins

(Figure 3C). Regions enriched with promiscuous HTL-epitopes

within the toxins were identified. For example, the C-terminal

region of the enterotoxin D contains the most promiscuous

epitopes of the protein, while the region between positions 130

and 256aa has almost no epitopes (Figure 3D). Similarly, the

HTL-epitopes of the enterotoxins A and B were mainly located

at the N-terminal region. Additionally, the non-toxic domain of

Perfringolysin O contains at least nine predicted epitopes per

HLA-II allele (Figure 3E). Furthermore, among the toxins, we

identified 12 HTL-epitopes binding five or more HLA-II alleles,

covering the majority of HLA-II supertype alleles (Table 1). We

also found that four of these promiscuous epitopes are located in

the external region of the non-toxic domain of the Perfringolysin

O (Figure 3F). Altogether, it suggests that this domain can be

considered as a potential subunit-based vaccine.
Design of multi-epitope vaccine
candidates

We identified 112714 nested epitopes from the whole

proteome, comprising 112714 predicted HTL-epitopes containing

145854 predicted CTL-epitopes (Supplementary Table 5). Next,

from the 2685 proteins containing nested epitopes, 266 proteins had

at least two external transmembrane regions with at least one nested

epitope. Then, the proteins annotated as “predicted proteins” or

“uncertain proteins” were removed, resulting in 105 proteins

containing 1884 nested epitopes. From this set, only nested

epitopes that can bind to at least five HLA-II alleles were selected,

obtaining 42. And it was possible to merge 29 of these 42 nested

epitopes into 11 overlapped nested epitopes (Table 2), which

represent the candidates for the design of the muti-epitope

construct (Figure 1C). The conservation analysis showed that

these candidate epitopes were highly conserved among the

sequences of the different strains of C. perfringens (Table 2).

Moreover, these epitopes are 100% conserved among the five

toxinotypes (Supplementary Figure 2).

These 11 overlapped nested epitopes were used to build the

directed graph. By finding the allowed directed edges, epitopes

“7” was discarded as it was disconnected from the rest of the

graph. Also, epitope “2”, because there were no edges permitting

the generation of a complete path (Figure 4C). From the

subgraph containing the nine remaining overlapped nested

epitopes, we obtained 21 different Hamiltonian paths,

representing multi-epitope constructs (Supplementary
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TABLE 1 Promiscuous HTL-epitopes in C. perfringens toxins.

Epitopes Alleles Number
of

Alleles

Proteins

PENIKIIANGKVVVD DRB1*03:01, DRB1*04:01, DRB1*04:05,
DRB1*08:02, DRB1*11:01, DRB1*13:02,

DRB3*02:02

7 PHOSPHOLIPASE C

PKYIVIHDTDNRQAG DRB1*03:01, DRB1*04:01, DRB1*04:05,
DRB1*08:02, DRB1*13:02, DRB3*01:01

6 ENTEROTOXIN D

RKPININIDLPGLKG-NPKYIVIHDTDNRQA DRB1*03:01, DRB1*04:01, DRB1*04:05,
DRB1*08:02, DRB1*13:02, DRB3*02:02

6 PERFRINGOLYSIN O - ENTEROTOXIN D

MLEEFKYDPNQQLKS-LEEFKYDPNQQLKSF DRB1*03:01, DRB1*04:01, DRB1*04:05,
DRB1*13:02, DRB3*01:01, DRB3*02:02

6 BETA2 TOXIN

LKSFEILNSQKIDNK DRB1*04:01, DRB1*04:05, DRB1*08:02,
DRB1*11:01, DRB1*13:02, DRB3*02:02

6 BETA2 TOXIN

KYIVIHDTDNRQAGA DRB1*03:01-DRB1*04:01-DRB1*04:05,
DRB1*13:02-DRB3*01:01

5 ENTEROTOXIN D

KRKPININIDLPGLK DRB1*03:01, DRB1*04:01, DRB1*04:05,
DRB1*13:02, DRB3*02:02

5 PERFRINGOLYSIN O

EIRKVIKDNATFSTK-IRKVIKDNATFSTKN-
NDNINIDLSNSNVAV-EMLEEFKYDPNQQLK-
EEFKYDPNQQLKSFE

DRB1*03:01, DRB1*04:01, DRB1*13:02,
DRB3*01:01, DRB3*02:02

5 PERFRINGOLYSIN O - PERFRINGOLYSIN O -
ENTEROTOXIN A - BETA2 TOXIN - BETA2

TOXIN

GEIFNIDGKEGSWYK DRB1*03:01, DRB1*08:02, DRB1*11:01,
DRB1*13:02, DRB3*01:01

5 ENTEROTOXIN B

ENIKIIANGKVVVDK-NIKIIANGKVVVDKD DRB1*0301, DRB1*08:02, DRB1*11:01,
DRB1*13:02, DRB3*02:02

5 PHOSPHOLIPASE C

WNEKYSSTHTLPART-NEKYSSTHTLPARTQ-
GSNYGVIGTLRNNDK-ASKSYITIVNEGSNN-
SKSYITIVNEGSNNG

DRB1*04:01, DRB1*04:05, DRB1*08:02,
DRB1*11:01, DRB3*02:02

5 PERFRINGOLYSIN O - PERFRINGOLYSIN O -
ENTEROTOXIN D - ENTEROTOXIN D -

ENTEROTOXIN D

KQGIVKVNSALNMRS-KSFEILNSQKIDNKE DRB1*04:01, DRB1*04:05, DRB1*08:02,
DRB1*13:02, DRB3*02:02

5 ENTEROTOXIN D - BETA2 TOXIN
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TABLE 2 Characteristics of the predicted epitopes selected for the construction of the multi-epitope protein.

