
GigaScience, 9, 2020, 1–7

doi: 10.1093/gigascience/giaa079
Technical Note

TE CHNICAL NO TE

EHRtemporalVariability: delineating temporal data-set
shifts in electronic health records
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Abstract

Background: Temporal variability in health-care processes or protocols is intrinsic to medicine. Such variability can
potentially introduce dataset shifts, a data quality issue when reusing electronic health records (EHRs) for secondary
purposes. Temporal data-set shifts can present as trends, as well as abrupt or seasonal changes in the statistical
distributions of data over time. The latter are particularly complicated to address in multimodal and highly coded data.
These changes, if not delineated, can harm population and data-driven research, such as machine learning. Given that
biomedical research repositories are increasingly being populated with large sets of historical data from EHRs, there is a
need for specific software methods to help delineate temporal data-set shifts to ensure reliable data reuse. Results:
EHRtemporalVariability is an open-source R package and Shiny app designed to explore and identify temporal data-set
shifts. EHRtemporalVariability estimates the statistical distributions of coded and numerical data over time; projects their
temporal evolution through non-parametric information geometric temporal plots; and enables the exploration of changes
in variables through data temporal heat maps. We demonstrate the capability of EHRtemporalVariability to delineate
data-set shifts in three impact case studies, one of which is available for reproducibility. Conclusions:
EHRtemporalVariability enables the exploration and identification of data-set shifts, contributing to the broad examination
and repurposing of large, longitudinal data sets. Our goal is to help ensure reliable data reuse for a wide range of biomedical
data users. EHRtemporalVariability is designed for technical users who are programmatically utilizing the R package, as
well as users who are not familiar with programming via the Shiny user interface.
Availability: https://github.com/hms-dbmi/EHRtemporalVariability/
Reproducible vignette: https://cran.r-project.org/web/packages/EHRtemporalVariability/vignettes/
EHRtemporalVariability.html
Online demo: http://ehrtemporalvariability.upv.es/
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Introduction

The widespread adoption of data-sharing technologies, health
information standards, and open-data initiatives are inspiring
the creation of research data repositories that contain large-
scale historical data from electronic health records (EHRs) [1].
These repositories represent a new class of longitudinal, real-
world data, defined as large data sets collected over time from
sources outside of clinical trials or specific research cohorts.
While reuse of this data, ranging from clinical observations to
molecular information, has begun to enhance the efficacy and
generalization of biomedical and clinical research, efforts to-
wards the efficient and reliable reuse of real-world data are still
in early stages [2, 3].

Most recently, researchers from the machine-learning com-
munity have identified EHR data as an important source of la-
beled data with which diagnostic and prognostic models can by
constructed [4]. Among the major hurdles in reusing such EHR
data, however, is its temporal variability. Indeed, clinical care
processes and their local variations are permeated with a variety
of batch effects and biases [5–9]. This situation is similar to that
in genomics and other “omics” research, where batch effects can
be introduced by technical sources of variation that have been
added to samples during acquisition handling [10, 11].

Temporal variability artifacts—in the form of data-set
shifts—can impact data quality and challenge the secondary use
of data, particularly for population and data-driven research [8,
12–14], as well as for machine learning [15, 16]. In addition, the
EHRs themselves can contribute to variability, as they reflect the
evolution of administrative practice and reimbursement poli-
cies, all of which can gradually or abruptly shift over time. For
example, updates in coding systems, such as the International
Classification of Diseases (ICD) [17], or modifications to clini-
cal guidelines often lead to variable data representations across
multiple diseases over time.

To circumvent these issues, researchers have traditionally
deployed statistical process control–based methods, which ex-
pose the time-points at which reference changes occur. She-
whart and Levey-Jennings charts, for example, have been em-
ployed in laboratory quality control efforts [18, 19]. Similarly, au-
tocorrelation or time series–based approaches have been used to
uncover periodicity and changes within summary statistics de-
rived from longitudinal samples, such as batched averages [20–
23]. When the dates of such reference changes are exposed, sta-
tistical tests can uncover significant differences between time
periods. However, these approaches tend to promulgate the loss
of information, especially when deployed when using highly
coded data: for example, in categorical variables with a par-
ticularly high number of values, such as when using the ICD
Ninth Revision, Clinical Modification (ICD-9-CM), which has over
16,000 distinct codes, as well as in multimodal statistical distri-
butions, in which multiple sub-phenotypes are present.

