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Abstract

Species distribution models (SDMs) trained on presence-only data are frequently used in ecological research and
conservation planning. However, users of SDM software are faced with a variety of options, and it is not always obvious how
selecting one option over another will affect model performance. Working with MaxEnt software and with tree fern
presence data from New Zealand, we assessed whether (a) choosing to correct for geographical sampling bias and (b) using
complex environmental response curves have strong effects on goodness of fit. SDMs were trained on tree fern data,
obtained from an online biodiversity data portal, with two sources that differed in size and geographical sampling bias:
a small, widely-distributed set of herbarium specimens and a large, spatially clustered set of ecological survey records. We
attempted to correct for geographical sampling bias by incorporating sampling bias grids in the SDMs, created from all
georeferenced vascular plants in the datasets, and explored model complexity issues by fitting a wide variety of
environmental response curves (known as ‘‘feature types’’ in MaxEnt). In each case, goodness of fit was assessed by
comparing predicted range maps with tree fern presences and absences using an independent national dataset to validate
the SDMs. We found that correcting for geographical sampling bias led to major improvements in goodness of fit, but did
not entirely resolve the problem: predictions made with clustered ecological data were inferior to those made with the
herbarium dataset, even after sampling bias correction. We also found that the choice of feature type had negligible effects
on predictive performance, indicating that simple feature types may be sufficient once sampling bias is accounted for. Our
study emphasizes the importance of reducing geographical sampling bias, where possible, in datasets used to train SDMs,
and the effectiveness and essentialness of sampling bias correction within MaxEnt.
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Introduction

Species distribution models (SDMs), which predict a species’

probability of occurrence across a landscape by relating docu-

mented locations of that species to environmental information, are

frequently used in ecological, environmental and climate change

research [1,2,3,4,5]. Species location data are increasingly made

available by museums, herbaria, and other scientific institutions

[6,7,8] via open-access data portals such as the Global Biodiversity

Information Facility (GBIF; www.gbif.org), providing a wealth of

information about the known presences of organisms (but not

about known absences). There is also a ready supply of

environmental information, including global databases of climate

and digital elevation models [9] and user-friendly software

packages. These technological advances mean that, as never

before, SDMs are being used in ecological research and

conservation planning. However, users of SDM software are

faced with a variety of options, and it is not always obvious

whether selecting one option over another has a major effect on

model performance. This paper explores the consequences of

correcting for geographical sampling bias and non-automatically

selecting model functional forms on the predictive ability of

MaxEnt, one of the best performing species distribution modelling

techniques for analysis of presence-only data [10,11,12,13].

Accounting for the effects of geographical sampling bias in the

acquisition of data can be critical to the accuracy of SDMs

generated from presence-only datasets [14], but options to correct

for sampling bias are not always applied [15]. Samples are often

collected from relatively accessible locations near roads, urban

settlements and rivers, rather than systematically or randomly, so

their sampled localities may not be representative of the true range

of environmental conditions in which the species occurs [16,17].

Such geographical sampling bias is a characteristic of most

specimen locality data available from open access data portals

[18]. Failure to correct for geographical sampling bias can result in

a SDM that reflects sampling effort rather than the true

distribution of a species [14]. Species distribution modellers

aiming to use data from open access data portals are therefore

confronted with the challenge of correcting for the likely influence

of geographical sampling bias. Phillips et al. [14] recently de-

veloped a method for dealing with geographical sampling bias

when modelling species distributions with presence-only data.
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Their approach is to generate background data (sometimes

referred to as ‘‘pseudo-absences’’) which has a similar geographical

sampling bias to that of the presence data (the background data is

the set of geographical locations that will be used to train the

SDM). This is achieved by creating a sampling bias grid

representing relative survey effort across the landscape, using the

presence localities of a broader group of species within the region

of interest (e.g. all bird species if modeling a single bird species),

which is used in the SDM training algorithm [14]. Using

independent presence-absence data to evaluate their models, they

demonstrated that predictive accuracy improved when using this

approach. Although not focussing on correcting for sampling bias,

other studies have also explored different strategies for controlling

the selection of background data to improve SDM performance

[19,20,21,22,23].