Epitope Overlaped epitope Nested_epitope HLA-II alleles Protein name Protein

ID

Position Epitope HLA-I Alleles Conservation

Ep_0 IDGKEYKIANNALIGEGK IDGKEYKIANNALIG DRB1*13:02, DRB3*02:02, DRB1*04:05,

DRB1*08:02, DRB1*04:01

FtsX domain-

containing protein

Q8XM39 453 EYKIANNALI A*24:02 160/161

KEYKIANNAL B*40:01

EYKIANNAL A*24:02,

B*08:01,

B*39:01

YKIANNALI B*39:01

KEYKIANNA B*40:01

DGKEYKIANNALIGE DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*04:05, DRB1*08:02, DRB3*01:01,

DRB1*04:01

454 EYKIANNALI A*24:02

KEYKIANNAL B*40:01

EYKIANNAL A*24:02,

B*08:01,

B*39:01

YKIANNALI B*39:01

KEYKIANNA B*40:01

GKEYKIANNALIGEG DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*04:05, DRB1*08:02, DRB3*01:01,

DRB1*04:01

455 EYKIANNALI A*24:02

KEYKIANNAL B*40:01

EYKIANNAL A*24:02,

B*08:01,

B*39:01

(Continued)
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TABLE 2 Continued

Epitope Overlaped epitope Nested_epitope HLA-II alleles Protein name Protein

ID

Position Epitope HLA-I Alleles Conservation

YKIANNALI B*39:01

KEYKIANNA B*40:01

KEYKIANNALIGEGK DRB1*13:02, DRB3*02:02, DRB1*04:05,

DRB1*08:02, DRB1*04:01

456 EYKIANNALI A*24:02

KEYKIANNAL B*40:01

EYKIANNAL A*24:02,

B*08:01,

B*39:01

YKIANNALI B*39:01

KEYKIANNA B*40:01

Ep_1 LYEKGFLHAKTIVADSS LYEKGFLHAKTIVAD DRB1*11:01, DRB3*02:02, DRB1*04:05,

DRB1*08:02, DRB1*04:01

Cardiolipin

synthase

P0C2E2 387 FLHAKTIV B*08:01 89/89

LHAKTIVA B*39:01

FLHAKTIVA A*02:01,

B*08:01

YEKGFLHAKTIVADS DRB1*11:01, DRB3*02:02, DRB1*04:05,

DRB1*08:02, DRB1*04:01

388 FLHAKTIV B*08:01

LHAKTIVA B*39:01

FLHAKTIVA A*02:01,

B*08:01

EKGFLHAKTIVADSS DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*04:05, DRB1*08:02, DRB1*04:01

389 FLHAKTIV B*08:01

LHAKTIVA B*39:01

FLHAKTIVA A*02:01,

B*08:01

Ep_2* EGKIVVIIDNSPSVIIL EGKIVVIIDNSPSVI DRB1*13:02, DRB3*02:02, DRB1*04:05,

DRB1*03:01, DRB3*01:01, DRB1*04:01

Stage V sporulation

protein AF

Q8XLQ7 245 VIIDNSPSV A*02:01,

A*26:01

85/86

IIDNSPSVI A*02:01

GKIVVIIDNSPSVII DRB1*13:02, DRB3*02:02, DRB1*04:05,

DRB1*03:01, DRB3*01:01, DRB1*04:01

246 VIIDNSPSV A*02:01,

A*26:01

IIDNSPSVI A*02:01

KIVVIIDNSPSVIIL DRB1*13:02, DRB3*02:02, DRB1*03:01,

DRB3*01:01, DRB1*04:01

247 VIIDNSPSV A*02:01,

A*26:01

IIDNSPSVI A*02:01

DNSPSVIIL B*39:01

Ep_3 GAERFVLISTDKAVNPT GAERFVLISTDKAVN DRB1*11:01, DRB3*02:02, DRB1*04:05,

DRB1*08:02, DRB1*04:01

Polysacc synt 2

domain-containing

protein

Q8XN75 406 FVLISTDKAV A*02:01 30/32

ERFVLISTDK B*27:05

VLISTDKAV A*02:01

AERFVLIST B*40:01

AERFVLISTDKAVNP DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*04:05, DRB1*08:02, DRB1*04:01

407 FVLISTDKAV A*02:01

ERFVLISTDK B*27:05

VLISTDKAV A*02:01

AERFVLIST B*40:01

ERFVLISTDKAVNPT DRB1*13:02, DRB1*11:01, DRB1*04:05,

DRB1*08:02, DRB1*04:01

408 FVLISTDKAV A*02:01

ERFVLISTDK B*27:05

VLISTDKAV A*02:01

Ep_4 IKENEFVVDGSTRLSDL IKENEFVVDGSTRLS DRB1*04:01, DRB3*01:01, DRB3*02:02,

DRB1*03:01, DRB1*13:02

Probable

hemolysin-related

protein

Q8XPD3 339 FVVDGSTRL A*02:01,

A*26:01

41/41

KENEFVVDGSTRLSD DRB1*04:01, DRB3*01:01, DRB3*02:02,

DRB1*03:01, DRB1*13:02

340 FVVDGSTRL A*02:01,

A*26:01

ENEFVVDGSTRLSDL DRB1*13:02, DRB3*02:02, DRB1*03:01,

DRB3*01:01, DRB1*04:01

341 FVVDGSTRL A*02:01,

A*26:01

DGSTRLSDL B*08:01

(Continued)
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TABLE 2 Continued

Epitope Overlaped epitope Nested_epitope HLA-II alleles Protein name Protein

ID

Position Epitope HLA-I Alleles Conservation

Ep_5 RHKDKIYIDTSPVNNLI RHKDKIYIDTSPVNN DRB1*04:01, DRB1*04:05, DRB3*01:01,

DRB3*02:02, DRB1*03:01, DRB1*13:02

TraG-D C domain-

containing protein

Q93M96 158 KIYIDTSPV A*02:01 70/82

HKDKIYIDTSPVNNL DRB1*13:02, DRB3*02:02, DRB1*04:05,

DRB1*03:01, DRB3*01:01, DRB1*04:01

159 YIDTSPVNNL A*02:01

KIYIDTSPV A*02:01

IDTSPVNNL B*40:01

KDKIYIDTSPVNNLI DRB1*13:02, DRB3*02:02, DRB1*03:01,

DRB3*01:01, DRB1*04:01

160 YIDTSPVNNL A*02:01

KIYIDTSPV A*02:01

DTSPVNNLI A*26:01

IDTSPVNNL B*40:01

Ep_6 ASATYYIDEDSKIKTA ASATYYIDEDSKIKT DRB3*02:02, DRB1*04:05, DRB1*03:01,

DRB3*01:01, DRB1*04:01

FtsX domain-

containing protein

Q8XM39 331 ATYYIDEDSK A*03:01 126/128

TYYIDEDSKI A*24:02

YIDEDSKIK A*01:01

YYIDEDSKI A*24:02

SATYYIDEDSKIKTA DRB3*02:02, DRB1*04:05, DRB1*03:01,

DRB3*01:01, DRB1*04:01

332 ATYYIDEDSK A*03:01

TYYIDEDSKI A*24:02

YIDEDSKIK A*01:01

YYIDEDSKI A*24:02

Ep_7* VPDNIVSNLKPIANKI VPDNIVSNLKPIANK DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*03:01, DRB1*08:02

