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Since the first microRNA (miRNA) was discovered, a lot of
studies have confirmed the associations between miRNAs and
human complex diseases. Besides, obtaining and taking advan-
tage of association information between miRNAs and diseases
play an increasingly important role in improving the treatment
level for complex diseases. However, due to the high cost of
traditional experimental methods, many researchers have pro-
posed different computational methods to predict potential as-
sociations between miRNAs and diseases. In this work, we
developed a computational model of Random Forest for
miRNA-disease association (RFMDA) prediction based on ma-
chine learning. The training sample set for RFMDA was con-
structed according to the human microRNA disease database
(HMDD) version (v.)2.0, and the feature vectors to represent
miRNA-disease samples were defined by integrating miRNA
functional similarity, disease semantic similarity, and Gaussian
interaction profile kernel similarity. The Random Forest algo-
rithm was first employed to infer miRNA-disease associations.
In addition, a filter-based method was implemented to select
robust features from the miRNA-disease feature set, which
could efficiently distinguish related miRNA-disease pairs
from unrelated miRNA-disease pairs. RFMDA achieved areas
under the curve (AUCs) of 0.8891, 0.8323, and 0.8818 ±
0.0014 under global leave-one-out cross-validation, local
leave-one-out cross-validation, and 5-fold cross-validation,
respectively, which were higher than many previous computa-
tional models. To further evaluate the accuracy of RFMDA,
we carried out three types of case studies for four human com-
plex diseases. As a result, 43 (esophageal neoplasms), 46 (lym-
phoma), 47 (lung neoplasms), and 48 (breast neoplasms) of the
top 50 predicted disease-related miRNAs were verified by
experiments in different kinds of case studies. The results of
cross-validation and case studies indicated that RFMDA is a
reliable model for predicting miRNA-disease associations.

INTRODUCTION
MicroRNAs (miRNAs) are a series of endogenous small non-coding
RNAs (about 22 nt), which can suppress the expression of target
genes by inducing the cutting degradation of mRNA, translation in-
hibition, or other modality regulation mechanism.1–4 Line-4 and
let-7, the first two miRNAs that were discovered more than 20 years
ago,5–7 act as positive regulators coincidently. Since then, as many
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studies on miRNAs have been carried out, a mass of miRNAs was
found in viruses, green algae plants, and animals.8 Furthermore,
several studies have demonstrated that miRNAs are in connection
with many important biological processes, such as cell growth,9 cell
death,10 cell proliferation,11 immune reaction,12 signal transduc-
tion,13 tumor invasion,14 and viral infection.15 Hence, it is no surprise
that miRNAs could be associated with different kinds of diseases.16

With the development of biotechnology and accumulation of the-
ories, more and more associations between miRNAs and diseases
have been discovered. Yao et al.17 found that miRNA-103 and
miRNA-107 inhibit the translation of cofilin. Moreover, the decrease
of miRNA-103 or miRNA-107 levels and the increase of cofilin pro-
tein levels happened at the same time in a transgenic mouse model of
Alzheimer’s disease. Gao et al.18 discovered the phenomenon that
deregulation of miRNA-145 and miRNA-199 expression happened
in previous stages of hepatitis B virus (HBV)-associated multi-step
hepatocarcinogenesis. In addition, miRNA-155 plays an important
role in the induction of chronic gastritis and colitis and the T cell-
mediated control of Helicobacter pylori infection.19 A recent study
also showed that miRNA-23, miRNA-24, and miRNA-27 contained
underlying therapeutic factors in ischemic heart and vascular disor-
ders disease.20 Hence, there is no doubt that obtaining and taking
advantage of association information between miRNAs and diseases
could improve the treatment level for complex diseases. However,
since experimental methods may consume plenty of time, numerous
materials, and a lot of labor to find associations, proposing efficient
computational methods based on existing databases is expected to
significantly reduce the workload. Indeed, a growing number of
computational models have been developed to predict potential asso-
ciations between miRNAs and diseases in recent years.21–26

On the basis of a reasonable conjecture that functionally similar
miRNAs tend to link with diseases that have similar phenotypes,
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lots of computational methods are proposed for predicting associa-
tions betweenmiRNAs and diseases.27–29 Jiang et al.30 created a hyper-
geometric distribution-based computational method by integrating
miRNA functional similarity network, disease phenotype similarity
network, and known human miRNA-disease association network.
However, only using the information of miRNA neighbors resulted
in an unsatisfactory prediction performance of this model. Later, Shi
et al.31 built a computational model to identify unknownmiRNA-dis-
ease associations by using the algorithm of random walk on the pro-
tein-protein interaction (PPI) network. Under the conjecture that a
miRNA may be associated with a certain disease when target genes
of the miRNA have connection with this disease, they predicted novel
miRNA-disease associations by integrating PPI network, miRNA-
target interaction network, and gene-disease interaction network.
Mørk et al.32 proposed a miRNA-protein-disease (miRPD) associa-
tion prediction model to judge whether miRNAs link with diseases
via considering the underlying proteins. After combining the known
miRNA-disease associations, text-mined disease-protein associations,
and predicted miRNA-protein associations into a scoring framework,
they finally ranked the miRNA-disease pairs to infer miRNA-disease
associations. Xu et al.33 developed a comprehensive prioritization
method for prioritizing miRNAs associated with disease, without
using any known miRNA-disease associations, by integrating a few
diseases’ phenotypes with suitedmRNAs andmiRNA expression pro-
files. However, all of the above computational models have a common
shortcoming because they relied much on miRNA-target interactions
with high false-positive and false-negative ratios.