The default option of MaxEnt allows the software to

automatically select functional forms to describe species’ responses

to environmental conditions, but users can select from a list of

functional forms (i.e. linear, quadratic, threshold, hinge, product,

and categorical) and allow different functional forms for different

environmental variables. Although MaxEnt is designed to balance

model goodness-of-fit against complexity [24], it is often the case

that a variety of functional forms are combined to build a model,

resulting in complex environmental response functions that are

difficult to interpret from an ecological perspective. To the best of

our knowledge, no study has compared the relative predictive

performances of MaxEnt models that have been deliberately

restricted to a distinct subset of the possible functional forms

(resulting in simpler and more interpretable models) and evaluated

using independent data on real species. This has particular

relevance when fitting models to species with different amounts of

occurrence data because it is unclear how much model perfor-

mance is improved by allowing for more complex environmental

response functions. Warren and Seifert [25] showed for model-

generated data that overly complex or simple models fitted by

MaxEnt had relatively poor predictive performance for a range of

metrics. However, in their study model complexity was varied by

adjusting a regularisation (b) parameter. This makes the influence

of directly restricting the number of different types of functional

forms unclear because adjusting this parameter can restrict both

the number and type of functional forms included in the model.

Given that the type of functional forms included is influenced by

the quantity of data in MaxEnt, we wanted to see if we gained

improved predictive performance when more abundant data

allowed us to fit more complex models compared to simpler

models.

Figure 1. Data locations in New Zealand. Tree fern occurrence locations (orange) and ‘‘absence’’ locations (blue) are based on a) herbarium data
extracted from GBIF; b) NVS ecological survey data extracted from GBIF, and c) LUCAS plot data. In the case of the herbarium and NVS datasets,
‘‘absences’’ are background locations based on locations of other vascular plants; in the case of the LUCAS dataset, true absences are shown.
doi:10.1371/journal.pone.0055158.g001
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This study explores the consequences of correcting for geo-

graphical sampling bias, and selecting specific functional forms, on

the predictive performance of models generated by MaxEnt. We

model the distribution of New Zealand tree ferns using presence-

only data from two sources: a small dataset from herbarium

collections and a much larger dataset from ecological surveys.

These data were collected in different ways and are inherently

different in their spatial properties and geographical biases. An

advantage of working with New Zealand tree ferns is that we had

access to an independent presence-absence dataset with which to

evaluate predictive performance of our models; importantly, this

independent dataset was collected from permanent plots at the

intersections of a grid encompassing all of New Zealand’s

indigenous forests and shrublands, so provided us a geographically

unbiased sample with which to evaluate model performance. Our

analyses indicate that predictive performance is greatly improved

by correcting for sampling bias, and that choosing simple

functional forms can lead to similar performance as allowing the

software to automatically select more complex ones.

Materials and Methods

Distribution models were generated using MaxEnt (Version

3.3.2), which uses the principle of maximum entropy to

discriminate the range of environments associated with species’

presences from the range of environments across the rest of the

landscape [24,26,27]. The software requires the following data as

inputs: geographical locations of species occurrences, gridded data

of environmental variables and (optionally) a sampling bias grid. In

our implementation we used MaxEnt to fit (‘‘train’’) a species

distribution model to a random sample of 75% of the species

occurrence data, with the remaining 25% of the data used to assess

(‘‘test’’) model performance [28,29]. By repeating this training and

testing process on multiple (i.e. 40 model runs) random subsamples

we used MaxEnt to assess uncertainty of the SDM predictions. In

this study we also used data from an entirely different source to

evaluate model performance. This is an important extra step,

because our additional dataset is geographically and environmen-

tally comprehensive, thus providing a more reliable evaluation of

performance than obtained from subsampled data.

Occurrence Data
The tree fern clade, comprised of 7 families and about 600

species, is distributed throughout wet tropical, subtropical and

temperate regions that rarely freeze [30,31]. We focussed on

modelling the distribution of New Zealand tree ferns collectively,

rather than working on the distributions of the country’s nine

species [32]. Tree ferns produce vast quantities of tiny spores, so

environmental constraints rather than dispersal limitation are

likely to control distribution. Furthermore, New Zealand has

dramatic topography with large climatic gradients, making it well

suited for predicting species distributions as a function of

environmental variables [20].