In the R programming language, there are distinct packages
that can help in managing or describing EHRs. For example, the
rEHR package focuses on querying and filtering, while the EHR
and comoRbidity packages allow the performance of descriptive,
Phenome-Wide Association Studies (PheWAS), and comorbid-
ity analyses [24–26]. Other packages, such as MTS or qcc, allow
the performance of time-series or statistical process control–
based analyses, which assist in detecting data-set shifts in EHRs
[27, 28].

To our knowledge, EHRtemporalVariability is the first pack-
age that provides specific data-set shift delineation, which can
be used on raw EHRs and other data sources. The key advantage
is its suitability for multi-modal and highly coded information,
which are common features of biomedical data.

Materials and Methods

EHRtemporalVariability is designed to explore and identify the
temporal variability of categorical and numerical data over time.
The app provides the means to visually and analytically delin-
eate data-set shifts in multi-modal and highly coded informa-
tion. A key advantage is that no distributional assumptions are
made. This enables straightforward use, as well as visual ana-
lytics on large EHR-coded and numerical variables with no loss
of information. In addition, the tool’s methodological and itera-
tive use can identify and define reference changes that might
otherwise impede further research. Analyses can proceed us-
ing both the R package (RRID:SCR 001905) and Shiny app (RRID:
SCR 001626) with minimum effort. Data can flow through the
pipeline from their initial raw, individual-level state to the final
results.

EHRtemporalVariability is based on the probabilistic tempo-
ral variability methods that we developed and validated previ-
ously [6, 9, 13]; namely, information geometric temporal (IGT)
plots and data temporal heat maps (DTHs). We offer these for
the first time as an open-source R package and Shiny app. Our
method is based upon the estimation and comparison of data
statistical distributions over time (see Supplementary Methods
online). IGT plots project time batches as a series of points. The
distances between them correspond to the dissimilarity of their
statistical distributions. This yields an empirical layout of tem-
poral relationships between batches; namely, a non-parametric
temporal statistical manifold.

IGT plots allow users to visually identify four types of
changes: (i) trends, represented as continuously flowing time
batches; (ii) abrupt changes, shown as gaps between groups
of batches; (iii) temporal subgroups, depicted as clusters of
batches; and (iv) seasonality, portrayed as temporal cycles.
Batches are labeled by date and color-coded to distinguish sea-
sonal effects. Additionally, IGT plots can include a smoothed
trajectory of the information evolution over time. The IGT plot
data also provides the means to identify those changes in order
to model seasonal effects or apply clustering methods to depict
temporal subgroups [9]. Complementing the IGT plots, DTHs al-
low users to explore changes in absolute and relative frequen-
cies over time and, simultaneously, at multiple variable values
(e.g., frequencies of phenotypes).

Overall, the EHRtemporalVariability R package (Fig. 1a) and
Shiny app (Fig. 1b) provide a set of functionalities that allow
users to perform three actions: loading and processing data sets;
running batched data analyses for the estimation of DTHs and
IGT projections; and visualizing these data through interactive
plots. The R package also enables users to conduct these tasks
programmatically, enabling more flexibility in data processing
and further analysis of the resultant objects and embedding ma-
trices.

The Shiny app provides a graphical user interface with two
objectives. First, users unfamiliar with R programming can load
.csv files and easily produce and visualize their results, which

https://scicrunch.org/resolver/RRID:SCR_001905
https://scicrunch.org/resolver/RRID:SCR_001626
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Figure 1: EHRtemporalVariability R package (a) and Shiny app (b) outline. The general workflow of the R package is organized as a set of functions for: (a1) data loading
and preprocessing, (a2) data analysis, and (a3) data visualization. The main input is an R data.frame, in which one column defines the reference date. The classes of
the remaining columns determine the variable’s treatment for distribution estimation and plotting during analysis and visualization. (See Supplementary Methods
section online.) Specifically, “factor” and “character” receive categorical treatment, while “numeric,” “integer,” and “date” receive numerical treatment. The DTH object