FtsX domain-

containing protein

Q8XM39 490 VSNLKPIANK A*03:01 136/147

VPDNIVSNL B*07:02,

B*08:01,

B*39:01

SNLKPIANK A*03:01

PDNIVSNLKPIANKI DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*03:01, DRB1*08:02

491 VSNLKPIANK A*03:01

SNLKPIANK A*03:01

NLKPIANKI B*08:01

Ep_8 LDYKFILDTNYIEAKL LDYKFILDTNYIEAK DRB3*02:02, DRB1*04:05, DRB1*03:01,

DRB3*01:01, DRB1*04:01

Spore germination

protein KA

Q8XMP0 191 FILDTNYIEA A*02:01 42/43

ILDTNYIEAK A*03:01

ILDTNYIEA A*03:01

KFILDTNYI A*24:02

YKFILDTNY B*15:01

DYKFILDTNYIEAKL DRB3*02:02, DRB1*04:05, DRB1*03:01,

DRB3*01:01, DRB1*04:01

192 FILDTNYIEA A*02:01

ILDTNYIEAK A*03:01

ILDTNYIEA A*03:01

KFILDTNYI A*24:02

DTNYIEAKL A*26:01

YKFILDTNY B*15:01

Ep_9 LDDFITIEKANNSYTF LDDFITIEKANNSYT DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*08:02, DRB1*04:01

Cardiolipin

synthase

Q8XP94 265 ITIEKANNSY A*01:01,

A*26:01,

B*15:01,

B*58:01

114/115

TIEKANNSY A*01:01,

A*26:01,

B*15:01

DDFITIEKANNSYTF DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*08:02, DRB1*04:01

266 ITIEKANNSY A*01:01,

A*26:01,

B*15:01,

B*58:01

IEKANNSYTF B*40:01

KANNSYTF B*58:01

TIEKANNSY

(Continued)
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Table 6). Using BLASTp, we obtained that only a 5 aa fragment

of an epitope (DTNYI) matched with a human protein (ATP-

dependent DNA helicase HFM1) with a 100% coverage and

identity. Therefore, no construct was discarded.
Structural analysis of the multi-epitope
constructs

Physicochemical characterization
We evaluated the physicochemical properties of the

constructs using ProtParam (Supplementary Table 7). Each one

had 150 aa, a molecular weight of 16.83 kDa and a predicted pI of

4.61, indicating an acidic nature. The number of negatively and

positively charged residues computed at pH 7 were 27 and 17,

respectively. The aliphatic index (relative volume occupied by the

aliphatic side chains) was 93, indicating a thermostable nature.

The construct had a GRAVY value of -0.363.
Modelling the constructs
Models of each multi-epitope construct were prepared in

AlphaFold2, and its mean pLDDT were computed. Values under

50 were obtained for all models (Supplementary Figure 3A),

suggesting structural disorder (66). After modeling the 21 multi-

epitope constructs, only MEP_6 and MEP_12 were selected, as

they showed the highest mean pLDDT.

The structures of the multi-epitope (MEP) MEP_6 and

MEP_12 had the highest mean pLDDT values, being the most

reliable ones. Besides the similarity in their mean pLDDT, the

distribution of per-residue pLDDT notably differed. MEP_6 had

94.7% of its residues with pLDDT under 50 and 5.3% between 50

and 70 (Figure 5A). In contrast, MEP_12 had 68% of residues

with pLDDT under 50, 31.3% between 50 and 70, and 0.7%

between 70 and 90 (Figure 5B).

In addition, the per-residue pLDDT seemed to be non-

dependent on the epitope from which the residues belong.
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For instance, the residues of epitope “4” had pLDDTs under 50 in

MEP_6, whereas values between 50 and 70 in MEP_12 (Figure 5).
Assessing the conformational convergence
The confidence of our best candidate models (MEP_6 and

MEP_12) were improved by performing extensive MDs to refine

them, and their conformational changes were evaluated. The

RMSD and Rg over each trajectory were measured to assess their

conformational convergence.

The RMSD of MEP_6 increased during the last 600 ns of

MD, which is indicative of a conformation that is still changing

(Figure 6A). The conformational instability was corroborated by

an unstable Rg, which continuously decreased during all the

trajectory (Figure 6B). Therefore, MEP_6 was discarded of

further analysis as it did not reach conformational convergence.

In contrast, the RMSD and Rg of MEP_12 reached a steady

state during the last 500 ns (Figures 6C, D) suggesting

conformational convergence of the trajectory. It was verified

by an RMSD-based clustering of frames of the last 500 ns, using

2.5 Å as threshold. More than 70% of the conformations adopted

during this lapse were highly similar among them and were

grouped in Cluster 1, confirming the convergence (see Figure 6E;

Supplementary Table 8).

As the centroid of Cluster 1 represents the preferred

conformation of MEP_12, it was retrieved and considered as

the most probable average structure of MEP_12 in solution.

Remarkably, although displaced due to the MD, the b-strands
formed by the same residues are present both in the centroid and

in the initial AphaFold2 model (Figure 6F).

Evaluating the structural quality
A two-steps refinement of the centroid was performed using

ModRefiner and NAMD, obtaining a structure that remained

close to the original conformation (Supplementary Figure 3B).