Georeferenced plant occurrence data were accessed from (a)

herbarium collections and (b) the National Vegetation Survey

databank (NVS) via the GBIF portal. The herbarium collections

are mostly from the New Zealand National Plant Herbarium,

sampling much of the New Zealand landmass, including grass-

lands and agricultural land in dry eastern regions. NVS serves as

New Zealand’s main repository for ecological data, containing

surveys conducted over a period of 50 years [33]; the databank

contains presence and absence locations but GBIF only provides

information on the occurrence locations. In total, the herbarium

dataset had 86 tree fern records and the NVS dataset had 5,874

records in which only one occurrence was used per pixel (, 1 km;

Figure 1a and 1b).

Table 1. Effects of correcting for geographical sampling bias on the predictive performance of New Zealand tree fern distribution
models trained on herbarium and NVS datasets.

Not correcting for sampling bias Correcting for sampling bias

AUC COR AUC COR

Herbarium dataset 0.787 60.012 0.474 60.020 0.851 60.004 0.588 60.008

NVS dataset 0.587 60.003 0.165 60.005 0.837 60.004 0.549 60.005

MaxEnt was used to fit the models (feature type = LQ) and model performance indicated by mean (61 standard deviation) AUC and COR values, evaluated by using the
independent LUCAS dataset.
doi:10.1371/journal.pone.0055158.t001

Table 2. Effects of correcting for geographical sampling bias on the rates of false presences and absences, and on the predicted
extent of tree ferns (as a percentage of the total land area of New Zealand).

Not correcting for sampling bias Correcting for sampling bias

False
absences{ (%)

False presences{

(%)

Percentage of NZ
predicted to be
occupied

False
absences (%)

False
presences (%)

Percentage of NZ
predicted to be
occupied

Herbarium dataset 12.4 41.2 45.4 20.3 19.5 30.9

NVS dataset 19.8 64.1 34.5 12.2 30.0 35.9

Models were fitted to two datasets (herbarium and NVS) using MaxEnt with the feature type set as ‘‘LQ’’. Model predictions were based on average predictions from the
40 runs and evaluated by using the LUCAS dataset.
{False presences occur when a model predicts a species as present whilst observed data indicate it is absent.
{False absences occur when a model predicts a species as absent whilst observed data indicate it is present.
doi:10.1371/journal.pone.0055158.t002
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An independent dataset containing tree fern presence and

absence locations was used to evaluate the accuracy of the MaxEnt

models trained on the herbarium and NVS datasets. We extracted

tree fern presence (474) and absence (760) locations (Figure 1c)

from the New Zealand Land Use and Carbon Analysis System

(LUCAS) dataset for natural forests (http://www.mfe.govt.nz/

issues/climate/lucas/). Forests were sampled nationally for the

purpose of estimating carbon storage in New Zealand’s indigenous

forests and shrublands, but this dataset also provides an overview

of vascular plant diversity of these vegetation types [34,35,36].

Sampling plots were established on an 868 km grid spanning the

entire country. At every forested intersection on the grid,

a 20620 m plot was established and the presence/absence of

plant species recorded [37], resulting in approximately 1300

permanent plots. The LUCAS dataset was completely indepen-

dent of the data used to train the model and was used only for

model evaluation.

Environmental Variables
We obtained mean annual bioclimatic variables from the

Worldclim database, version 1.4 (http://www.worldclim.org;

[38]). We supplemented these climate variables with three water

balance variables: mean annual potential evapotranspiration

(PET; Trabucco & Zomer [39]), actual evapotranspiration

(AET; Trabucco & Zomer [40]), and annual water deficit

calculated as PET- AET [41]. We added the water balance

variables because of research indicating their importance in

constraining plant distributions [41,42]; data layers were extracted

from the CGIAR consortium for spatial information (http://www.

cgiar-csi.org/). All variables had a 30 arc second (,1 km at the

Equator) spatial resolution.

In all predictive modelling it is prudent to select explanatory

variables that are not closely correlated [43]. A combination of

expert knowledge, previous studies of fern diversity across New

Zealand [44], and guidance from statistical analysis (correlation,

hierarchical clustering, and principal components analyses) were

used for variable selection. We included only variables with

a Pearson correlation coefficient of less than 0.85. The variables

selected for modelling were annual precipitation, minimum

temperature, water deficit, AET, and temperature seasonality.