estimation takes the input “data.frame” and analysis parameters. These include temporal granularity; predefined distribution support (a range of possible values or bins
for each variable, auto-calculated from data by default); handling of missing batches; and the choice of whether to smooth distributions in numerical variables. The DTH
can be trimmed by values and date range. The IGT projection estimation takes as input the DTH and the desired number of dimensions for embedding. The DTH can be
plotted as a dynamic Plotly (RRID:SCR 013991) heat map, in which the color of each cell indicates the frequency (relative or absolute) at a specific date batch (column) for

the value of a variable (categorical and numerical integer) or range or values (numerical continuous). IGT plots can be visualized as either 2- or 3-dimensional dynamic
Plotly plots. The input for the Shiny app can be either an .RData object exported from the R package (b1A) or a raw .csv input file (b1B). The Shiny app provides an
interactive dashboard (b2) for controlling the visualization parameters of the programmatic R functions. This is done via reactive sliders, selection boxes, and buttons.

These have a direct effect on heat maps and IGT plots. Further, we include different color palettes suited for different types of color-blindness. For further information
about all the EHRtemporalVariability functionality, see https://cran.r-project.org/web/packages/EHRtemporalVariability/vignettes/EHRtemporalVariability.html.

can be exported as an .Rdata file for further inspection in R. Sec-
ond, we provide an exploratory, dynamic dashboard to improve
the user experience, enabling a means to load results exported
from the R package as an .RData file. We customized both the R
package and Shiny app visualizations for users who are color-
blind.

A more detailed description of methods is available in the
Supplementary Material online.

Results

We validated the functionality of EHRtemporalVariability using
3 case studies. The first involved the i2b2 (Informatics for Inte-
grating Biology & the Bedside) Boston Children’s Hospital Autism
Spectrum Disorders cohort (BCH-ASD), including 12,000 patients
(1.2 M ICD-9-CM clinical observations) whose data were recorded
from 1981 to 2016. This project was reviewed by the Boston Chil-
dren’s Institutional Review Board.

In this cohort, the IGT plot uncovered five abrupt changes of
reference (Fig. 2a). The most obvious was in billing codes, for

which frequencies changed in October 1998 (Fig. 2a-a2). Accord-
ingly, we discovered an abrupt change in the relative frequencies
of ICD-9-CM codes during that month. Specifically, the DTH of
the ICD-9-CM codes (Supplementary Material Fig. 1) showed an
abrupt decrease in the frequency of codes 780 (general symp-
toms), 780.9 (other general symptoms), and 289.9 (unspecified
diseases of blood and blood-forming organs). We also tracked in-
creases in more specific 780.x codes, 296.x codes (episodic mood
disorders), and other trends, which are represented as gradual
changes.

While investigating the root cause of the October 1998 refer-
ence change, we found that it coincided with a yearly ICD-9-CM
update. However, there was no apparent relationship between
the documented changes and our findings.

To further investigate this variability, we mapped ICD-9-CM
codes to PheWAS codes [29]. We removed all the observations
listed as “other symptoms” and “other tests.” Still, the abrupt
change persisted even when we delineated changes for further
specific comorbidities (Fig. 2b and c). Intriguingly, the absolute
number of observations also increased at the start of the month.

https://scicrunch.org/resolver/RRID:SCR_013991
https://cran.r-project.org/web/packages/EHRtemporalVariability/vignettes/EHRtemporalVariability.html
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Figure 2: Delineation of data-set shifts in the BCH-ASD’s EHR historical clinical observations. (a) IGT plot describing the evolution of distributions of ICD-9-CM codes

over time: specifically, monthly time batches taken from March 1989 to June 2016. The projection of time batches is based on embedding the dissimilarities among
their distributions using multidimensional scaling. The IGT plot axes corresponds to the three first temporal components of variance. Several slight abrupt changes
are apparent during October 1991 (a1), January 2003 (a3), and December 2011 (a4). Major abrupt changes appear during October 1998 (a2) and October 2015 (a5). Overall,
there is a trend in the distribution changes across the entire time frame. Text labels are formatted as yym, where yy is a 2-digit year and m is an abbreviated month,