The quality of the refined structure was assessed using the web

servers MolProbity, ProSA and ERRAT. We observed that all the
TABLE 2 Continued

Epitope Overlaped epitope Nested_epitope HLA-II alleles Protein name Protein

ID

Position Epitope HLA-I Alleles Conservation

A*01:01,

A*26:01,

B*15:01

Ep_10 SDNDYVIVNTEGGEFD SDNDYVIVNTEGGEF DRB1*11:01, DRB3*02:02, DRB1*04:05,

DRB1*08:02, DRB1*04:01

UPF0182 protein

CPE0011

Q8XPF2 461 VIVNTEGGEF B*15:01 173/174

IVNTEGGEF A*26:01,

B*15:01

DNDYVIVNTEGGEFD DRB1*13:02, DRB1*11:01, DRB3*02:02,

DRB1*04:05, DRB1*08:02, DRB1*04:01

462 VIVNTEGGEF B*15:01

IVNTEGGEF A*26:01,

B*15:01
fron
Epitopes “2” and “7” (with asterisk) were not included in the final design. Conservation is represented as the number of sequences where epitope is conserved over the total number of
sequences analyzed.
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residues in the model were correctly oriented, as the

Ramachandran plot indicated that 100% of residues were in

allowed regions, not showing any outliers (Figure 7A).

Furthermore, 96.6% of the residues were observed in favored

regions. ProSA predicted a Z-score of -6.55 for our model, which

is within the range of values observed in other proteins of similar

length, obtained from NMR or X-ray crystallography (Figure 7B).

An ERRAT overall score of 94.531 was obtained, indicating that
Frontiers in Immunology 14
this model has a good resolution. Notably, only windows centered

at residues 96 and 127 had error values above 99% (Figure 7C). All

the quality statistics were better in the refined structure than the

original model (Supplementary Figure 4).

Analysis of MEP_12 trajectory
An ensemble approach was followed to assign the secondary

structures of the aminoacidic residues. The centroids of the five
A C

D

E

FB

FIGURE 6

Convergence analysis of the MD simulation. Ca-RMSD values and radius of gyration (Rg) of MEP_6 (A, B) and MEP_12 (C, D) during a simulation
of 1.2 ms. Inset plots in (C, D) show the last 500 ns where the RMSD and Rg converged. (E) Coverage (%) of the five most populated clusters
obtained from the RMDS-based clustering. (F) Structural alignment between the AlphaFold2 model (gray) and the centroid of the most
populated cluster (in orange) of MEP_12.
A B

FIGURE 5

Amino acid sequence, epitope sorting and AlphaFold2 3D model of the multi-epitope constructs MEP_6 (A) and MEP_12 (B). The confidence
value (pLDDT) is categorized in 4 groups (orange, yellow, cyan, and blue), representing their percentage in pie charts.
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most populated clusters were compared, as they are distinct and

representative conformations of MEP_12 in solution. Then, sets

of residues forming the same secondary structure in all the

centroids were retrieved. We reasoned that if those sets are

folded in the same way, even in different but representative

conformations, there is a high chance that they might adopt that

conformation when synthesized. Notably, comparing the five

centroids, we found that 12 b-strands were formed by the same

sets of residues (Figure 8A). The number of residues forming

these b-strands represent 41.33% of the MEP_12. The other

residues were mostly in loops in all the centroids evaluated. No

consistent alpha helices were found.

By analyzing the Ca-RMSF, epitopes “3”, “8” and “10” were

found to be the least flexible ones (Figure 8B). The rigidity of “3”

can be explained because part of this epitope forms a parallel b-
sheet with a portion of epitope “6” (Figure 8D). Next, the mean
Frontiers in Immunology 15
SASA over the steady state of the MD was computed, excluding

epitope “4” as it was not stable over the MD (Supplementary

Figure 5). Epitopes “3”, “10”, and “8” showed the lowest mean

SASA values, in decreasing order (Figure 8C). Altogether, this

indicates that epitope “3” is the most accessible among the rigid

epitopes of MEP_12.

Evaluation of MEP_12 innate response
potential

Blind docking of MEP_12 against TLR1/TLR2 resulted in

four clusters containing 3.6% of the refined structures. The

Haddock-scores of these clusters showed overlapping error

bars (one standard deviation) (Figure 9A), not allowing to

discern which cluster is the best.

The TLR1/TLR2 crystal structure had missing residues in the

N-termini of both TLRs. As the cluster “1” contained binding
A

B

C

FIGURE 7

Quality assessment of the refined centroid of MEP_12 most populated cluster. (A) Ramachandran plot of MEP_12 centroid, indicating the
percentage of residues in favored (light blue) and allowed (blue) regions. (B) Scatterplot of the Z-scores of MEP_12 centroid (black dot) and
structures with experimental evidence obtained from NMR (blue) and X-ray crystallography (light blue). (C) ERRAT plot of MEP_12 centroid. Bars
represent the error value (white: error < 95%, yellow: 95%, error < 99%, red: error > 99%) of a nine-residue sliding window. The overall quality
factor indicates the percentage of protein residues with error values lower than 95%.
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modes of MEP_12 interacting with TLR2 in a region that might

be occupied by those missing residues, it was discarded

(Supplementary Figures 6A, B). All the other clusters showed

MEP_12 docked to similar regions of TLR1 (Supplementary

Figure 6A). The best binding mode of the cluster “2” showed

contacts with epitopes “3”, “4” and “6”. It showed four hydrogen

bonds and one salt bridge that stabilized the interaction

(Figure 9B). The best binding modes of the cluster “3” and “4”

showed contacts were with epitopes “6” and “0”; and “0”, “1” and

“9”, respectively (Supplementary Table 9).

Blind docking of MEP_12 against TLR4/MD-2 resulted

in six clusters containing 5.2% of the refined structures. The

Haddock-scores of the best four clusters had overlapping error

bars (one standard deviation) (Figure 9C). From this set,

only cluster “5” contained solutions in which MEP_12

interacted exclusively with the co-receptor MD-2, while the

others showed MEP_12 interacting with any of the two chains

of TLR4 (Supplementary Figure 6C). Therefore, the solutions of

cluster “5” were discarded.

Noteworthy, unlike TLR1/TLR2, the TL4/MD-2 complex is

symmetric (Supplementary Figure 6D). In that sense, we noticed

that the binding modes of clusters “3” are the same but reflected

along the symmetry axis (Supplementary Figure 6D). Thus,

these two can be seen as the same cluster. The best binding

mode of the cluster “3-6” showed contacts with epitopes “0”, “1”,
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“3” and “10”. It showed 3 hydrogen bonds and 2 salt bridges and

had a binding energy of -9.9 kcal/mol (Figure 9D). The best

binding mode of the cluster “1” showed contacts with epitopes

“1”, “5”, “8 and “9” (Supplementary Table 9).