Annual precipitation has long been recognized as a major

determinant of species’ distributions [45]. Water deficit and

minimum temperature represent the species’ tolerance to drought

and cold temperatures. AET is the amount of water loss given

existing evaporative energy in a system and the available water

provided by precipitation and storage in the soil [46]. Temper-

ature seasonality potentially differentiates sites with similar mean

temperature, thus representing species’ sensitivity to temperature

fluctuations.

Sampling Bias Grids
We produced separate sampling bias grids for the herbarium

and NVS datasets. In both cases, we totalled the number of

vascular plant records found within grid cells which had the same

resolution and positioning as the environmental grid cells (i.e. 30

arc seconds). Pixels without any plant occurrences were designated

as having ‘‘no data’’ and were automatically excluded by MaxEnt.

Model-fitting
The benefits of correcting for geographical sampling bias were

evaluated by comparing SDMs that were fitted with and without

the use of a sampling bias grid. Models fitted without the grid used

‘‘background data’’ comprised of random locations from anywhere

in New Zealand, whereas models which corrected for sampling

bias used ‘‘background data’’ comprised of random locations

weighted by the sampling bias grid, as recommended by Phillips

et al. [14].

MaxEnt provides the option to use a range of functional forms

to describe the relationship between logit (probability of occur-

rence) and an environmental variable. These functional forms

Figure 2. Density distribution plots of environmental variables. Tree fern occurrences (orange) and background locations are based on
locations of other vascular plants (blue) compared to all NZ locations (,1 km resolution; black) for the herbarium dataset (upper row) and the NVS
dataset (lower row). Temperature seasonality is represented as standard deviations multiplied by 10.
doi:10.1371/journal.pone.0055158.g002

Correcting Sampling Bias Improves SDM Accuracy
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(known as ‘‘feature types’’) are: Linear (L), Quadratic (Q), Hinge

(H), Product (P), Threshold (T) and categorical (see [26,27] for

detailed descriptions). Furthermore, MaxEnt provides the option

to allow different feature types to be used for different

environmental variables. The default setting is ‘‘Auto feature’’,

which uses an algorithm to determine the most suitable complexity

based on the number of presence records used for model training;

at least 80 presence records are required in the training data to

justify including all feature types under the ‘‘Auto’’ setting. We

investigated the extent to which permitting MaxEnt to use

different feature types influenced the predictive accuracy of the

resulting models. The feature type combinations investigated were

L, Q, H, T, LQ, HQ, LQP, LQT, QHP, QHT, QHPT, and

Auto.

Measures of Model Performance
The discrimination ability of an SDM is its ability to correctly

distinguish between sites associated with presences and absences

(or the background in the case of MaxEnt). We used the frequently

applied Area Under the Curve (AUC) metric to evaluate SDM

discrimination ability [9,28]; an AUC value of 1.0 is considered

a perfect prediction and a value of 0.5 or less is consider

a prediction no better than random. We compared internal

MaxEnt AUC calculations from the randomly withheld test data

and AUC calculations from the independent LUCAS data. In

addition, we used the Pearson correlation coefficient (COR: in this

context is referred to as point biserial correlation; [10,47]) to

quantify the degree of correlation between model-predicted

probabilities of occurrence and presences and absences of the

LUCAS data. COR was calculated using R 2.10.1 [48] and the

AUC was calculated from using the ROCR package [49].

Another aspect of evaluating model performance is to quantify

how observed prevalence over a landscape varies with the

predicted probability of occurrence [50]. For example, if we have

a true occurrence probability of 0.2 then we should expect only

20% of such sites to contain presence observations. The question is

how prevalence scales with the probability of occurrence predicted

by the SDMs produced by MaxEnt; for example, do sites with

occurrence probability of 0.4 really contain twice as many

presences as those with probability of 0.2? Presence only

calibration (POC) plots characterise how the actual prevalence

scales with occurrence probability and Phillips and Elith [51] have

Figure 3. Comparison of presence-only calibration (POC) plots. MaxEnt LQ models were trained on (a) herbarium and (b) NVS data,
correcting for geographical sampling bias; plots were derived from the average predictions of 40 runs. Values above the linear diagonal signify model
underestimation of species prevalence and values below the line signifies overestimation of species prevalence. The calibration curve is shown in
cyan and the orange lines represent 62 standard deviations. Presence and background data are marked at the bottom of each graph at their
corresponding predicted probabilities of presence: presences are orange and background data are black.
doi:10.1371/journal.pone.0055158.g003

Correcting Sampling Bias Improves SDM Accuracy
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demonstrated the usefulness of POC plots in which background

locations are treated similarly to absences. Whilst the probability

predicted by a presence-only SDM cannot be used alone to predict

the true prevalence [51], the POC plot can be used to indicate the

extent to which the predicted probability of presence scales with

the actual prevalence of presence points in the background data.