There were also some classical calculation models without depending
on miRNA-target interactions. A prediction method named “human
disease-related miRNA prediction” (HDMP) was presented.34 To get
a good performance, they computed the functional similarity of two
miRNAs by integrating information of phenotype similarity between
diseases and description of disease terms and distributing higher
weights to miRNAs that were members of a miRNA cluster and/or
family. Nevertheless, HDMP could not work for novel diseases
without known associated miRNAs because the prediction process
was mainly based on miRNAs’ neighbors. Chen et al.35 proposed a
method named “random walk with restart for miRNA-disease associ-
ation” (RWRMDA) to predict miRNA-disease associations by
applying random walk with restart to find candidate miRNAs for
the concerned disease. RWRMDA achieved a satisfactory perfor-
mance, but it still failed to seek potential associated miRNAs for
new diseases without any known related miRNAs. Later, Xuan
et al.36 presented a prediction method named “miRNAs associated
with disease prediction” (MIDP), still based on random walk, which
utilized different kinds of topologies and features of nodes. They
extended the work on a miRNA-disease bilayer network so that their
model could be used to predict candidate diseases without any known
associated miRNAs. Chen et al.37 further proposed a model named
“within and between score for miRNA-disease association”
(WBSMDA) prediction, which could avoid the above limitation as
well. They calculated within scores, based on the information of
known associated miRNA-disease pairs, and between scores, accord-
ing to the information of unlabeled miRNA-disease pairs. WBSMDA
could infer not only potential miRNAs for novel disease but also po-
tential diseases for novel miRNA. Another computational method
named “heterogeneous graph inference for miRNA-disease associa-
tion” (HGIMDA) prediction was built by Chen et al.38 to predict
miRNA-disease associations through an iterative process. They ob-
tained a convergent association probability matrix after some steps,
since the two similarity matrices for miRNAs and diseases were
respectively normalized properly. Similarly, HGIMDA could also
work for new diseases as well as new miRNAs.

Li et al.39 proposed a matrix completion algorithm named “matrix
completion for miRNA-disease association” (MCMDA) prediction
by updating the adjacencymatrix more efficiently based on the known
miRNA-disease association information only. Yu et al.40 applied the
maximizing information flow approach (MaxFlow) for the first time
to predict miRNA-disease associations through integrating disease
phenotypic and semantic similarity network, miRNA functional sim-
ilarity network, and knownmiRNA-disease association network into a
phenome-microRNAome network and maximizing network infor-
mation flow. Chen et al.41 presented a computational model of
ranking-based K-nearest neighbor (KNN) for miRNA-disease associ-
ation prediction (RKNNMDA). In the model, the K-nearest neighbor
algorithm was used to search for k-nearest neighbors by combining
known similarity networks. This model could also work for diseases
(or miRNAs) without any known associated miRNAs (or diseases).

In addition, prediction models based on machine learning have also
been frequently utilized to search for potential miRNA-disease asso-
ciations. Xu et al.42 proposed a model named “miRNA target-dysre-
gulated network” (MTDN) based on support vector machine
(SVM) to prioritize candidate disease-related miRNAs for prostate
cancer. The algorithm MTDN was utilized to define four features
of a miRNA, and then the SVM classifier divided miRNAs into two
categories, positive and negative, as the result of prediction. Later,
Chen and Yan43 developed a semi-supervised learning method
named “regularized least-squares for miRNA-disease association”
(RLSMDA) prediction to infer miRNA-disease associations. Negative
samples are not necessary in the model, but it’s still hard to select
optimal parameter values. Next Chen et al.44 proposed a computa-
tional model called “restricted Boltzmann machine for multiple types
of miRNA-disease association” (RBMMMDA) to predict different
types of associations between miRNAs and diseases. Compared
with former methods, which could only predict binary miRNA-
disease associations, RBMMMDA could obtain both new miRNA-
disease associations and corresponding association types.

As we know, Random Forest has been successfully applied to a wide
range of bioinformatics problems, including protein or peptide
identification,45 in vivo transcription factor-binding prediction,46

enhancer identification,47 and functional annotation of non-coding
SNPs.48,49 In this study, we developed a novel efficient computational
model of Random Forest for miRNA-disease association (RFMDA)
prediction (motivated by the study of Cheng et al.50). First, we
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Figure 1. AUCs of RFMDA and HGIMDA, RLSMDA, HDMP, WBSMDA, MaxFlow, and MCMDA under Global LOOCV

As one can see, RFMDA achieved AUCs of 0.8891 under global LOOCV, which were higher than those of previous models.
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constructed training samples for data preparation. Second, RFMDA
made full use of biological information of miRNAs and diseases by
integrating the miRNA functional similarity network or disease se-
mantic similarity network with the Gaussian interaction profile kernel
similarity network for miRNAs or diseases. Each miRNA-disease pair
(m(i), d(j)) was represented by a feature vector based on the above
similarity networks. Then, a feature selection method was used
to cut down the dimensionality of feature vectors for efficiently distin-
guishing associated miRNA-disease pairs from unassociated miRNA-
disease pairs and decreasing computational cost. Finally, a Random
Forest prediction model could be obtained by training the samples
mentioned in the first step.

To evaluate the performance of RFMDA, local and global leave-
one-out cross-validations (LOOCVs) as well as 5-fold cross-validation
were implemented. As a result, the areas under the curve (AUCs) of
global and local LOOCVs were 0.8891 and 0.8323, respectively; and,
the AUC obtained from 5-fold cross-validation was 0.8818 ± 0.0014.
Besides, we implemented three types of case studies on esophageal
neoplasms, lymphoma, lung neoplasms, and breast neoplasms. The
top 10 and top 50 candidate miRNAs associated with these four dis-
eases obtained from RFMDA were verified by experimental reports
in some representative databases. As a result, 86% (esophageal neo-
plasms), 92% (lymphoma), 94% (lung neoplasms), and 96% (breast
neoplasms) of the top 50 predicted miRNAs were respectively verified
by recent experimental results. The data demonstrated that RFMDA is
an excellent method to predict potential miRNA-disease associations.