Simulating the immune response
The simulation of immunizing with the multi-epitope

protein showed that the second and third doses generated

significantly higher responses than the first one, as expected.

HTL populations were higher in the second and third dose

than in the first one, suggesting activation of the memory cells

(Figure 10B). However, the CTL population was higher during

the first dose, indicating an early immune response

(Figure 10C). The B-cell subpopulations, including memory

B-cells and Plasma B lymphocytes (PLB cells), showed

considerable expansion after each dose reaching the highest

peak at day 60 (Figure 10D). After the challenge, the response

generated by B-cells was the highest in the simulation,

indicating an appropriate production of antibodies

(Figure 10E). Moreover, an early production of IgM was

detected, which changed to IgG after the antigen

administration (fourth response) (Figure 10F). Regarding the

innate system, NK (natural killer) activity was found to be

constant during the three doses and showed increased activity

during the challenge (Figure 10G).
A

B DC

FIGURE 8

Structural characteristics of MEP_12. (A) Alignment of the 3D structures of MEP_12 from all the centroids of the five most populated clusters.
Cyan, purple, orange, green, and pink cartoons correspond to the centroids of clusters 1, 2, 3, 4 and 5 respectively. The twelve b-strands in the
structure (left) are represented as arrows in the sequence (right). (B) Violin plots showing the distribution of Ca-RMSF values. The lowest Ca-
RMSF distributions are colored in green. (C) Mean SASA by epitope. The error bars represent 95% confidence intervals. (D) Modeled structure of
MEP_12, showing epitopes “3” and “6” in red and green, respectively.
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Codon optimization of MEP_12 DNA sequence
The optimized sequence of the 450 nt cDNA vaccine

construct had a Codon Adaptation Index (CAI) of 0.772, and

a %GC of 48.9%. This sequence contains 111 restriction sites for

55 commercial enzymes (Supplementary Table 10).
Discussion

C. perfringens is one of the most common food-poisoning

causing bacteria, causing a major impact on human health

worldwide. It is also a reported biological warfare agent. These

reasons make developing a vaccine an urgent matter. Most

experimental studies have focused on C. perfringens toxins to

find vaccines protective against gas gangrene. It has been shown

that the alpha toxin protect against C. perfringens type A (67,
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68). This toxin has been produced in endospores of recombinant

Bacillus subtilis and tested as vaccine in mice, resulting in

protection against gas gangrene (69). The b-toxin has also

been evaluated as a possible vaccine against C. perfringens type

C in piglets (70). However, none of them have been tested in

humans. There is still no approved vaccine for humans

nowadays (5).

While other studies had focused only on specific proteins of

C. perfringens (71, 72), we consider that analyzing the whole

proteome could reveal novel more immunogenic proteins. We

followed three approaches to propose vaccine candidates: a

whole-protein based vaccine, a protein-subunit based vaccine,

and a multi-epitope protein vaccine. The first approach consist

in identifying natural proteins of the pathogen enriched with

both CTL and HTL epitopes to be used as recombinant vaccines.

With the second approach, we further studied the sequence and
A

B D

C

FIGURE 9

Protein docking of MEP_12 against TLR1/TLR2 and TLR4/MD-2. Bar plots summarizing the dockings (A) MEP_12-TLR1/TLR2 and (C) MEP_12-
TLR4/MD2. The number of structures and the mean Haddock-score by cluster are shown in orange and blue, respectively. Whiskers in the
mean Haddock-score bars represent one standard deviation. Structural representation of the most favorable binding mode of the cluster
selected, of dockings (B) MEP_12-TLR1/TLR2, and (D) MEP_12-TLR4/MD2; showing the binding energy computed in PRODIGY. MEP_12 is
colored in cyan; TLR1 and TLR4 in green; and TLR2 and MD2 in orange. Glycosylated residues and attached glycans (cyan) are shown as sticks,
and non-carbon atoms are colored following the CPK convention. The inset plots show a closeup of the residues involved in polar interactions
(as cyan and green sticks). The hydrogen bonds and salt bridges are represented by blue and red lines, respectively, connecting the interacting
atoms which are labeled indicating amino acid and position.
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structure of the main toxins, identifying regions exposed to the

extra-cellular medium and rich in HTL epitopes that could

generate immune responses against gas gangrene. Lastly, in the

third approach, we identified the best CTL and HTL epitopes of

the whole proteome and performed several immunoinformatics

and structural analyses to assemble them into a multi-epitope

construct, aiming to combat C. perfringens infection. The

immunogenic proteins obtained by computational methods in

these three approaches may represent good vaccine candidates,

and they could be used as well for the development of

immunodiagnostic tests (73, 74).

The immunoinformatic exploration of the whole proteome

resulted in 429809 CTL- and 121450 HTL- predicted epitopes

(Supplementary Table 3), which could be further used in both

computational and experimental studies seeking a better

understanding of the immunogenic characteristics of

C. perfringens proteins, the developing of diagnostic tests,

and the design of peptide-based vaccines and therapies. A

strong positive correlation between the number of CTL- and

HTL-epitopes predicted with the protein length was found,

indicating that longer proteins contain a higher number of
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epitopes. This has been previously reported by an independent

study in viral proteins, showing that protein length is positively

correlated with its number of CD8+ T-cell epitopes within (75),

supporting our observation. Another observation is that the 9-

mer CTL-epitopes were more promiscuous, binding more HLA-

I supertype alleles (Supplementary Figure 1B). These two

observations might be correlated with the fact that most of the

experimental data, and consequently most software training

data, is based on 9-mer CTL-epitopes. A similar pattern was

observed for 15 aa HTL-epitopes. These observations match

with was is biologically expected, as they are the canonical

epitope sizes which have been commonly observed in MHC-

epitope experimental data (29, 76, 77).

