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Abstract: Obesity with adiposity is a common disorder in modern days, influenced by environmental
factors such as eating and lifestyle habits and affecting the epigenetics of adipose-based gene regula-
tions and metabolic pathways in colorectal cancer (CRC). We compared epigenetic changes of differ-
entially methylated regions (DMR) of genes in colon tissues of 225 colon cancer cases (154 non-obese
and 71 obese) and 15 healthy non-obese controls by accessing The Cancer Genome Atlas (TCGA)
data. We applied machine-learning-based analytics including generalized regression (GR) as a con-
firmatory validation model to identify the factors that could contribute to DMRs impacting colon
cancer to enhance prediction accuracy. We found that age was a significant predictor in obese cancer
patients, both alone (p = 0.003) and interacting with hypomethylated DMRs of ZBTB46, a tumor
suppressor gene (p = 0.008). DMRs of three additional genes: HIST1H3I (p = 0.001), an oncogene with
a hypomethylated DMR in the promoter region; SRGAP2C (p = 0.006), a tumor suppressor gene with
a hypermethylated DMR in the promoter region; and NFATC4 (p = 0.006), an adipocyte differentiating
oncogene with a hypermethylated DMR in an intron region, are also significant predictors of cancer
in obese patients, independent of age. The genes affected by these DMR could be potential novel
biomarkers of colon cancer in obese patients for cancer prevention and progression.

Keywords: differentially methylated regions; colon cancer; obesity; biomarkers; generalized regression

1. Introduction

Obesity, or excess adiposity and having a body mass index (BMI) ≥ 30, is a preventable
and treatable condition, with lifestyle and environmental modifications, which has tripled
since 1975 and now affects approximately 13% of the world population [1]. Obesity has
been linked to tumorigenesis and cancer progression in various organs and a reduction in
life expectancy by up to 14 years [2–7]. Mortality is increased up to 10% when obesity is
present with colorectal cancer (CRC), whereas the risk of CRC is reduced up to 21% with a
decrease in BMI and changes in lifestyle [8,9].

The risk of developing CRC increases with age, and 50–80% of CRC can be attributed
to epigenetic changes due to lifestyle and BMI [10–14], with increased BMI as a risk factor
in the proliferation of CRC [15–19]. CRC is the second most common cause of cancer
death in the United States, with approximately 53,000 deaths occurring in 2021 [20]. For
personalized medicine, it is clinically imperative to understand the impact of obesity on
epigenetic changes to prevent the progression of CRC.

DNA methylation (DNAm) is an epigenetic regulation of gene function that is impli-
cated in the formation of CRC [21–24] and is impacted by obesity [25–28] and age [29–32].
DNAm occurs when a methyl group attaches to a cytosine nucleotide, usually within a
CpG dinucleotide (CpG), inhibiting the expression of the nucleotide, thereby potentially
altering the expression of the gene itself [33]. Differentially methylated regions (DMRs)
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represent groups of methylated cytosines within close range in various tissue types and
developmental stages [34]. DMRs located in the promoter region (first exon of a gene) were
linked to gene silencing [35–39], and the position of DMRs related to the transcription start
site (TSS) could impact transcription and gene function [40].

Hypomethylation (a reduction in methylated CpG) was associated with increased
expression of gene function, whereas hypermethylation with decreased expression may
potentially lead to chronic diseases including cancer, especially if methylation occurs in
the promoter region of a gene [37,41–45]. Hypermethylated tumor suppressor genes (TSG)
could lead to dysfunctional gene division or apoptosis, leading to abnormal cell growth;
whereas hypomethylation with oncogenes causes cells to divide abnormally faster [46].
Hypermethylation and reduction in TSG function of SRGAP2C (Slit-Robo Rho GTPase-
activating protein 2C) [47–49] and ZBTB46 (zinc finger and born-to-bind domain containing
46) [50–52] were associated with tumorigenesis and cancer metastasis. Conversely, hy-
pomethylation and upregulated oncogene functions of HIST1H3I (Histone linker 1 with
Histone H3.1), HIST1H3D (Histone linker 1 with Histone H3.D) [53–56], NFATC4 (Nuclear
factor of activated T-cells cytoplasmic 4) [57–60] and HOXB8 (Homeobox B8) [61–63] were
associated with adiposity and colon cancer.