with the months displayed as {“J,” “F,” “M,” “A,” “m,” “j,” “x,” “a,” “S,” “O,” “N,” “D”}. (b) DTH of the 20 most frequent relative frequencies of PheWAS codes text. (c) DTH
of the 20 most frequent absolute frequencies of PheWAS codes text. The major driver for (a2) was a decrease in “other symptoms” and “other tests” codes. Thus, we
excluded these to investigate the effects on comorbidities and obtained (b) and (c). Changes in October 1998 (a2) include increases in the frequencies of constipation,
major depressive disorder, symptoms involving digestive system, and type 2 diabetes. Other minor decreases included cystic fibrosis, other diseases of blood and blood

forming-organs, and type 1 diabetes, among “others.” As observed in (c), some of the delineated changes are time-correlated with alterations in absolute frequencies.

Although this reference change appears to have been motivated
by a systemic or protocol change, the exact cause remains un-
clear. We suggest that this reference change is a potential data-
set shift that should be considered in any future BCH-ASD data
analysis.

The second case study replicates a baseline experiment we
previously performed using the mortality registry of Valencia,
Spain [13]. The registry recorded 512,000 deaths between 2000
and 2012. Similar to the Boston Children’s results, the reg-
istry’s statistical distributions changed abruptly in 2009, follow-
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ing an update in the fields of the Spanish national death certifi-
cate. Notably, this reference change impacted the “basic cause
of death,” a variable used for reporting national and interna-
tional death statistics (Fig. 3a and Supplementary Material Fig.
2). This occurred even after the variable was retrospectively
corrected. The results also showed an overall trend through
the entire period of the study (Fig. 3b), a yearly seasonality of
causes of death (Fig. 3c), and spotted outlier months associated
with flu epidemics in 2002, 2005, and 2009 (Fig. 3d1, d2 and d3,
respectively).

Finally, we validated EHRtemporalVariability with the Na-
tional Hospital Discharge Survey (NHDS)—an open data set that
includes 3.25 million inpatient discharges from US hospitals
(2000–2010)—and both demographic and ICD-9-CM–coded data.
Again, we uncovered several abrupt changes throughout mul-
tiple variables [6, 9], including the recoding of discharge age in
2008; ICD-9-CM diagnoses (Fig. 1); procedure codes; and yearly
abrupt changes in diagnosis-related group codes. These find-
ings were in addition to the expected context-induced trends
and seasonality. After mapping the NHDS ICD-9-CM codes to
PheWAS codes, notable changes remained, including in Octo-
ber 2007, coincident with the yearly ICD-9-CM update. Note that
this case study is available for replication within the package
and Shiny app demonstration at http://ehrtemporalvariability
.upv.es/ and in the GigaScience Database [30], and a tutorial on
how to interpret temporal changes in IGT plots using NHDS
data is available in the package vignette. Performance measures
for the three case studies are described in the Supplementary
Material.

Discussion

In light of the changes uncovered by EHRtemporalVariability,
we argue that users of the package can more accurately repur-
pose their data analyses. For example, in the presence of abrupt
changes, one can compare the performance of predictive mod-
eling using only the most recent temporal subgroups versus full
data inclusion.

In addition, incremental learning approaches can also be
adopted to deal with abrupt changes and continuous trends
in machine learning, as can introducing seasonal or subgroup-
related effects on models. Finally, in cases of descriptive anal-
yses, such as those in PheWAS studies, we suggest evaluating
the possible effects of temporal changes in results by making
separate analyses at distinct temporal subgroups, as opposed to
performing a more global analysis.

Conclusions

In conclusion, EHRtemporalVariability is a data quality assess-
ment tool that enables the broad exploration and repurposing
of large data sets collected over time. We view the app as a
key stepping stone toward the identification of data-set shifts
for data reuse, specifically in machine learning. Target users are
biomedical data scientists and bioinformaticians, as well as epi-
demiologists and hospital data managers. The tool can assist
in exploring the effects of system, protocol, and environment-
induced changes on data. We also encourage the use of EHRtem-
poralVariability to analyze the impact of the adoption of new
coding systems, such as the ICD Tenth Revision [31]. EHRtem-
poralVariability can be used on any additional coded and nu-

merical data modalities and, because it is open source, the app
can be extended with new functionality or uses by the scientific
community.