RESULTS
Performance Evaluation

To evaluate the performance of RFMDA, LOOCVs and 5-fold cross-
validation were utilized based on the known miRNA-disease associa-
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tions in the human microRNA disease database (HMDD) version (v.)
2.0. The dataset contains 5,430 knownmiRNA-disease associations be-
tween 495miRNAs and 383 diseases. In our model, all knownmiRNA-
disease associations were treated as positive samples, while the un-
knownmiRNA-disease pairs were treated as unlabeled samples. Global
LOOCV and local LOOCV are two categories of LOOCV. For global
LOOCV, each positive sample would be left out in turn as a test sample,
and otherpositive sampleswere used to train themodel. RFMDAwould
give a predicted score to the test sample and each unlabeled sample. Af-
ter sorting all scores in decreasing order, we could obtain the ranking of
the test sample. Finally, 5,430 rankings could be obtained by this way.

Then we drew the Receiver Operating Characteristic (ROC) curves by
plotting the true positive rate (TPR, sensitivity) against the false pos-
itive rate (FPR, 1-specificity) with different thresholds. Sensitivity
shows the percentage of test samples that was ranked in front of
the given threshold, while specificity demonstrates the percentage
of negative miRNA-disease associations whose ranks were lower
than the given threshold. The ROC AUC was regarded as a standard
for performance evaluation. A higher AUC indicates more excellent
prediction performance of a prediction model. What makes a differ-
ence in local LOOCV is that the test sample was ranked with miRNAs
that have no known association with the investigated disease accord-
ing to the prediction scores.

As shown in Figures 1 and 2, RFMDA achieved an AUC of 0.8891,
which is higher than AUCs of 0.8781 (HGIMDA), 0.8749 (MCMDA),
0.8624 (MaxFlow), 0.8426 (RLSMDA), 0.8366 (HDMP), and 0.8030
(WBSMDA) in global LOOCV. Besides, in local LOOCV, HGIMDA,
MCMDA, MaxFlow, RLSMDA, HDMP, WBSMDA, MIDP, MiRAI,
and RWRMDA obtained AUCs of 0.8077, 0.7718, 0.7774, 0.6953,
0.7702, 0.8031, 0.8196, 0.6299, and 0.7891, respectively. The AUCs



Figure 2. AUCs of RFMDA and HGIMDA, RLSMDA, HDMP, WBSMDA, RWRMDA, MaxFlow, MCMDA, MIDP, and MiRAI under Local LOOCV

As one can see, RFMDA achieved AUCs of 0.8323 under local LOOCV, which were higher than those of previous models.
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of all the nine models were lower than RFMDA’s AUC of 0.8323. As
we can see, MIDP, RWRMDA, and MiRAI only appeared in local
LOOCV comparison. On the one hand, MIDP and RWRMDA
were based on random walk, which is a local method so that these
two methods could not be used to predict for all diseases simulta-
neously. On the other hand, the association score between a disease
(miRNA) and its candidate miRNAs (diseases) computed by MiRAI
was extremely correlated with how many known miRNAs (diseases)
associated with the disease (miRNAs). For a disease (miRNA) with
more known associated miRNAs (diseases), the prediction scores be-
tween the disease (miRNA) and its candidate miRNAs (diseases)
would be higher. Therefore, it is unfair to compare the prediction
scores obtained from different diseases. MiRAI obtained a lower
AUC after being implemented on our training dataset because the
model suffered from the data sparsity problem. In our training data-
set, the majority of 383 diseases (495 miRNAs) were associated with
only a few miRNAs (diseases). However, MiRAI was implemented on
the dataset that included 83 diseases with at least 20 known associated
miRNAs for each in the original literature.51 It is obvious that AUCs
of RFMDA were higher than all of the previous methods mentioned
above both in local and global LOOCVs. Both the global and local
LOOCVs showed the excellent prediction performance of our model.

As for 5-fold cross-validation, we evenly divided positive samples into
5 parts, and each part would be treated as test samples in turn; and,
each miRNA-disease pair in the test sample would be ranked with
all unlabeled samples based on their prediction scores. The whole
process was repeated 100 times to avoid evaluation bias. RFMDA
achieved an AUC of 0.8818 ± 0.0014 in 5-fold cross-validation. The
average AUC of 0.8818 under 100 cross-validation is still higher
than the average AUCs of 0.8767 (MCMDA), 0.8579 (MaxFlow),
0.8569 (RLSMDA), 0.8342 (HDMP), and 0.8185 (WBSMDA). The
average AUC revealed the superiority of our model, and the SD of
0.0014 demonstrated the stability of RFMDA.

Case Studies

To further evaluate the prediction performance of our model, we
carried out three types of case studies on four diseases. The first
type was implemented on esophageal neoplasms and lymphoma.
Here, all known miRNA-disease associations in the HMDD v.2.0
were put into the training set of RFMDA. We selected the top 50
predicted miRNAs associated with the investigated disease based on
their prediction scores, and then we validated them in another two
databases, namely, dbDEMC52 and miR2Disease.53

Esophageal neoplasms ranked eighth in themost common cancers and
sixth in cancermortality all over theworld, according to the literature.54

In the United States, about 10 in 100,000 people die of esophageal neo-
plasms every year, and the number of male patients was about four
times as many as female patients.55 Diagnosing the disease in the early
stages would enhance the survival rate of patients.56Many experiments
have confirmed that there aremanymiRNAs related to esophageal neo-
plasms. For example, the methylation ratios of miRNA-34a, miRNA-
34b/c, andmiRNA-129-2 are 66.67%, 40.74%, and 96.30%, respectively,
in esophageal squamous cell carcinoma, which are obviously higher
than those in non-tumor tissues.57 We selected esophageal neoplasm
as an example in the first type of case study, then RFMDA was imple-
mented to predict miRNAs potentially associated with the disease. As a
result, 10 of the top 10 and 43of the top 50predictedmiRNAswere veri-
fied by experimental data in dbDEMC or miR2Disease (see Table 1).