Significant research is being conducted on methylation of CpG and DMR in colon
cancer [64–66], yet there is little consensus on what constitutes a significant methylation
threshold that could potentially translate to clinical significance. Whether the methylation
threshold is purely statistical using p values, or if it is a differential change measured
in a percent difference, has not yet been sufficiently documented or validated. Many
studies focus on single-gene associations with methylated CpG or DMR, some taking
clinical data into context [67,68]. The genomic region of DMR and the impact on gene
expression has also been studied, showing that DMRs on promoter regions adversely affect
gene function [38,39]. With advanced sequencing technology and machine-learning-based
analytics [69–71], we conducted this study to examine DMRs in association with obesity as
a significant contributing factor for colon cancer prevention.

The United States Centers for Disease Control and Prevention (CDC) has established a
need for increasing precision in cancer prevention [72]. Precision medicine takes individual
differences in lifestyle, environment, and biology into account, requiring complex interac-
tive analysis and predictive analytics, as well as standardized coding [73–75]. Therefore, we
accessed data from the Cancer Genome Atlas (TCGA) to evaluate the association of obesity
in human colon tissue to locate DMR-associated genes of interest to examine the associations
of obesity with colon cancer [76]. We then applied groundbreaking machine-learning-based
predictive analysis to locate DMRs, integrating BMI and age into the validation models, to
enhance the accuracy of prediction.

2. Materials and Methods
2.1. Demographic and Methylation Data

We obtained methylation data files from TCGA Colon Cancer project (COAD) version
1.23.0 (https://portal.gdc.cancer.gov, accessed 16 June 2018) that were filtered to include
harmonized Illumina 450 K methylation data, BMI, age and gender from normal colon
(n = 15) and colon cancer (n = 225) tissues using an R package designed for data retrieval,
grouping and DMR analysis, TCGAbiolinksGUI [77–80]. The Illumina 450 K methylation
array provided data on 485,000 CpG sites, which covered approximately 1.6% of all CpG
sites, (0.01% of the entire genome), and methylation information on 99% of all known
genes [81–84]. Data included three groups of non-obese control (no cancer), non-obese
cancer (BMI < 30) and obese cancer (BMI ≥ 30). At the time of data retrieval, this com-
prised the entire list of cases that met the inclusion criteria. BMI was used as a grouping
independent variable and age as an independent variable in the regression model.

https://portal.gdc.cancer.gov
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2.2. DMR Bioinformatics Analysis

CpG site analysis and DMR identification were completed using additional R packages
limma (v. 3.34.9, February 2018) and bumphunter (v. 1.20.0, November 2012). Limma
involves a matrix-type schema to analyze intra-sample variability (n = 240) per individual
CpG site (n ≈ 485,000), and Bayesian corrected p values were provided between groups [85].
Bumphunter includes linear regression and permutation testing to determine clusters of
DMR with significant CpG sites [86,87]. DMR with >2 CpG sites, excluding sex chro-
mosomes and having ≥5% proportional change between groups of obese and non-obese
cancer were annotated to protein-coding genes. A 3–10% difference in DNAm level between
groups was noted as significant [88–91].

Gene annotation was conducted using data from the Catalogue of Somatic Mutations
in Cancer (COSMIC) v86 August 2018 (https://cancer.sanger.ac.uk/cosmic (accessed on 16
June 2018)) [92,93] and the University of California, Santa Cruz (UCSC) genome browser
(GRCh38/hg38, December 2013) (www.genome.ucsc.edu (accessed on 16 June 2018)) [94].
Gene ontology and pathway analysis were conducted using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) v 6.8 (https://david.ncifcrf.gov (accessed
on 16 June 2018)) [95]. To isolate genes related to obesity, only genes in both obese and
non-obese comparison groups, and only those that could be further annotated to cancer
and/or adipose-related functions through ontology or pathway analysis, were considered.

2.3. Predictive Analysis

Generalized regression (GR) was performed using JMP Pro v. 14 (SAS Institute, Cary,
NC, USA). as a machine-learning tool to determine a predictive model from the genes
identified in the obese and non-obese cancer groups. To create the predictive model for GR,
variables were recoded into dichotomous values based on median distribution across the
variable. The model created a prediction profile for associations between the parameters
of interest and the strength of the parameters within the predictive model. Unlike logistic
regression (LR), which assumed that all variables share a linear association, GR performed
analysis on each independent variable to determine associations with the dependent
variable and created a model that applied the nonlinear association to each variable in the
prediction [96–98], which was then compared to the (LR) model for validation [99,100].