The Collagenase A (UniProt ID: P43153), Exo-alpha-sialidase

(UniProt ID: Q8XMY5), alpha n-acetylglucosaminidase (UniProt

ID: Q8XM24) and hyaluronoglucosaminidase (UniProt ID:

P26831) were identified as the top 4 proteins with more CTL-

and HTL-epitopes. The Collagenase A, encoded by the gene colA,

is an extracellular proteolytic enzyme that degrades extracellular

matrix and plays a role in the pathogenesis of gangrene (78). This

enzyme has hemorrhagic and dermonecrotic activities,
A

B D

E F G

C

FIGURE 10

Results of the C-IMMSIM simulation for 350 days. (A) Schematic illustration of the vaccination trial, with three doses of the multi-epitope
vaccine (green box) at days 3, 30, 60; and the challenge (red box) at day 111. Dynamics of (B) HTL and (C) CTL populations. Memory and not
memory cells are represented with light-blue and green lines, respectively. (D) B cell populations, grouped by immunoglobulin isotype
production. (E) Population of Plasma B lymphocytes producing IgM, IgG1 and IgG2. (F) Antigen concentration and relative antibodies responses.
(G) Total population of NK cells. The first, second and third doses were inoculated.
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andintravenous inoculation of Collagenase A has shown to be

lethal for mice (79). However, little is known about its role

as immunogen. The Exo-alpha-sialidase, encoded by the gene

nanJ, is the largest of the three sialidases produced by

C. perfringens. It is involved in the intestinal virulence

by increasing the binding affinity of the sialidases to

their targets, enhancing pathogen adherence to intestinal cells.

Sialidase inhibitors, such as Siastatin B or N-acetyl-2,3-dehydro-2-

deoxyneuraminic acid (NADNA), have been tested in vitro

and proposed as possible therapeutics against intestinal infection

of C. perfringens; however, in vivo validation is still needed (80,

81). The hyaluronoglucosaminidase, encoded by the gene nagH,

is a carbohydrate-active enzyme that acts on the connective

tissue during the gas gangrene (82, 83). The alpha n-

acetylglucosaminidase is an enzyme with strong preferences

for carbohydrate motifs, found on the class III mucins

within the gastric mucosa (81). Although there is no study

testing alpha-acetylglucosaminidase, vaccination with beta-

acetylglucosaminidase has shown to generate protection against

necrotic enteritis in chickens (84). Similarly, a peptide-based

vaccine comprising of several epitopes from these mucolytic

enzymes produced reduction of lesions caused by necrotic

enteritis in chicks. Altogether, these studies suggest that these

four enzymes can be used as potential protein-based vaccines (85).

The use of epitope-enriched proteins has been previously

suggested as a strategy for the rational selection of immunogens,

considering B-cell epitopes (86) and T-cell epitopes (73). Proteins

with high epitope density are expected to maximize the

probability of immune cells presentation and activation.

Protein-based vaccines have been widely studied and used, with

some advantages like having relatively low production costs, and

not causing severe side effects unlike attenuated vaccines (87, 88).

Next, we studied the six most studied C. perfringens type A

toxins in more detail. All of them, except for the beta2 toxin,

showed at least 10 HTL-epitopes by HLA-II supertype allele

(Figure 2C). These observations suggest that toxins are generally

good candidates for protein-based vaccines, as shown in

previous experimental studies (89–93). Our results support the

idea that toxins could generate an appropriate humoral response

to protect, mainly, against gangrene or histotoxic damage before

infection (67, 94). Noteworthy, we show the relevance of not

only predicting promiscuous epitopes but studying their location

within the proteins as well. For instance, we found that the most

promiscuous epitopes of enterotoxin D are in SH3B domains,

which are correlated with promoting pathogen survival and

invasion by binding to host receptors. This indicates that not

all the extension, but specific regions of the protein are rich in

epitopes. The use of non-toxic domains of toxins has shown to

be advantageous for vaccine development as they present similar

immunogenicity than the entire toxins without undesired

toxicity (95–97). For example, the use of the non-toxic domain

HC50 of the Botulinum neurotoxin type A induces a strong anti-

HC50 IgG antibody response, neutralizing the circulating
Frontiers in Immunology 19
neurotoxin in mice (98). And, immunization with the non-

toxic fragment of the C-domain of phospholipase C produces

antibodies against this toxin, providing protection against gas

gangrene in mice (5). Similarly, our analysis suggests that the

non-toxic domain of Perfringolysin O is a promissory candidate

for experimental testing as a protein-subunit based vaccine.

Numerous studies have used bioinformatics software to

propose epitope-based vaccines against C. perfringens.

A previous study predicted B-cell epitopes in the epsilon toxin

of C. perfringens types B and D. However, they are not the main

toxinotypes of C. perfringens affecting human health (99) and the

epsilon toxin is not present in C. perfringens type A. Another

study predicted 15 unique epitopes in the toxin NetF using mouse

rather than human MHC alleles. Although the authors suggest

that NetF could be a good vaccine candidate and the epitopes

found can be used in multi-epitope vaccines, this needs to be

evaluated in humans (100). Furthermore, the NetF protein has

been associated with gastroenteritis and enterocolitis in canine

and foals (100), but its role in humans is not well studied. Another

study has predicted T- and B-cell epitopes in the fructose 1,6-

bisphosphate aldolase (101). Nonetheless, they did not design a

multi-epitope construct, which might be more effective than

single-epitope vaccines (18, 102). Other bioinformatic studies of

C. perfringens aimed to find only candidate epitopes in toxins or

few proteins (71, 103). However, exploring the whole proteome, as

done in the present study, allows the computational identification

of a broader set of potential epitopes that may trigger better

immune responses, as seen in other pathogens like SARS-CoV-

2 (104).

A rational workflow was elaborated to design a multi-

epi tope vaccine , consis t ing of (1) us ing di fferent

immunoinformatics tools to predict epitopes from the whole

proteome of C. perfringens (2), considering the epitope location

in the structure of their native proteins, and (3) merging and

assembling nested epitopes in potential constructs, and (4)

evaluating the structure and dynamics of the constructs by

MD. Of the programs available for T-cell epitope prediction,

we opted to use NetMHCpan and MHCFlurry to predict CTL-

epitopes, and NetMHCIIpan for HTL-epitopes, as they have

shown the best performance against competitors (27, 28).

Proteasome cleavage and TAP transport are also important

processes of the intracellular presentation pathway. Predictors

of proteasome developed, being the most popular netChop and

ProteaSMM. However, benchmarking studies have shown that

these predictors still need to improve their sensitivity and

specificity (105). Moreover, it has been reported that current

cleavage predictions based on in vitro data do not correlate with

in vivo data (106). Therefore, we decided not to discard

constructs based on these predictors. TAP transport predictors

face the same limitations, with very few predictors available and

the lack of unbiased benchmarking studies (107).