Availability of source code and requirements
� Project name: EHRtemporalVariability
� Project home page: https://github.com/hms-dbmi/EHRtem

poralVariability/
� Operating system(s): Platform independent
� Programming language: R
� Other requirements: R 3.3.0, dplyr, plotly, shiny, zoo, xts, lu-

bridate, RColorBrewer, viridis, scales, methods, MASS
� License: Apache License 2.0
� CRAN repository: https://cran.r-project.org/package=EHRte

mporalVariability
� bio.tools ID: biotools: ehrtemporalvariability
� SciCrunch ID: RRID:SCR 018663
� Shiny app repository: https://github.com/hms-dbmi/EHRtem

poralVariability-shiny
� Reproducible vignette: https://cran.r-project.org/web/packa

ges/EHRtemporalVariability/vignettes/EHRtemporalVariabil
ity.html

� On-line Shiny app demo (for privacy reasons loading raw .csv
data is disabled): http://ehrtemporalvariability.upv.es/

Availability of supporting data and materials

The data of the National Hospital Discharge Survey case study
are publicly available at https://www.cdc.gov/nchs/nhds/index.
htm. A random subset of this data-set is available as a proxy
for testing purposes within the EHRtemporalVariability pack-
age, and reproducible examples are available within the pack-
age help, its vignette, and the online demo (http://ehrtemporalv
ariability.upv.es/). An archival snapshot of the code is available
in the GigaScience GigaDB repository [30]. Access to Boston Chil-
dren’s Hospital Autism Spectrum Disorders cohort case study
data is restricted by Boston’s Children’s Institutional Review
Board. Access to the Mortality case study data is restricted by
the Conselleria de Sanitat Universal i Salut Pública, Generalitat
Valenciana, Spain.

Supplementary Data

Supplementary data include: (1) the technical details of the
methods, (2) supplementary figures, and (3) a performance mea-
sures test.
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Figure 3: IGT plot of the basic cause of death in the mortality registry of the region of Valencia, Spain, coded with ICD Tenth Revision Mortality Causes List 1. (a) The
major abrupt change associated with the update of the national certificate of death is depicted as a dotted line that splits the main trend through the entire period

of study (b), a trend that lays in dimension D1. (c) Yearly seasonality of causes of death, highlighted by coloring scheme and trajectory cycles and laid out across
dimension D2. (d1 , d2 , d3) Flu epidemics in 2002, 2005, and 2009 as outlying batches and showing fast trajectory deviations. Text labels are formatted as yym, where
yy is a 2-digit year and m is an abbreviated month, with the months displayed as {’J,” “F,” “M,” “A,” “m,” “j,” “x,” “a,” “S,” “O,” “N,” “D”}. The drivers for (a) included a
relatively abrupt decrease in “symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified” and an increase in “hypertensive diseases,”

among others.
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grant PAID-00–17, Generalitat Valenciana grant BEST/2018, and
projects H2020-SC1–2016-CNECT No. 727560 and H2020-SC1-
BHC-2018–2020 No. 825750.

Author contributions

C.S., A.G.S., J.M.G.G. and P.A. conceived the R package. C.S., A.G.S.,
I.K. and P.A. conceived the BCH case study. C.S. and J.M.G.G. con-
ceived the original methods and NHDS and Mortality case stud-
ies. C.S. programmed the R temporal variability analysis meth-
ods and plots. C.S. and A.G.S. programmed the R package wrap-
per, data loading and pre-processing functions, Shiny app, and
wrote the documentation. C.S. and A.G.S. performed data col-
lection, processing and analysis of the BCH case study. C.S. and
J.M.G.G. performed data processing and analysis of the NHDS
and Mortality case studies. C.S., A.G.S., I.K., J.M.G.G. and P.A.
reviewed and interpreted the results. C.S. drafted the article.
C.S. and A.G.S. drafted the figures. C.S., A.G.S., I.K., J.M.G.G. and
P.A. provided critical revision of the article and approved the
final version to be publishedC.S., A.G.S., J.M.G.G. and P.A. con-
ceived the R package. C.S., A.G.S., I.K. and P.A. conceived the
BCH case study. C.S. and J.M.G.G. conceived the original meth-
ods and NHDS and Mortality case studies. C.S. programmed
the R temporal variability analysis methods and plots. C.S. and
A.G.S. programmed the R package wrapper, data loading and
pre-processing functions, Shiny app, and wrote the documenta-
tion. C.S. and A.G.S. performed data collection, processing and
analysis of the BCH case study. C.S. and J.M.G.G. performed data
processing and analysis of the NHDS and Mortality case studies.