As a final test of model performance we assessed the spatial

patterns of predicted presences and absences of the LQ models

using the independent LUCAS data. Implementing this requires

choosing a probability threshold at which values above the

threshold are predicted as a presence and values below as an

absence. The threshold selection method we chose was ‘‘maximum

(sensitivity+specificity)’’ [9], which gives the highest total value of

sensitivity (proportion of actual presences that are accurately

predicted) and specificity (proportion of actual absences that are

accurately predicted).

Results

Correcting for Geographical Sampling Bias
The predictive performance of LQ models was greatly

improved by correcting for geographical sampling bias using the

methods of Phillips et al. [14]. Correcting bias in the herbarium

and NVS datasets led to dramatic increases in AUC and COR

values when model predictions were compared with observed tree

fern presences and absences in the independent LUCAS dataset

(Table 1). Correcting for geographical sampling bias approxi-

mately halved the false-absence and false-presence error rates of

distribution maps predicted with the NVS dataset (Table 2; Figure

S1), and approximately halved the false absence rate of

distribution maps predicted with the herbarium dataset, although

paradoxically the false presence rate increased following the

correction (Table 2). The percentage of New Zealand predicted to

be occupied by tree ferns was similar for the two datasets when

geographical sampling bias had been corrected, but differed

substantially when no correction was applied (Table 2).

Performance improvements arising from sampling bias correc-

tion are particularly strong for the NVS dataset. In the case of the

herbarium dataset, the frequency distributions of vascular plant

records along five environmental axes were virtually identical to

the frequency distributions of the New Zealand landmass along

these axes (blue vs black lines in Figure 2a–e), indicating that the

herbarium collections were broadly representative of the environ-

mental conditions found in New Zealand. However, the equivalent

frequency distributions for NVS were quite distinct from the

frequency distributions of the New Zealand landmass (blue vs

black lines in Figure 2f–j), indicating that surveys were biased

towards wetter parts of the country and under-represented the

coldest and warmest regions. We further assessed the performance

of LQ models with sampling bias correction using POC plots

(Figure 3). The relative probability of species presence data in the

herbarium dataset tends to increase in direct proportion to the

probability of presence predicted by LQ models, while the relative

probability of species presence data in the NVS dataset indicates

that the models tend to under-predict the relative prevalence of

presences in the dataset at low predicted probabilities of presence,

and then over predict at high probabilities of presence. Whilst

there were benefits to correcting for sampling bias in both datasets,

they were far greater for NVS because of the strong geographical

bias within this dataset.

The frequency distributions of tree fern records along five

environmental axes were quite distinct from those of other

vascular plant records (orange vs blue lines in Figure 2), indicating

that the ferns occupy only part of the available environmental

niche space, although this distinction was clearest in the case of the

herbarium dataset. It is well known that tree ferns grow in wet

regions which do suffer from long periods of freezing in the winter

months, and are particularly common in warmer regions of the

southern hemisphere [44]. Natural history observation regarding

Figure 4. Box plots of AUC values. AUC values derived from MaxEnt models fitted using different functional forms (‘‘feature
types’’) and two different training datasets: herbarium (a–d) and NVS (e–h). Evaluations are made using randomly withheld test data
without and with correcting geographical sampling bias (a & e) and (b & f), respectively; evaluations are made using independent LUCAS data
without and with correcting for sampling bias are (c & g) and (d & h), respectively. Box plots indicate variation in AUC among 40 runs (boxes
encompass 25th and 75th percentiles, whiskers approximate 99% of the data range, points are outliers).
doi:10.1371/journal.pone.0055158.g004

Correcting Sampling Bias Improves SDM Accuracy
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tree ferns are borne out in Figure 2, and also in the environmental

responses obtained by MaxEnt modelling (Figure S2 a and c): for

both datasets, the probability of occurrence is seen to increase with

temperature (for which AET is a proxy), precipitation, and

minimum temperature (with a sharp increase at about 0uC).