The final GR model was derived based on several criteria, including Akaike infor-
mation criterion (AICc), misclassification rate and the area under the receiver operating
characteristic (ROC) curve (AUC). For internal validity of the predictive model, an AUC as
close to 1 (100%) is desired. Sensitivity refers to the number of actual cases with the finding
of a positive result, whereas specificity is the number of actual cases without the finding
of a negative result. AUC is a method to plot the sensitivity and specificity of test results
to determine the accuracy of true positives versus false negatives [101]. Misclassification
rate is precision of the model by calculating the number of errors by the total number of
observations. Ideally, this number should be low. AICc is an estimate of the fitness of the
model and should also be a low number.

To establish a GR model, 10 genes with the highest differential methylation, both
hypomethylated and hypermethylated, were analyzed using interaction profilers and
regression algorithms. The prediction validation was developed using a GR adaptive
elastic net and Leave One Out (LOO) methodology with an 85% training/15% validation
proportion created for machine-learning-based iterations. Interactions between factors
were examined using interaction profiler plots between parameters of genes or with age,
with steps of iterations to eliminate parameters from the model that had no significance or
altered the significance of other parameters and prediction accuracy. Elastic net models
presented a higher sensitivity and specificity than lasso [102–104], and LOO methodology
was used to eliminate insignificant parameters in the model and is suitable for analysis
with smaller sample sizes [105,106].

https://cancer.sanger.ac.uk/cosmic
www.genome.ucsc.edu
https://david.ncifcrf.gov
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3. Results

Demographic factors among control and two cancer groups of obese and non-obese
were compared (Table 1). BMI was different between obese cancer and two other groups
(p < 0.0001), and cancer groups were younger in age (p < 0.05), with obese cancer being
9.7 years younger and non-obese cancer being 7.7 years younger than the control group on
average. There were no differences among three groups on gender and racial distributions.

Table 1. Demographic characteristics of the sample cases.

Cancer

Mean ± SD
(Range)

Control
(n = 15)

Non-Obese
(n = 154)

Obese
(n = 71)

BMI, Kg/m2 25.5 ± 2.7
(20.1–29.8)

24.9 ± 3.1 *
(14.7–29.8)

36.1 ± 2.8 *
(30.0–54.1)

Age, years 81.7 ± 13.7
(48–102)

74.0 ± 15.1 *
(41–106)

72.0 ± 12.0 *
(38–92)

Gender Female (%) 9 (60) 67 (43.5) 37 (52)
Race White (%) 13 (87) 116 (75) 49 (69)

Black (%) 2 (13) 30 (19) 21 (30)
Other (%) 0 8 (6) 1 (1)

Notes. BMI: Body Mass Index; * indicates p < 0.05.

3.1. Significant DMRs and Associated Genes between Groups

DMR analysis was performed to determine the number of protein-coding genes of
significance between groups, using a 5%, 10% and 15% methylation change between groups
(Table 2), which shows a complete list of DMRs with the highest methylation differences
for three between-groups pairs. DMR coordinates and gene functions are provided in
the supplementary tables (Tables S1 (hypomethylated) and S2 (hypermethylated). To test
the hypothetical association between obesity and CRC, gene ontology was performed
with a list of 518 genes comprising a 5% methylation change in both hypermethylated
(n = 178) and hypomethylated (n = 340) genes between the obese and non-obese cancer
groups. A 5% methylation difference was used due to the need for a sufficient list of
genes for ontological analysis between the obese and non-obese cancer groups. No novel
pathways with statistical significance were discovered between the obese and non-obese
cancer groups; therefore, further ontological analysis was not conducted.

Table 2. Summary of differentially methylated regions (DMR) with unique protein-coding genes per
group comparison.

Groups Non-Obese
Cancer/Control Obese Cancer/Control

Obese
Cancer/Non-Obese

Cancer

Differential
Methylation Hyper Hypo Hyper Hypo Hyper Hypo

5% 4270 3744 4203 4073 178 340
10% 2967 1644 2876 1909 25 48
15% 2248 637 2173 828 6 10

Notes. Hypo refers to hypomethylated; Hyper refers to hypermethylated.