C.S., A.G.S., I.K., J.M.G.G. and P.A. reviewed and interpreted the
results. C.S. drafted the article. C.S. and A.G.S. drafted the fig-
ures. C.S., A.G.S., I.K., J.M.G.G. and P.A. provided critical revision
of the article and approved the final version to be published.

Acknowledgements

The authors thank the community that collaboratively created
the Open Source R software and packages used in this work,
and especially thank UpSetR, which inspired the authors’ Shiny
wrapper landing page.

References

1. Gewin V. Data sharing: An open mind on open data. Nature
2016;529:117–9.

2. Katzan IL, Rudick RA. Time to integrate clinical and research
informatics. Sci Transl Med 2012;4:162fs41.

3. Zhu L, Zheng WJ. Informatics, data science, and artificial in-
telligence. JAMA 2018;320:1103–4.

4. Rajkomar A, Dean J, Kohane I. Machine learning in medicine.
N Engl J Med 2019;380:1347–58.

5. Andreu-Perez J, Poon CCY, Merrifield RD, et al. Big
data for health. IEEE J Biomed Health Inform 2015;19:
1193–208.
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13. Sáez C, Zurriaga O, Pérez-Panadés J, et al. Applying proba-
bilistic temporal and multisite data quality control methods
to a public health mortality registry in Spain: a systematic
approach to quality control of repositories. J Am Med Inform
Assoc 2016;23:1085–95.

14. Wright A, Ash JS, Aaron S, et al. Best practices for preventing
malfunctions in rule-based clinical decision support alerts
and reminders: results of a Delphi study. Int J Med Inform
2018;118:78–85.

15. Sugiyama M, Lawrence ND, Schwaighofer A, et al. Dataset
shift in machine learning. The MIT Press, Cambridge, Mas-
sachusetts, US. 2017.ISBN: 9780262170055.

16. Moreno-Torres JG, Raeder T, Alaiz-Rodrı́guez R, et al. A uni-
fying view on dataset shift in classification. Pattern Recognit
2012;45:521–30.

17. Centers for Disease Control and Prevention’s National Center
for Health Statistics, US Department of Health and Human
Services. International Classification of Diseases, Ninth Re-
vision, Clinical Modification (ICD-9-CM). https://www.cdc.go
v/nchs/icd/icd9cm.htm. Accessed 16 July 2018.

18. Shewhart WA, Deming WE. Statistical Method from the
Viewpoint of Quality Control. New York, NY: Dover, 1986.

19. Westgard JO. Basic QC Practices: Training in Statistical Qual-
ity Control for Medical Laboratories. Westgard Quality Corp.
Madison, WI: 2010. ISBN:9781886958074.

20. Svolba G, Bauer P. Statistical quality control in clinical trials.
Control Clin Trials 1999;(6):519–30.

21. Bray F, Parkin DM. Evaluation of data quality in the can-
cer registry: principles and methods. Part I: compara-
bility, validity and timeliness. Eur J Cancer 2009;45(5):
747–55.

22. Kahn MG, Raebel MA, Glanz JM, et al. A pragmatic frame-
work for single-site and multisite data quality assessment
in electronic health record-based clinical research. Med Care
2012;50 pp S21–S29.

23. Box GE, Jenkins GM, Reinsel GC, et al. Time Series Analysis:
Forecasting and Control. John Wiley & Sons, Hoboken, New
Jersey, US. 2015.

24. Springate DA, Parisi R, Olier I, et al. rEHR: an R package for
manipulating and analysing electronic health record data.
PLoS One 2017;12(2):e0171784.

25. Choi L, Carroll RJ, Beck C, et al. Evaluating statistical ap-
proaches to leverage large clinical datasets for uncovering
therapeutic and adverse medication effects. Bioinformatics
2018;34(17):2988–96.

26. Gutiérrez-Sacristán A, Bravo À, Giannoula A, et al. comoR-
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