Targeting HLA supertype alleles maximize the potential

usability of our multiepitope in different populations. This choice
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was a tradeoff between wider usability and higher local specificity,

and we decided to prioritize the first one as currently C. perfringens

infection is a widely spread pathogen without universal vaccine.

Higher local specificity would be more relevant in other scenarios,

such as if broad-range vaccines become available, or if the disease

becomes endemic, or if there is a high incidence of cases in a specific

geographic location, among others. This will imply a change in the

HLA allele selection strategy, giving more importance to certain

HLA alleles abundant in the specific geographic areas affected by

the disease.

Keeping the synthetic protein small is important to reduce

synthesis and production costs (i.e. facilitate its purification in

inclusion bodies), as well as to prevent toxicity in the organism

used for production (98, 108). Using nested epitopes allows to

maximize the number of epitopes in the multi-epitope construct

without increasing the construct length. Recent studies have

used nested epitopes to construct multi-epitope proteins, but

experimental testing is still needed to verify the advantage

provided by this strategy (104, 109). From the set of 112714

nested epitopes, several filters were applied to select the best

candidates. One of these filters is to prioritize epitope

promiscuity, which has been associated with contributing to

epitope immunodominance, as promiscuous epitopes are

recognized by multiple HLA alleles (110). The use of

promiscuous epitopes allows to cover a larger number of

HLA-alleles (i.e. a larger proportion of the target population)

without increasing the number of epitopes in the vaccine

construct (111). We also filtered by epitope conservation

among all the reported protein variants of C. perfringens. This

may result in covering a broader range of current, and

potentially future, pathogen variants. Thus, a high epitope

conservation could lead to a better protection as the immune

response tends to focus on conserved epitopes when individuals

are exposed to different strains (112, 113). In our construct, the

conservation analysis of the overlapped nested epitopes showed

100% conservation. Thus, even though C. perfringens type A is

the most common cause of gas gangrene, our construct may

confer extended protection against other toxinotypes as well.

Our construct of 150 aa is made of 9 overlapped HTL-CTL

epitopes, comprising 24 HTL-epitopes containing 34 CTL-

epitopes. This suggests a better cellular immune response than

previous multiepitope constructs, which were longer and had

less epitopes in its sequence (114). Whilst the study of Aldakheel

et al. (114) attempted to target all HLA-I and -II alleles, we opted

to focus on the HLA supertype alleles. This allowed us to need

less epitopes in our design to match all the target alleles.

Additionally, having less HLAs to target allows epitopes with

better immunogenicity to be selected from the prediction. Thus,

we successfully covered all the HLA supertype alleles, while the

previous study just covered 10 of the 12 HLA-I and 5 of the 8

HLA-II supertypes alleles. Additionally, our design is about 1/3

in length (150 versus 415 aa), due to our strategy of using nested

HTL-CTL epitopes in extracellularly exposed regions.
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The 9 overlapped nested epitopes in our construct belong to the

FTsX domain-containing protein (UniProt ID: Q8XM39), the

cardiolipin synthase (UniProt ID: P0C2E2), the Polysaccharide

synthase 2 domain-containing protein (UniProt ID: Q8XN75),

the probable hemolysin-related protein (UniProt ID: Q8XPD3),

the TraG-D C domain-containing protein (UniProt ID: Q93M96),

the spore germination protein KA (UniProt ID: Q8XMP0) and

CPE0011 (UniProt ID: Q8XPF2). Our prediction indicates that all

of them are membrane proteins with a high content of HTL- and

CTL-epitopes. Moreover, these proteins present functions related

with the cell membrane structure (Cardiolipin synthase), survival

(Spore germination protein KA) and host colonization (Hemolysin-

related protein) (115–117). External regions of transmembrane

proteins involved in the infective process are frequently

considered vaccine targets, as antibodies can efficiently neutralize

them (118).

Assembling epitopes to make a new protein can be performed

with or without linkers, or adding adjuvant sequences (119).

Multiple linker and adjuvant sequences have been reported in

the literature (120–122). Linkers are used to reduce the occurrence

of neoepitopes (123), with the downside of increasing the

construct length and the cost of protein synthesis. There are

very few software to optimize the use of linkers (112, 124, 125),

and this approach is frequently used because finding an

appropriate epitope sorting without linkers is time-consuming

and computationally demanding. Here, we used a novel algorithm

and software based on graph theory (EpiSorter), assembling all the

epitopes without the need of linkers and without unwanted

neoepitopes shared with human proteins, avoiding autoimmune

or tolerance responses. Thus, we believe that using linkers can be

avoided and, instead, we recommend prioritizing the number and

promiscuity of the epitopes selected.

Several immunoinformatics studies have reported structural

models of their multi-epitope constructs using only one or two

software, complemented with refinement steps (126–128).

Nonetheless, modeling novel proteins is a difficult task as they

usually do not have close homologues. The situation becomes

even more complex if the novel protein tomodel consists of highly

flexible linear epitopes. To tackle this problem, we employed the

state-of-the-art protein-structure prediction software AlphaFold2

(47). Nowadays, this is the first time this software has been used to

predict the 3D structure of multi-epitope constructs.

The high proportion of residues of the multi-epitope

structures with low pLDDT suggests that the models obtained

by AlphaFold were not completely reliable. However, it also says

that the multi-epitope protein is highly disordered and flexible,

characteristics that may favor its binding to immune proteins.

Disordered regions in proteins are characterized by a lack of a

stable tertiary structure and high flexibility (129). Moreover, it

has been pinpointed that flexibility in protein antigens positively

affects their binding affinity (130).

The multi-epitope construct selected did not present

Ramachandran outliers and shows an ERRAT score
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comparable to scores of high-resolution structures (131).

Moreover, these quality statistics are better than the ones

obtained in various similar studies designing multi-epitope

vaccines (119, 127, 132–135). This reaffirms the quality and

consistency of our structural approach, although better

modeling software is still needed for multi-epitope proteins.