Table 3 shows 10 DMRs with the highest hypomethylation difference between obese
and non-obese cancer groups, and Table 4 shows the 10 DMRs with the highest hyperme-
thylation between the two groups. Genes with functions linked to adiposity or glucose
metabolism, cancer-related functions, and both adiposity and cancer-related functions were
noted. Genes noted in Supplemental Tables S1 (hypomethylated) and S2 (hypermethylated)
were used to derive the final GR model.
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Table 3. Genes associated with top hypomethylated differentially methylated regions (DMR) between
obese and non-obese cancer groups.

DMR
Dis to TSS

DNAm
Gene Function

Gene # CpG Region Non-Obese Obese

HIST3H2A ‡ 25 Promoter 860 8.61 6.80 DNA repair, MMR
HIST3H2BB ‡ 25 Promoter 701 8.61 6.80 DNA repair, MMR

HOXB8 † 18 Promoter −279 14.47 11.48 Oncogene
HIST1H3I ‡ 11 Promoter −24 17.43 14.47 Oncogene
TUBB2A ‡ 3 Intron −593 9.93 8.26 GTP binding
TMCO1 ‡ 13 Promoter 210 5.49 4.59 Calcium homeostasis
PRAC2 † 4 Promoter 109 10.32 8.63 Oncogene

AMOTL2 ‡ 4 Intron −10,235 15.79 13.38 Inhibits Wnt pathway
ARL4D ˆ 13 Promoter 107 8.03 6.82 Suppresses adipogenesis

HIST1H3D ‡ 13 Promoter 59 12.02 10.26 Oncogene

Notes: # CpG—number of methylated CpG sites; Dis to TSS—distance (in base pairs) to transcription start site from
DMR start; DNAm—mean methylation percent; ˆ represents genes that can be annotated to adiposity or glucose-
related functions, † to cancer-related functions, and ‡ to both cancer and adipose/glucose-related functions.

Table 4. Genes associated with top hypermethylated differentially methylated regions (DMR) be-
tween obese and non-obese cancer groups.

DMR
Dis to TSS

DNAm
Gene Function

Gene # CpG Region Non-Obese Obese

GNPDA2 ˆ 12 Promoter 107 7.86 9.74 Protein metabolism
LSM14A † 9 Promoter 540 3.44 4.12 Immune response
ZNF426 † 11 Promoter 107 21.70 25.80 Transcription regulation
NFATC4 ‡ 8 Intron −466 9.98 11.52 Oncogene
ZNF852 † 3 Promoter 31 2.81 3.24 Transcription regulation
FAM72B † 9 CDS 3021 29.19 33.34 Oncogene

SRGAP2C ‡ 9 Promoter 879 29.19 33.34 Tumor Suppression Gene
TNFAIP2 † 3 Promoter 445 14.28 16.10 Mediator of inflammation
ZNF747 † 7 Promoter 188 7.18 8.07 Transcription regulation
TUBB3 ‡ 3 Intron 2448 6.36 7.14 Oncogene, immune response

Notes: # CpG—number of methylated CpG sites; CDS—coding DNA sequence; Dis to TSS—distance (in base
pairs) to transcription start site from DMR start; DNAm—mean methylation percent; ˆ represents genes that can
be annotated to adiposity or glucose-related functions, † to cancer-related functions, and ‡ to both cancer and
adipose/glucose-related functions.

3.2. Significant Predictors

The most significant predictors associated with obesity between the two cancer groups
were age ≥ 76 (p = 0.004); HIST1H3I, a hypomethylated oncogene (p = 0.002); NFATC4, a
hypermethylated oncogene (p = 0.027); SRGAP2C, a hypermethylated tumor suppression
gene (p = 0.025); and ZBTB46, a hypomethylated TSG interacting with age (p = 0.024),
which was the only gene to have significant interaction with age in our prediction model.
Variable importance analysis using independent uniform inputs shows that the order of
variable importance is age (total effect (TE): 0.374), HIST1H3I (TE: 0.299), ZBTB46 (TE:
0.295), SRGAP2C (TE: 0.184), NFATC4 (TE: 0.156), HOXB8 (TE: 0.098) and HIST1H3D (TE:
0.024). Genes and interactions left in the model without significance were left to protect the
integrity of the model itself, as the removal of these predictors caused model instability
(see Supplemental Figure S1).