However, the two analyses gave diametrically opposite predictions

with regard to water deficit and temperature seasonality (Figure S2

a and c).

Effects of Using Withheld Test Data for Model Evaluation
It is common practice to withhold 25% of occurrence data from

the training process so that it can be used for testing model

performance, but our results indicate that this procedure could be

problematic if interpreted improperly. Correcting for geographic

sampling bias led to decreases in AUC values when withheld data

were used for testing model accuracy (Figure 4b, f) as well as

a decrease in COR values (results not shown). Thus using withheld

data to evaluate model performance with respect to sampling bias

Figure 5. LUCAS presence/absence locations with predicted presences and absences generated from average LQmodel predictions
(with geographical sampling bias correction). Correct agreement between predicted presences/absences and LUCAS presences/absences are
shown in green and incorrect agreements are shown in orange. LUCAS presence locations are shown with predictions from (a) herbarium dataset and
(b) NVS dataset, LUCAS absence locations are shown with predictions from (c) herbarium dataset and (d) NVS dataset.
doi:10.1371/journal.pone.0055158.g005

Correcting Sampling Bias Improves SDM Accuracy
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does not indicate the increase in SDM performance at predicting

the true species distribution (see discussion for further explana-

tion).

Effects of Model Complexity
The choice of feature types had relatively minor effects on

model predictive performance (Figure 4). Average AUC increased

slightly when models were fitted with more complex feature types,

when assessed against LUCAS data, although this effect was minor

compared to correcting for sampling bias (Figure 4c, d, g, h). The

auto feature models performed slightly better than the LQ models

for the herbarium dataset (mean AUC = 0.855 vs 0.851 re-

spectively; Welch t-test t76 = 3.60; P,0.001) but was considerably

worse for the NVS dataset (mean AUC = 0.801 vs 0.837

respectively, t61 = 26.42, P,0.001). The environmental response

curves predicted by simple LQ models were much smoother than

those obtained from auto feature models (Figure S2), suggesting

that the auto feature option may have picked up local idiosyncratic

effects rather than broad physiological responses.

Spatial Patterns of Errors in Model Predictions
Distinct spatial patterns of false presences and false absences are

apparent in LQ models fitted to the NVS and herbarium datasets,

applying the sampling bias correction. Visual inspection of models

fitted to the herbarium dataset indicated low predictive perfor-

mance in the far southern region of the South Island and Stewart

Island – there was a very high rate of false absence (100%;

Figure 5a), with almost half of all false absences coming from this

region. In contrast the NVS dataset had a higher false presence

rate on the North Island (57.5%; Figure 5d) than the herbarium

dataset (42.5%; Figure 5c).

Discussion

Correcting for Geographical Sampling Bias
Our analyses show clearly that the method proposed by Phillips

et al. [14] to correct for sampling bias greatly improves the

predictive performance of SDMs. This was true for the strongly

biased NVS dataset, and also for the more subtly biased herbarium

collections. A number of other studies have shown the importance

of the background data selection method through a variety of

SDM techniques [19,20,21,22,23,52] and studies have begun to

also evaluate MaxEnt [12,14,53,54,55]. Our study supports the

use of the correction method devised by Phillips et al. [14], which

is available as an option in the MaxEnt software.

The benefits of correcting for sampling bias were only apparent

when we assessed model performance using independent presence-

absence data (Table 1 and Figure 4). Paradoxically, when 25% of

the training dataset is withheld for model evaluation, predictive

performance appeared to decrease when sampling bias corrections

were introduced (Figure 4). This is because the training and test

datasets possess the same geographical sampling bias. It may be

that environmental response curves obtained without sampling

bias correction may partly reflect underlying variation in sampling

intensity rather than pure environmental responses, but the

models appear to perform well when evaluated with withheld

training data, because the test and training datasets are similarly

biased [14]. Conversely, model performance appears to fall when

the correction is applied, because most realistic environmental

response curves are obtained, and these may not predict presences

in densely sampled regions as a matter of course [14]. Clearly

then, performance statistics derived from withheld data cannot be

used to justify whether or not to correct for bias. We suggest that

geographic bias correction should become the default option and

that researchers should provide a strong justification if they choose

to avoid it.