Lymphoma is a cancer that starts in the lymphocytes or white blood
cells.58 These cells play a critical role in the immune system, which
can help us fight against various diseases in the human body.59
Molecular Therapy: Nucleic Acids Vol. 13 December 2018 571
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Table 1. Top 50 miRNAs Associated with Esophageal Neoplasms Were

Predicted by RFMDA Based on Known Associations in the HMDD v.2.0

miRNA Evidence miRNA Evidence

hsa-mir-127 dbDEMC hsa-mir-30a dbDEMC

hsa-let-7g dbDEMC hsa-mir-125b dbDEMC

hsa-mir-222 dbDEMC hsa-mir-7 dbDEMC

hsa-mir-221 dbDEMC hsa-mir-18a dbDEMC

hsa-mir-30c dbDEMC hsa-mir-95 dbDEMC

hsa-mir-146b dbDEMC hsa-let-7i dbDEMC

hsa-mir-372 dbDEMC hsa-mir-181a dbDEMC

hsa-mir-181b dbDEMC hsa-mir-204 dbDEMC

hsa-mir-10b dbDEMC hsa-mir-107 unconfirmed

hsa-mir-93 dbDEMC hsa-mir-451
dbDEMC and
miR2Disease

hsa-mir-16 dbDEMC hsa-mir-122 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-335 unconfirmed

hsa-mir-142 dbDEMC hsa-let-7f dbDEMC

hsa-mir-191 dbDEMC hsa-mir-29a unconfirmed

hsa-mir-9 dbDEMC hsa-mir-139 dbDEMC

hsa-mir-199b dbDEMC hsa-mir-140 dbDEMC

hsa-mir-137 dbDEMC hsa-mir-218 dbDEMC

hsa-mir-20b dbDEMC hsa-mir-135a unconfirmed

hsa-mir-132 dbDEMC hsa-mir-125a dbDEMC

hsa-mir-18b dbDEMC hsa-mir-194 dbDEMC

hsa-mir-449a unconfirmed hsa-mir-29b
dbDEMC and
miR2Disease

hsa-mir-449b unconfirmed hsa-mir-30e dbDEMC

hsa-mir-106a dbDEMC hsa-mir-27b unconfirmed

hsa-mir-373
dbDEMC and
miR2Disease

hsa-mir-193b dbDEMC

hsa-mir-224 dbDEMC hsa-mir-195 dbDEMC

The top 1–25 related miRNAs are recorded in the first column, and the top 26–50
related miRNAs are recorded in the third column. As we can see 10, 19, and 43 of
the top 10, top 20, and top 50 were verified by databases.

Table 2. Top 50 miRNAs Associated with Lymphoma Were Predicted by

RFMDA Based on Known Associations in the HMDD v.2.0

miRNA Evidence miRNA Evidence

hsa-let-7b dbDEMC hsa-mir-199a dbDEMC

hsa-mir-125b unconfirmed hsa-mir-106a
dbDEMC and
miR2Disease

hsa-let-7a dbDEMC hsa-mir-29a dbDEMC

hsa-let-7c dbDEMC hsa-mir-182 dbDEMC

hsa-mir-34a dbDEMC hsa-mir-23b dbDEMC

hsa-let-7e
dbDEMC and
miR2Disease

hsa-mir-15b dbDEMC

hsa-mir-106b dbDEMC hsa-mir-29b dbDEMC

hsa-let-7d dbDEMC hsa-mir-27a dbDEMC

hsa-mir-145
dbDEMC and
miR2Disease

hsa-mir-141 dbDEMC

hsa-let-7i dbDEMC hsa-mir-22 dbDEMC

hsa-mir-143
dbDEMC and
miR2Disease

hsa-mir-195 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-221
dbDEMC and
miR2Disease

hsa-mir-196a dbDEMC

hsa-mir-223 dbDEMC hsa-mir-1 dbDEMC

hsa-mir-127
dbDEMC and
miR2Disease

hsa-mir-32 dbDEMC

hsa-mir-25 dbDEMC hsa-mir-95
dbDEMC and
miR2Disease

hsa-mir-30c dbDEMC hsa-mir-34b dbDEMC

hsa-mir-146b unconfirmed hsa-mir-148a dbDEMC

hsa-let-7f dbDEMC hsa-mir-183 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-10b dbDEMC

hsa-mir-214 dbDEMC hsa-mir-132 dbDEMC

hsa-mir-191 dbDEMC hsa-mir-133a dbDEMC

hsa-let-7g dbDEMC hsa-mir-199b dbDEMC

hsa-mir-34c unconfirmed hsa-mir-335 dbDEMC

hsa-mir-100 dbDEMC hsa-mir-372 unconfirmed

The top 1–25 related miRNAs are recorded in the first column, and the top 26–50
related miRNAs are recorded in the third column. As we can see 9, 18, and 46 of the
top 10, top 20, and top 50 were verified by databases.
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Hodgkin lymphoma and non-Hodgkin lymphoma are twomain kinds
of lymphoma that can happen in both children and adults.60 Recently,
many miRNAs have been verified to be associated with lymphoma in
different mechanisms. For example, plasma miRNA-92a values in
non-Hodgkin lymphomawere about 5%,whichwere far less than those
in heathy subjects.61 Besides, several miRNAs were discovered signifi-
cantly overexpressed in splenic marginal zone lymphoma, including
miRNA-21, miRNA-155, and miRNA-146a.62 We took lymphoma as
another example in the first type of case study, andwe utilized RFMDA
to predict lymphoma-associated miRNAs. Finally, 9 of the top 10 and
46 of the top 50 predicted miRNAs were confirmed by experimental
data in dbDEMC or miR2Disease (see Table 2).

RFMDA was also implemented to predict potential miRNAs for 381
other diseases in the HMDD v.2.0 apart from esophageal neoplasms
572 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
and lymphoma. The whole prediction list is shown in Table S1. The
table includes three kinds of information: the disease, the miRNA,
and the predicted association score.