HIST1H3I is an oncogene located on chromosome 6 that encodes a nuclear protein
responsible for nucleosome structure and histone modification. It has been shown to have
a high affinity for tumorigenesis, has been identified as a potential biomarker for CRC, and
has been isolated in adipocytes [53,54,107]. Our data (see Figure 1a) show the promoter
region DMR of HIST1H3I to have 17% hypomethylation between obese and non-obese
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cancer, and GR analysis showed no interaction between HIST1H3I and age in the prediction
model. Mean values appear to increase from control group due to outliers in the data
samples, but GR is based on median values, which are not represented by outliers.

TSG such as ZBTB46, a zinc finger/BTB domain protein gene on chromosome 20,
represses the oncogene PRDM1 and has similar functions to autoimmune regulators [50–52].
Although located on an intron, the DMR affecting ZBTB46 showed a 36% reduction in
methylation between obese and non-obese cancer groups (see Figure 1b), and GR analysis
showed significant interaction with age (p = 0.024).

SRGAP2C is a SLIT-ROBO GTPase-activating tumor-suppressing gene located on
chromosome 1. Changes in expression may contribute to cancer metastasis, and the
SRGAP2 protein is reduced or absent in many tumor samples [47–49]. The promoter-region
DMR on SRGAP2C showed significant hypermethylation between all three groups (see
Figure 1c), with the lowest at 14% proportional change between the obese and non-obese
cancer group, and it revealed a marginal interaction with age in the GR model.

NFATC4, an oncogene located on chromosome 14, encodes a protein from the nuclear
factor of an activated T-cell family, which is a DNA-binding complex, is expressed in many
cancer tissues, and has been shown to enhance tumorigenesis. With obesity, NFATC4 is
known to initiate inflammatory processes, and it is associated with increased cell death in
older patients [57–60]. The significant DMR for NFATC4, located on an intron, had 15%
hypermethylation between obese and non-obese cancer (see Figure 1d), and NFATC4 had
a marginal interaction with age in the GR model. A large number of outliers appears to
minimize the mean value differential for NFATC4, but these outliers are not factored into
the GR model.

HOXB8 located on chromosome 17 is a known oncogene that is associated with col-
orectal cancer. It is downregulated in colon cancer, but downregulation has been associated
with favorable prognosis in renal cancer [61–63,108]. HOXB8 has promoter-region DMR
with a 20% hypomethylation between groups (see Figure 1e), and a marginal interaction
with age in the prediction model.

HIST1H3D, similar to HIST1H3I, is a known oncogene also located on chromosome 6,
functioning as a chromatin compactor. It is upregulated in cancer, and a reduction in its
expression causes chromatin structure closing [55,56,109]. Figure 1f shows the HIST1H3D
promoter-region DMR having a 14% hypomethylation between obese and non-obese cancer,
with no significant age interaction in the GR model.

The prediction model shown in Table 5 presents comparable misclassification rates,
with 29% for validation, 27% for LOO and 29% in the LR models, with equal precisions.
AICc in the validation model was 71 compared to 76 in the LR model, revealing a fitter
validation model. Figure 2 shows that the AUC for LR (a) was 74%, revealing similar
internal validity to our GR model with 74% AUC for validation (b) and 76% for LOO
(c). GR models provide higher quality predictions than LR models in locating possible
obesity-associated colon cancer biomarkers.

Table 5. Predictors of obesity-associated differentially methylated regions in colon cancer.

Generalized Regression Adaptive Elastic Net

Logistic Regression Leave-One-Out Validation Column

Parameters Estimate p (χ2) Estimate p (χ2) Estimate p (χ2)

Intercept −0.1997 0.738 0.0114 0.984 −0.2869 0.613
Age (≥76) −2.4211 0.004 −2.3076 0.003 −2.2997 0.004

HIST1H3I (hypo, promoter) ‡ 1.1541 0.003 1.2026 0.001 1.1243 0.002
NFATC4 (hyper, intron) ‡ −1.1034 0.046 −1.3256 0.006 −1.1133 0.027

SRGAP2C (hyper, promoter) ‡ −1.2821 0.026 −1.4779 0.006 −1.2355 0.025
Age * ZBTB46 1.7993 0.020 1.8545 0.008 1.7343 0.024
Age * NFATC4 1.3051 0.078 1.1752 0.078 1.3065 0.069
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Table 5. Cont.