Docking was performed against TLR1/TLR2 and TLR4/

MD2, as they have been widely reported to be important in

the innate defense against C. perfringens infection in chickens

and mice (136), although little is known in humans. The

lipopeptide and lipopolysaccharide binding sites of TLR1/

TLR2 and TLR4/MD-2, respectively, have been structurally

characterized (137, 138). As there is neither prior experimental

information about the binding sites for MEPs, nor which epitope

of our novel MEP might interact with the TLRs, we considered

blind docking the most appropriate approach. The docking

simulation showed binding between our MEP_12 and the

TLR1/TLR2, suggesting an innate immune response in

addition to the adaptive immune response generated by the

nested epitopes. The docking analyses also showed that epitopes

“3” and “10” interact with TLR1/TLR2. These epitopes are

relatively rigid, which may result in a more favorable binding

as shown in previous studies. Epitopes tend to be more rigid than

the rest of the protein (31). And, from a thermodynamic point of

view, rigid surfaces have less entropic penalty when interacting

with other proteins, resulting in tighter bindings.

The binding region of MEP_12 in TLR4/MD-2 is similar to the

one observed in a previous study, where a SARS-CoV-2 candidate

vaccine was docked against this receptor (119), even though

different protocols were followed. This suggest that this region of

TLR4/MD-2 is where antigenic proteins bind. However,

experimental studies are needed to validate this observation.

Noteworthy, the MEP_12 is smaller and establishes fewer

interactions with TLR4/MD-2 than the SARS-CoV-2 candidate

vaccine but achieves a similar binding energy, differing in just in 0.4

kcal/mol. This indicates that our design is a more efficient TLR4/

MD-2 binder and correlates with the finding that MEP_12 is

flexible and disordered. These are two desired characteristics, as

they make antigens more efficient at binding immune proteins (33).

Immunization with MEP_12 was simulated, showing that our

vaccine candidate can elicit immune responses to clear the antigen

on secondary exposure. The challenge with C. perfringens proteins

after three vaccine injections induced higher levels of IgG than

IgM. IgM is the principal isotype in the first response, while IgG is

predominant in secondary responses, representing specific

pathogen recognition (139). Also, the increased production of

immunoglobulins by plasma B cells indicated that memory of C.

perfringens proteins is present in the immune system (140).

Finally, a gene encoding MEP_12 was designed optimizing its

sequence for expression and production in E. coli, as this organism

has been widely used to produce recombinant vaccines (141–143).

Additionally, the design can be adapted to other organisms

following the methodology we described.
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In summary, in the current study, we have performed a

thorough immunoinformatic exploration of the whole proteome

to generate vaccine candidates against C. perfringens. Three

approaches were followed to identify (1) the most immunogenic

proteins (2), immunogenic non-toxin domains of toxins, and (3)

the design a novel protein with the best HTL-CTL nested epitopes,

expected to trigger both adaptive and cellular immune responses.

These resulted in promising candidates for further experimental

in vitro and in vivo studies. These candidates may help in the

prevention of necrotic enteritis, as well as other human diseases

caused by C. perfringens.
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SUPPLEMENTARY FIGURE 1

Density and promiscuity of theCTL- andHTL-epitopes. (A) Epitope density in
proteins by epitope length (CTL-epitopes: 8, 9 and 10 aa, HTL-epitopes: 15
aa). (B)Thebar plot represents in theX-axis the number ofepitopes identified,

foreachepitope length (Y-axis). Thecolor indicateshowmanyHLAsupertype
alleles each epitope binds. In the bar plots (C) (for CTL-epitopes) and D (for

HTL-epitopes), the Y-axis represents the number of epitopes that can bind a

certain number of HLA supertype alleles (X-axis). Panels (E, F) show the
distribution of the number and density, respectively, of HTL-epitopes in the

proteins of each of the levels of evidence indicated in the X-axis.

SUPPLEMENTARY FIGURE 2

Conservation of the nested candidate epitopes across C. perfringens

toxinotypes. Each subfigure shows the alignment of the nested epitope,

the epitope ID and the protein name.

SUPPLEMENTARY FIGURE 3

(A) Mean pLDDT of the 22 multi-epitope (MEP) candidates. (B) Structural
alignment between the centroid of themost populated cluster of MEP_12,
before (orange) and after (cyan) refinement.

SUPPLEMENTARY FIGURE 4

Quality assessment of the centroid of the most populated cluster of

MEP_12 before refinement. (A) Ramachandran plot for the general case.
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The percentage of residues in preferred (light blue) and allowed (blue)
regions are shown. (B) Scatterplot of the Z-scores of the centroid (black

dot) and protein structures with experimental evidence (NMR: blue, X-ray
crystallography: light blue). (C) ERRAT plot of the centroid. Bars represent

the error value (white: error < 95%, yellow: 95% error < 99%) of a nine-
residue sliding window. The overall quality factor indicates the percentage

of protein residues with error values lower than 95%.

SUPPLEMENTARY FIGURE 5

SASA values per epitope. Values over the last 500 ns of convergent
simulation are shown for epitopes “0” to “10” (excluding “4”) in panels A
to I, respectively. The SASA of all epitopes shown but “5” and “9” achieved

convergence. Epitope “8” only achieved convergence during the last 400
ns (enclosed in a red box, close-up in inset plot). So, only this region was

considered for its mean SASA computations.

SUPPLEMENTARY FIGURE 6

Comparison of all plausible clusters of docking of MEP_12 against TLR1/
TLR2 and TLR4/MD-2. The best bindingmodes of clusters havingHaddock-

scores with overlapping error bars (standard deviations) are shown for the
dockings (A) MEP_12-TLR1/TLR2, and (C) MEP_12-TLR4/MD2. TLR1 and

TLR2 chains are colored in green and orange, respectively. Attached glycans
are shown as sticks in cyan. In (A), the best binding modes of MEP_12 from

clusters “1”, “2”, “3”, and “4” are colored in red, cyan, gray, and blue,

respectively. In (C), the best binding modes of MEP_12 from clusters “1”,
“3”, “5”, and “6” are colored in gray, blue, red, and cyan, respectively. (B)
Enlarged view of the best binding mode of cluster “1” (red cartoon with
transparent surface) in the docking MEP_12-TLR1/TLR2. The N-terminal

residues missing in TLR1/TLR2 structure (in gray) were completed by
structural alignment to a TLR2 model from the AlphaFold Protein 1300

Database. These interact with MEP_12 cluster “1”. (D) Best binding modes

from cluster “3” and “6” from the docking MEP_12-TLR4/MD2. The black
line separating the two sides of TLR4/MD-2 represents a symmetry axis. The

binding modes of left side become equivalent to the right side after a 180°
right-handed rotation, as shown in (E).
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