To prove the ability of our model in predicting new diseases without
known associated miRNAs, we selected lung neoplasm as an example
in the second type of case study. Here, before training the model, we
removed all known associations of lung neoplasms. Then, we ranked
all the 495 miRNAs based on their predicted association scores, and
we validated the top 50 miRNAs in the HMDD v.2.0, dbDEMC,
and miR2Disease. As a result, 10 of the top 10 and 47 of the top 50
miRNAs were confirmed by these databases (see Table 3).



Table 3. Top 50miRNAs Associated with Lung NeoplasmsWere Predicted by RFMDA after Hiding All Known Associations about Lung Neoplasms Based in

the HMDD v.2.0

miRNA Evidence miRNA Evidence

hsa-mir-133a dbDEMC and HMDD hsa-mir-192 dbDEMC, miR2Disease, and HMDD

hsa-mir-150 dbDEMC, miR2Disease, and HMDD hsa-mir-130a dbDEMC and miR2Disease

hsa-mir-196a dbDEMC and HMDD hsa-mir-10a dbDEMC

hsa-mir-210 dbDEMC, miR2Disease, and HMDD hsa-mir-200c dbDEMC, miR2Disease, and HMDD

hsa-mir-182 dbDEMC, miR2Disease, and HMDD hsa-mir-148a dbDEMC and HMDD

hsa-mir-204 miR2Disease hsa-mir-17 miR2Disease and HMDD

hsa-mir-100 dbDEMC and HMDD hsa-mir-146a dbDEMC, miR2Disease, and HMDD

hsa-mir-199b dbDEMC, miR2Disease, and HMDD hsa-mir-206 HMDD

hsa-mir-196b dbDEMC hsa-mir-203 dbDEMC, miR2Disease, and HMDD

hsa-mir-31 dbDEMC, miR2Disease, and HMDD hsa-mir-20a dbDEMC, miR2Disease, and HMDD

hsa-mir-335 miR2Disease and HMDD hsa-mir-26a dbDEMC, miR2Disease, and HMDD

hsa-mir-30a miR2Disease and HMDD hsa-mir-302b dbDEMC

hsa-mir-1 dbDEMC, miR2Disease, and HMDD hsa-mir-224 dbDEMC, miR2Disease, and HMDD

hsa-mir-296 dbDEMC hsa-mir-302c dbDEMC

hsa-mir-205 dbDEMC, miR2Disease, and HMDD hsa-mir-181a dbDEMC and HMDD

hsa-mir-27a dbDEMC and HMDD hsa-mir-221 dbDEMC and HMDD

hsa-mir-21 dbDEMC, miR2Disease, and HMDD hsa-mir-95 miR2Disease and HMDD

hsa-mir-183 dbDEMC, miR2Disease, and HMDD hsa-mir-143 dbDEMC, miR2Disease, and HMDD

hsa-mir-22 miR2Disease and HMDD hsa-mir-32 miR2Disease and HMDD

hsa-mir-200a dbDEMC, miR2Disease, and HMDD hsa-mir-135b dbDEMC and HMDD

hsa-mir-181b dbDEMC and HMDD hsa-mir-135a dbDEMC and HMDD

hsa-mir-146b miR2Disease and HMDD hsa-mir-302a unconfirmed

hsa-mir-107 dbDEMC and HMDD hsa-mir-7 miR2Disease and HMDD

hsa-mir-34c dbDEMC and HMDD hsa-mir-218 dbDEMC, miR2Disease, and HMDD

hsa-mir-372 unconfirmed hsa-mir-491 unconfirmed

The top 1–25 related miRNAs are recorded in the first column, and the top 26–50 related miRNAs are recorded in the third column. As we can see 10, 20, and 47 of the top 10, top 20,
and top 50 were verified by databases.
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We took breast neoplasms (BNs) as an example in the third type of
case study to evaluate the performance of RFMDA using another
miRNA-disease association database. Here, we used the associations
in the HMDD v.1.0 as our training set. The HMDD v.1.0 contains
1,395 known associations between 271 miRNAs and 137 diseases.
The whole prediction process was similar to the first type of case
study. Finally, the data showed that 10 of the top 10 and 48 of
the top 50 predicted miRNAs were confirmed by experimental
data recorded in the HMDD v.2.0, dbDEMC, and miR2Disease (see
Table 4).

DISCUSSION
With the development of experimental technologies and computa-
tional tools, more and more miRNAs have been discovered in recent
years. Various associations between miRNAs and diseases have at-
tracted the attention of researchers. These associations play an impor-
tant role in the prevention, diagnosis, and treatment of complex
human diseases. However, using traditional experimental methods
to find miRNA-disease associations may be expensive and inefficient.
Thus, we proposed an efficient computational model of RFMDA
based on machine learning to predict potential miRNA-disease
associations.

Positive samples and negative samples were selected from known
miRNA-disease associations and unlabeled miRNA-disease pairs,
respectively, according to the HMDD v.2.0. We represented each
miRNA-disease pair as a feature vector by integrating information
of miRNA functional similarity, disease semantic similarity, and
Gaussian interaction profile kernel similarity of miRNA and disease.
RFMDA predicted unknown miRNA-disease associations by labeling
them with scores after implementing the Random Forest algorithm.
Based on LOOCV and 5-fold cross-validation, RFMDA obtained
more excellent performance than lots of previous reliable computa-
tional models, such as MiRAI, MIDP, RWRMDA, MCMDA,
WBSMDA, HDMP, RLSMDA,MaxFlow, and HGIMDA. In addition,
the results of three types of case studies for four complex human
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Table 4. Top 50 miRNAs Associated with Breast Neoplasms Were Predicted by RFMDA Based on Known Associations in the HMDD v.1.0