Generalized Regression Adaptive Elastic Net

Logistic Regression Leave-One-Out Validation Column

Parameters Estimate p (χ2) Estimate p (χ2) Estimate p (χ2)

Age * HOXB8 1.0252 0.163 1.1410 0.084 0.9161 0.081
Age * SRGAP2C 1.0565 0.153 1.1584 0.088 1.0062 0.168

HIST1H3D (hypo, promoter) ‡ −0.3225 0.401 −0.6169 0.089 −0.3119 0.419
ZBTB46 (hypo, intron) † −0.2551 0.637 −0.2889 0.550 −0.2036 0.702

HOXB8 (hypo, promoter) † −0.0984 0.856 0.0115 0.979 0.0000 1.000

Misclassification rate 0.290 - 0.277 - 0.290 -
AICc 76.63 - - - 71.067 -

Area under the curve 0.741 - 0.757 - 0.739 -

Notes—data not available; AICc—Akaike’s information criterion with corrections; * denotes interaction.
† represents genes that can be annotated to cancer-related functions and ‡ to both cancer and adipose/glucose-
related functions.
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Figure 2. Receiver operating characteristic (ROC) curve and area under the curve (AUC) for logistic
and generalized regression with adaptive elastic net. (a) represents logistic regression, (b) is adaptive
elastic net with validation column, and (c) is adaptive elastic net with leave-one-out validation.

4. Discussion

Generalized regression is a powerful machine learning tool to capture associations
between variables, rather than assuming that one causes the other. GR eliminates variables
that have no effect on the final model, allowing the remaining variables to have a greater
effect on the overall model. Using GR, we reduced the pool of colon cancer obesity-
impacted DMR-associated genes to six (6) and determined that age was an associated
variable when considered independently, also when interacting with several genes, most
notably ZBTB46 (p = 0.024). We further determined that neither gender nor ethnicity were
significant factors, and this is one of only a few studies to use GR in a methylation study
that also used a differential methylation value of DMR.

Of the list of top 10 genes containing the DMR with the largest methylation difference,
HOXB8 was the only gene with a statistically significant hypomethylated DMR in the obese
to non-obese group (p = 0.026). As an oncogene, increased expression is associated with
colorectal cancer. Two genes had statistically significant DMR hypermethylation in the
obese to non-obese group: ZNF426 (p = 0.049), a zinc finger protein-coding gene involved
in transcriptional regulation; and TUBB3 (p = 0.043), a beta-tubulin protein family coding
gene that plays a role in axon guidance. When used in the GR model, only HOXB8 had
borderline significance, which caused model instability when it was removed.

One limitation of this study was the use of methylation data from solid tumor tissue,
rendering it difficult to generalize for biomarker analysis; however, it provides significant
information about the genomic mechanisms impacted by obesity that may be targeted
by precision medicine for colon cancer patients. Further study needs to be conducted to
compare methylation changes in both solid tissue and body fluid samples, to determine
whether DNAm occurs systemically or is isolated to the cancer tissue, and further study
needs to be conducted to determine the level that DNAm impacts the function of the gene,
whether at an individual CpG site or a DMR, such that future studies can all start from a
leveled analysis point. The use of a single cohort cancer database is another limitation of
this study, which will be reduced in a follow-up study by using multiple cohorts as well as
survival analysis to validate these findings.

Using machine-learning-based tools and grouping colon cancer cases based on BMI,
we have identified genes associated with obesity, related to lifestyle that may modified,
potentially impacting colon cancer through methylation. HIST1H3I, ZBTB46, SRGAP2C
and HIST1H3D are all potential novel biomarkers identified through our analysis method,
and using GR, multiple genes impacted by DMR can be identified with cofactors from
patient lifestyle. DNAm analysis and interpretation are becoming easier and less expensive
to perform and can provide insights into disease processes never considered feasible during
treatment processes in the past. Combining DNAm with GR provides precision-medicine-
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based healthcare the tools necessary to focus on patient-centered treatment for cancer and
chronic diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12050660/s1, Figure S1: Interaction profile matrix for general-
ized regression model parameters, Table S1: Genes associated with top hypomethylated differentially
methylated regions (DMR) between groups, Table S2: Genes associated with top hypermethylated
differentially methylated regions (DMR) between groups. Original TCGA methylation files: demo-
graphics.csv, annotations.csv, methylation_betas.csv.
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