Our investigation supports the suggestion that the completeness

of sampling with respect to the environmental gradients is more

important for performance than sample size [56]. Models trained

on the small herbarium dataset outperformed those trained on the

large-but-biased NVS dataset, even after correcting for geo-

graphical bias: AUC and COR values were higher for the

herbarium models, POC curves departed little from the expected

line, and errors rates in the North Island were lower (Figure 5).

The environmental response functions of models fitted using the

herbarium dataset and restricting MaxEnt to linear and quadratic

features also support our ecological understanding of the abiotic

determinants of tree fern distributions (Figure S2). The relatively

poorer performance of models trained on the NVS data is likely

related to using occurrence data from a restricted range of

environmental space. This is consistent with other studies that

have shown that model performance is influenced by the

relationship between the occurrence data environmental range

and the background data (pseudo-absence) environmental range

[52,57].

Our analyses of the spatial variation in the predictive

performance indicate clear differences between datasets, high-

lighting the value of this approach [58]. The performance of the

models trained on the herbarium data is poor in the very south of

New Zealand because this region was poorly represented, with

only a single collection out of 80 in the dataset. There is more

variation in the AET response curves at low temperatures (i.e. at

low AET, Figure S2), also reflecting this lack of data. This

underlines that the predictive ability of SDMs can be severely

limited by the lack of representative occurrence data from the

range of environments in which the species occurs and emphasises

why caution should be placed in SDM predictions that are at the

edge or extrapolated beyond the range of environments that are

associated with the training occurrence data [57].

Model Complexity
Increasing the allowable complexity of the functional forms had

little effect on model performance, implying that MaxEnt might be

able to produce models with similar levels of performance with

combinations of much simpler feature types (linear and quadratic

in our case) than obtained using the default MaxEnt settings.

Simple functional forms are easier to interpret from an ecological

perspective and more readily translated into other modelling

paradigms, such as process-based models, and prevent locally

idiosyncratic responses which may be specific to the particular

datasets rather than reflecting general features of an organism’s

physiological responses to the environment. However, Warren and

Seifert [25] recently demonstrated that over-parameterization was

typically less important than under-parameterization for model

performance using simulated datasets. We suggest that MaxEnt

users fit models with the default auto feature option but also try

fitting simple functional forms (e.g. LQ); if the simpler functions

perform as well as the automatic option and are more easily

interpreted, it may be preferable to report these results.

Conclusions
Our findings strongly endorse the method of Phillips et al [14]

for correcting sampling bias in presence-only species distribution

models. Even so, our bias-corrected models had false presence and

absence rates of around 20%, and these error rates were greatest

in particular regions of New Zealand, so care is needed when

applying this approach for species conservation. A novel implica-

tion in our study for those training SDMs on data from online data
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portals such as GBIF is that the appropriate sampling bias grid

may differ depending on the data provenance (NVS versus

herbarium data in our case). We found that the smaller herbarium

dataset produced more accurate distribution models than the

much larger ecological survey data, because of the strong spatial

biases in the NVS dataset. Thus, we encourage a careful

evaluation of the potential geographical sampling bias before

building a SDM. Additionally, we find that the use of simpler

feature types may result in models with similar levels of predictive

performance to those in which a wider range of feature types were

possible. These simpler models have the added benefit of being

easier to interpret and thereby aid the understanding of a species’

ecology, which may be particularly valuable in the case of the

many potentially threatened plant species for which ecological

information is lacking [59,60].

Supporting Information

Figure S1 Average MaxEnt predictions from 40 runs of
LQ models built using the herbarium and NVS datasets
when geographical sampling bias is and is not cor-
rected. Using the MaxEnt logistic output, blue colours indicate

a higher ‘‘probability of occurrence’’ (suitability) while the orange

colours indicate lower probabilities.

(TIF)

Figure S2 Response plots showing the relationship
between predicted probability of presence and environ-
mental variables when all other variables are held at

their empirical averages. Models were fitted using LQ

features trained on herbarium data (a) and NVS data (c), and

models were fitted using Auto features trained on herbarium data

(b) and NVS data (d). Geographical sampling bias was corrected in

all cases. The response curve is shown in black and the grey areas

represent 95% confidence intervals from 40 replicated runs.

(TIFF)
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