miRNA Evidence miRNA Evidence

hsa-mir-223 dbDEMC and HMDD hsa-mir-520b dbDEMC and HMDD

hsa-mir-24 dbDEMC and HMDD hsa-mir-23b dbDEMC and HMDD

hsa-let-7b dbDEMC and HMDD hsa-mir-148a dbDEMC, miR2Disease, and HMDD

hsa-mir-126 dbDEMC, miR2Disease, and HMDD hsa-mir-135a dbDEMC and HMDD

hsa-mir-373 dbDEMC, miR2Disease, and HMDD hsa-mir-182 dbDEMC, miR2Disease, and HMDD

hsa-mir-32 dbDEMC hsa-mir-142 unconfirmed

hsa-mir-16 dbDEMC and HMDD hsa-let-7i dbDEMC, miR2Disease, and HMDD

hsa-let-7c dbDEMC and HMDD hsa-mir-128b miR2Disease

hsa-mir-150 dbDEMC hsa-mir-335 dbDEMC, miR2Disease, and HMDD

hsa-mir-29c dbDEMC, miR2Disease, and HMDD hsa-mir-15b dbDEMC

hsa-mir-372 dbDEMC hsa-mir-98 dbDEMC and miR2Disease

hsa-mir-101 dbDEMC, miR2Disease, and HMDD hsa-mir-181a dbDEMC, miR2Disease, and HMDD

hsa-let-7e dbDEMC and HMDD hsa-mir-183 dbDEMC and HMDD

hsa-mir-106a dbDEMC hsa-mir-26a dbDEMC, miR2Disease, and HMDD

hsa-let-7g dbDEMC and HMDD hsa-mir-100 dbDEMC and HMDD

hsa-mir-99b dbDEMC hsa-mir-107 dbDEMC and HMDD

hsa-mir-192 dbDEMC hsa-mir-224 dbDEMC and HMDD

hsa-mir-30e unconfirmed hsa-mir-92b dbDEMC

hsa-mir-199b dbDEMC and HMDD hsa-mir-95 dbDEMC

hsa-mir-27a dbDEMC, miR2Disease, and HMDD hsa-mir-22 dbDEMC, miR2Disease, and HMDD

hsa-mir-130a dbDEMC hsa-mir-196b dbDEMC

hsa-mir-195 dbDEMC, miR2Disease, and HMDD hsa-mir-191 dbDEMC, miR2Disease, and HMDD

hsa-mir-30a miR2Disease and HMDD hsa-mir-18b dbDEMC and HMDD

hsa-mir-203 dbDEMC, miR2Disease, and HMDD hsa-mir-186 dbDEMC

hsa-mir-92a HMDD hsa-mir-424 dbDEMC

The top 1–25 related miRNAs are recorded in the first column, and the top 26–50 related miRNAs are recorded in the third column. As we can see 10, 19, and 48 of the top 10, top 20,
and top 50 were verified by databases.
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diseases (esophageal neoplasms, lymphoma, lung neoplasms, and
breast neoplasms) further demonstrated that RFMDA was a reliable
prediction model.

There were several important factors that contributed to the satisfying
performance of RFMDA. First, RFMDA made full use of biological
information, including known miRNA-disease associations, miRNA
functional similarity, disease semantic similarity, and Gaussian inter-
action profile kernel similarity of miRNA and disease when we con-
structed feature vectors for miRNA-disease pairs. Second, each
miRNA-disease pair was represented by a feature vector, and then a
feature selection method was used to cut down the dimension of
feature vector. The method could select robust features for each
miRNA-disease pair. In this way, RFMDA could efficiently distin-
guish related miRNA-disease pairs from unrelated miRNA-disease
pairs. Finally, the model of RFMDA had a good generalization ability,
which benefitted from utilizing an unbiased estimator for generaliza-
tion error in the Random Forest algorithm and that the parameters of
Random Forest were easy to select.
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However, some limitations still exist in themodel of RFMDA. RFMDA
requires training samples, including bothpositive samples andnegative
samples. As we know, it is difficult or even impossible to obtain reliable
negative samples. We utilized a random selection method to select
negative samples based on unknown miRNA-disease associations.
That may influence the final result of prediction. Besides, in the
HMDDv.2.0, there are only 5,430 knownmiRNA-disease associations,
which are far less than unknown associations between 383 diseases and
495miRNAs. Finally, not just similarity information can be used to the
constructed feature vector, with a deeper understanding of mecha-
nisms both for miRNAs and diseases. Thus, we believe that the perfor-
mance of RFMDA will be much better in the future.

MATERIALS AND METHODS
Human miRNA-Disease Associations

The information of 5,430 known human miRNA-disease associations
between 383 diseases and 495 miRNAs was obtained from the
HMDD v.2.0.63 We constructed an adjacency matrix A with 383
(nd) rows and 495 (nm) columns to briefly store the information of
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known and unknown miRNA-disease associations between 383
diseases and 495 miRNAs. The element A(d(i), m(j)) is equal to 1
when miRNA m(j) had been verified to be associated with disease
d(i), otherwise 0.

miRNA Functional Similarity

Under the assumption that functionally similar miRNAs tend to link
with phenotypically similar diseases, Wang et al.28 developed a
method to compute the miRNA functional similarity score of two
miRNAs. We downloaded the miRNA functional similarity scores
from http://www.cuilab.cn/. Then, we constructed the miRNA func-
tional similarity matrix FS with 495 rows and 495 columns, where the
element FS(m(i), m(j)) denotes the functional similarity score be-
tween miRNA m(i) and miRNA m(j).

Disease Semantic Similarity Model 1

Medical subject headings (MeSH) disease descriptors were down-
loaded from the National Library of Medicine (https://www.nlm.
nih.gov/), which furnished a rigorous system for disease classifica-
tion. In the system, each disease could be described by a directed
acyclic graph (DAG), in which the nodes represent diseases and
each of the direct edges connects two nodes from parent node to
child node. A disease D can be described as DAGD = (D, TD, ED),
where TD is a node set containing disease D and its ancestor diseases
and ED is an edge set containing the corresponding edges.28 Actu-
ally, Xiang et al.64 utilized MeSH gene descriptors to calculate
dissimilarity between genes by the GenoMeSH algorithm. Here,
we computed disease semantic similarity based on MeSH disease
descriptors in another method according to previous study.34 Specif-
ically, we defined the contribution of disease t to the semantic value
of disease D as follows.

�
D1DðtÞ= 1 if t =D
D1DðtÞ=maxfD � D1Dðt0Þ j t0˛children of tg if tsD

(Equation 1)

where D is the semantic contribution decay factor. It will reduce the
contribution of disease t if t is different from D. Besides, the contribu-
tion of disease D to its own semantic value is equal to 1.

Moreover, the semantic value DV1(D) of disease D was defined as
follows.

DV1ðDÞ=
X

t˛TD
DDðtÞ (Equation 2)

The semantic similarity value between disease d(i) and d(j) could be
computed based on a conjecture that two diseases will be more similar
if they share a larger part of their DAGs,

SS1ðdðiÞ; dðjÞÞ=
P

t˛TdðiÞXTdðjÞ

�
D1dðiÞðtÞ+D1dðjÞðtÞ

�
DV1ðdðiÞÞ+DV1ðdðjÞÞ ; (Equation 3)

where SS1 is a disease semantic similarity matrix with 383 rows
and 383 columns and the element SS1(d(i),d(j)) represents the
semantic similarity of d(i) and d(j) based on disease semantic similar-
ity model 1.

Disease Semantic Similarity Model 2

Each disease can be described as a hierarchical DAG in which the
parent node represents a more general disease and the child node rep-
resents a more specific disease. According to disease semantic similar-
ity model 1, the contributions of different diseases in the same layer of
DAGD to the semantic value of D are at a same level. However, these
diseases may appear in other DAGs, and the number of DAGs in
which they appear may be different. Thus, we believe that the contri-
butions of these diseases should be distinguished. The contributions
of diseases appearing in other DAGs more frequently should be less
than specific diseases that appear in fewer DAGs. According to previ-
ous study,34 the contribution of disease t to the semantic value of dis-
ease D can be calculated as follows.

D2DðtÞ= � log

�
the number of DAGs including t

the number of diseases

�
(Equation 4)

The semantic similarity value between disease d(i) and d(j) was calcu-
lated similarly to the disease semantic similarity model 1 as follows,

SS2ðdðiÞ; dðjÞÞ=
P

t˛TdðiÞXTdðjÞ

�
D2dðiÞðtÞ+D2dðjÞðtÞ

�
DV2ðdðiÞÞ+DV2ðdðjÞÞ ; (Equation 5)

where DV2(d(i)) and DV2(d(j)) are semantic values of d(i) and d(j),
respectively, which can be calculated similarly to Equation 2. SS2 is
another disease semantic similarity matrix with 383 rows and
383 columns, and the element SS2(d(i), d(j)) represents the semantic
similarity of d(i) and d(j) based on disease semantic similarity
model 2.

Gaussian Interaction Profile Kernel Similarity for Diseases

Under the assumption that similar diseases are more likely to be
related with functionally similar miRNAs and vice versa, the Gaussian
interaction profile kernel similarity for diseases can be computed.65

We defined binary vector IP(d(u)) to represent the interaction profiles
of disease d(u) by observing whether d(u) is associated with each
of the 495 miRNAs. The binary vector IP(d(u)) is equivalent to
the u-th row vector of adjacency matrix A. Then the Gaussian inter-
action profile kernel similarity between d(u) and d(v) was defined as
follows,

KDðdðuÞ; dðvÞÞ= exp
�� adkIPðdðuÞÞ � IPðdðvÞÞ k 2�

;

(Equation 6)

where parameter ad was implemented to tune the kernel bandwidth,
which was calculated via normalizing the original parameter a0

d as
follows.

ad =a0
d

, 
1
nd

Xnd
i= 1

kIPðdðiÞÞ k 2

!
(Equation 7)
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Gaussian Interaction Profile Kernel Similarity for miRNAs

The Gaussian profile kernel similarity between miRNAs was calcu-
lated similarly to the method of disease Gaussian interaction profile
kernel similarity computation:

KMðmðuÞ;mðvÞÞ= exp
�� amkIPðmðuÞÞ � IPðmðvÞÞ k 2�

(Equation 8)

am =a0
m

, 
1
nm

Xnm
i= 1

kIPðmðiÞÞ k 2

!
; (Equation 9)

where binary vector IP(m(u)) (or IP(m(v))) represents the interaction
profiles of miRNA m(u) (or m(v)) by observing whether m(u) (or
m(v)) is associated with each of the 383 diseases and is equivalent
to the u-th (or v-th) column vector of adjacency matrix A.

Integrated Similarity for Diseases

To make full use of disease semantic similarity 1, disease semantic
similarity 2, and disease Gaussian interaction profile kernel similarity,
an integrated disease similarity matrix SD was constructed by inte-
grating the above similarities. According to previous study,37 the
element SD(d(u), d(v)) represented integrated similarity between dis-
ease d(u) and d(v) and was defined as follows,
SDðdðuÞ; dðvÞÞ=
8<
:

SS1ðdðuÞ; dðvÞÞ þ SS2ðdðuÞ; dðvÞÞ
2

if dðuÞ and dðvÞ have semantic similarity

KDðdðuÞ; dðvÞÞ otherwise

; (Equation 10)
where d(u) and d(v) have semantic similarity if both d(u) and d(v)
have their own DAGs.

Integrated Similarity for miRNAs

We integrated miRNA functional similarity and miRNA Gaussian
interaction profile kernel similarity in a similar way into the inte-
grated miRNA similarity. Thus, the integrated similarity between
miRNA m(i) and m(j) was calculated as follows.
SMðmðiÞ;mðjÞÞ=
�
FSðmðiÞ;mðjÞÞ if mðiÞ and mðjÞ have functional similarity
KMðmðiÞ;mðjÞÞ otherwise

(Equation 11)
RFMDA

The RFMDAmodel was constructed based on RandomForest for pre-
dicting miRNA-disease associations, which can be divided into four
steps (see Figure 3;motivated by the study of Cheng et al.50): (1) select-
ing positive samples and negative samples; (2) constructing feature
vectors to represent samples; (3) reducing the dimension of feature;
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(4) constructing the final prediction model and predicting miRNA-
disease associations. The details of each step are described below.

First, we constructed a training sample set by selecting both positive
samples and negative samples according to the ratio of 1:1. The 5,430
known associated miRNA-disease pairs were extracted from the
HMDD v.2.0 to compose the positive sample set. Based on the
assumption that if there is no confirmed association between a
miRNA and a disease, then the miRNA and the disease constitute a
negative sample, we randomly selected 5,430 negative samples to
compose a negative sample set. The process of randomly selecting
negative samples can be roughly divided into three steps. Above all,
we randomly selected one of the 383 diseases; then we randomly
selected a miRNA from the 495 miRNAs; finally, the disease and
the miRNA constitute a negative sample if the miRNA-disease pair
isn’t a member of the 5,430 known miRNA-disease associations.
We repeated this process until 5,430 negative samples were obtained.
Our training sample set consisted of positive and negative sample sets.

Second, we represented each miRNA-disease pair by a feature vector.
The semantic similarity 1, semantic similarity 2, and Gaussian inter-
action profile kernel similarity between each disease can be calculated.
For each disease, there were 383 integrated similarity values. We used
integrated semantic similarity values as features to represent each dis-
ease by a 383-dimensional feature vector. For example, we repre-
sented disease d(u) by a feature vector,

SDðdðuÞÞ = ða1; a2; a3; .; a383Þ; (Equation 12)

where SD(d(u)) is the u-th row vector of matrix SD, and av is the in-
tegrated similarity value between disease d(u) and d(v).
For each miRNA, we could obtain 495 integrated similarity
values through integrating miRNA functional similarity and
Gaussian interaction kernel profile similarity between the miRNA
and all 495 miRNAs, including itself. A miRNA m(i) could be
represented by a 495-dimensional feature vector in a similar way
to disease,



Figure 3. Flowchart of RFMDA Model to Predict Potential Associations between miRNAs and Diseases
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SMðmðiÞÞ = ðb1; b2; b3; .; b495Þ; (Equation 13)

where SM(m(i)) is the i-th column vector of matrix SM, and bj is the
integrated similarity value between miRNA m(i) and m(j).

Therefore, each miRNA-disease sample could be described by an
878-dimensional vector based on integrated similarity for the miRNA
and integrated similarity for the disease,

F = ðSMðmðiÞÞ; SDðdðuÞÞ Þ (Equation 14)

F = (f1, f2, ., f495, ., f878), where (f1, f2, ., f495) represents the 495
integrated similarity values of the miRNA, and (f496, f497,., f878) rep-
resents the 383 integrated similarity values of the disease. Then we
normalized fi to ffi as follows,

ffi =
fi � fmin

fmax � fmin
; (Equation 15)

where fmax and fmin are the maximum and the minimum of all fi (i = 1,
2, ., 878).

Third, we reduced the dimension of feature vectors to reduce the
computational cost and obtain more effective features. Our purpose
was to select those discriminative features that either frequently
appear in the positive sample set but seldom appear in the negative
sample set or frequently appear in the negative sample set but seldom
appear in the positive sample set. We used ffj(i) to denote the i-th
feature of j-th vector and let Fp(i) and Fn(i) respectively represent
the feature occurrence frequency in the positive sample set and nega-
tive sample set. Fp(i) and Fn(i) can be computed as follows,

FpðiÞ=
XPn
j= 1

ffjðiÞ vector j˛the positive sample set (Equation 16)

FnðiÞ=
XNn
j= 1

ffjðiÞ vector j˛the negative sample set; (Equation 17)

where Pn and Nn are the number of positive samples and negative
samples, respectively.

Fp(i) and Fn(i) are futher normalized to FFp(i) and FFn(i) in a similar
way to Equation 15. Then the final score of every feature can be calcu-
lated by

ScoðiÞ= FFpðiÞ
FFnðiÞ i= 1; 2; :::; 878: (Equation 18)

To achieve our purpose, Sco(i) can be utilized to judge whether the
i-th feature is effective, as Sco(i) measures the relative enrichment
of the i-th feature in the positive samples over the negative samples.
For a feature i, when FFp(i) in P is large but FFn(i) in N is small,
Sco(i) will be large. On the contrary, Sco(i) will be small when
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FFp(i) in P is small but FFn(i) in N is large. The most effective feature
has the largest or smallest score. In this study, we cut down the dimen-
sion of feature vector from 878 to 100. Thus, 50 features with the
largest scores and 50 features with the smallest scores were selected
to represent each sample by a 100-dimensional vector, which could
improve the ability of our model to distinguish positive miRNA-dis-
ease associations from negative associations.

Finally, RandomForestRegressor, an algorithm package of Random
Forest, was implemented to train the prediction model by training
sample set. More specifically, each of the samples in the training set
was represented by a 100-dimensional vector according to step 2
and step 3. Each sample in the positive sample set was given a label
of 1, and each sample in the negative sample set was given a label
of 0. Then we put these training samples’ data into the package of
Random Forest. After training, we obtained a prediction model that
could infer potential miRNA-disease associations by scoring
miRNA-disease samples. The higher score of a miRNA-disease sam-
ple indicates that the miRNA is more likely to be associated with the
disease. It’s worth noting that the max_features, n_estimators, and
min_samples_leaf, main parameters of RandomForestRegressor,
were set to 0.2, 100, and 10, respectively, according to empirical data.
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