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&e stem characteristics of tumor cells have been proposed in theory very early, and we can use the signature of gene expression to
speculate the stemness of tumor cells. However, systematic studies on the stemness of breast cancer as well as breast cancer
subtypes, and the relationship between stemness and metastasis and prognosis, are still lacking. In the present research, using the
transcriptome data of patients with breast cancer in the TCGA database, a stemness prediction model was utilized to derive the
stemness of the patients’ tumors. We compared the stemness values among different subtypes and the differences with metastasis.
COX regression was employed to evaluate the correlation between stemness value as well as prognosis. Using the Lasso-penalized
Cox regression machine learning model, we obtained the gene signature of the basal subtype that is related to stemness and can
also predict the prognosis of the patient. Patients can be stratified into two groups of high and low stemness, corresponding to
good and poor prognosis. Based on further prediction of tumor infiltration by CIBERSORTand prediction of drug response by a
connectivity map, we found that the difference in stemness between these two groups is associated with the activation of tumor-
killing immune cells and drug response. Our findings can promote the understanding and research of subtypes of basal breast
cancer and provide corresponding molecular markers for clinical detection and therapy.

1. Introduction

According to statistics from global tumor data in 2018,
breast cancer has the highest incidence and mortality among
women [1]. With the development of science and tech-
nology, the ability to identify and diagnose breast cancer has
significantly improved, and the past anatomy-based treat-
ment is shifting to diagnosis and treatment through different
biological mechanisms. Gene array technology divides
breast cancer into different biological subtypes. New sys-
temic drugs have significantly improved survival rates and
are expected to enable patients with metastatic tumors to
survive longer.

&ere are five subtypes of breast cancer, LumA, LumB,
Basal, HER2, and normal. Among them, LumA and LumB
subtypes have many types of mutations in the key genes, and

the overall gene mutation rate of Basal and HER2 subtypes is
higher than others. Different subtypes have different mo-
lecular expression profiles. According to the gene expression
in cells, we can diagnose and treat patients accordingly. In
terms of relationship with prognosis, Luminal has a better
overall prognosis, and HER2 subtype has a worse overall
prognosis and will relapse early. &e Basal subtype has the
worst prognosis. Moreover, as it is triple-negative, the only
treatment option is chemotherapy.&e normal subtype has a
prognosis between Luminal and Basal and is not sensitive to
chemotherapy [2].

Stemness, considered as the capacity to self-renew and
differentiate from the precursor cells, was initially explored
in normal stem cell-related studies, which has the capability
to produce all cell types in adult organisms [3]. A significant
proportion of genomic, proteomic, epigenomic, and
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transcriptomic markers have been shown to be related to
cancer stemness in recent years. Over the last ten years, &e
Cancer Genome Atlas (TCGA) has shed light on the mo-
lecular environments of primary tumors by delivering
thorough molecular profiles that include epigenomic,
transcriptomic, genomic, and (post-translational) proteomic
properties [4, 5], as well as clinical and histopathological
annotations. &e materials generated on the basis of the
TCGA data enable us to thoroughly examine the cancer stem
in a large sample of breast tumors and their subtypes.

&e objective of this study was to perform cell stemness
calculations using TCGA breast cancer data and to explore
the relationship between cell stemness and prognosis. After
subtyping the highly relevant factors, the signatures that can
predict prognosis are finally calculated. &e biological sig-
nificance and clinical value of these predicted signatures are
analyzed to provide a theoretical basis and reference basis for
further research.

2. Materials and Methods

2.1. Collection and Processing of Data

2.1.1. Breast Cancer Data. We acquired breast cancer
clinical data through the GDC Data Portal with a total of
1097 valid patients and collected clinical source data as
follows: clinical.tsv containing the latest updated prognostic
information and the more detailed information was in
https://nationwidechildrens.org_clinical_patient_brca.txt.
In addition, molecular subtypes of breast cancer samples
were obtained through TCGAbiolinks, and those with

complete clinical and subtype information (n� 1095) were
selected for subsequent integration and analysis (Table 1).
&rough TCGAbiolinks, the expression data of breast cancer
samples including mRNA and lncRNA were obtained.

2.1.2. Stem Cell Data. &e Synapse is the portal for the
Progenitor Cell Biology Consortium (PCBC), an NHLBI
sponsored endeavor to discover and define progenitor cell
lineages, to govern the development of stem and progenitor
cells into ideal cell fates, and to create innovative ways to
resolve certain problems when these cells are transplanted.
Stem cell gene expression, methylation, SNV (copy-number
variation), and other information are stored on the Synapse
database. Synapse provides a variety of interfaces, and re-
searchers can obtain them on the platform through R,
Python, and other software and share these data.

2.2. Calculate Sample Stemness Index According to mRNA
Expression. Malta et al. [3] developed a prediction model by
means of the OCLR algorithm on pluripotent stem cell
samples from the PCBC dataset [6, 7] to develop a stemness
signature, which was then used to determine the mRNAsi
value. &ere are 11 774 genes in the expression profiles
derived from the mRNA expression-based signature. More
information on the stemness indices and the flowchart that
was used in the present research to produce the afore-
mentioned indices are available on the following website:
https://bioinformaticsfmrp.github.io/PanCanStem-Web.
&e OCLR algorithm was used to calculate the eigenvector
weights for the RNA expression matrix, respectively. &e

Table 1: Clinicopathological characteristics in each subtype of breast cancer.

Items Level
Subtype

Basal Her2 LumA LumB Normal
N 183 81 559 208 40

Race (%) Nonwhite 71 (40.3) 33 (46.5) 82 (15.8) 46 (25.8) 11 (28.2)
White 105 (59.7) 38 (53.5) 438 (84.2) 132 (74.2) 28 (71.8)

Age (median (IQR)) 54.00 (48.00,
62.50)

57.00 (50.00,
64.00)

61.00 (49.00,
69.00)

58.50 (50.00,
68.25)

53.00 (46.00,
62.50)

Pathologic_T (%)

T1 37 (20.3) 17 (21.0) 175 (31.4) 37 (17.8) 11 (27.5)
T2 121 (66.5) 52 (64.2) 291 (52.2) 135 (64.9) 18 (45.0)
T3 18 (9.9) 7 (8.6) 74 (13.3) 24 (11.5) 11 (27.5)
T4 6 (3.3) 5 (6.2) 17 (3.1) 12 (5.8) 0 (0.0)

Pathologic_N (%)

N0 117 (63.9) 29 (37.7) 255 (46.5) 84 (41.2) 21 (53.8)
N1 46 (25.1) 28 (36.4) 194 (35.4) 77 (37.7) 8 (20.5)
N2 14 (7.7) 11 (14.3) 56 (10.2) 33 (16.2) 4 (10.3)
N3 6 (3.3) 9 (11.7) 43 (7.8) 10 (4.9) 6 (15.4)

Pathologic_M (%) M0 159 (98.1) 70 (95.9) 449 (98.0) 178 (97.3) 33 (97.1)
M1 3 (1.9) 3 (4.1) 9 (2.0) 5 (2.7) 1 (2.9)

Pathologic_stage (%) Stage I-II 151 (83.9) 56 (70.9) 410 (75.4) 142 (68.9) 28 (70.0)
Stage III-IV 29 (16.1) 23 (29.1) 134 (24.6) 64 (31.1) 12 (30.0)

ER_status_by_IHC (%) Negative 157 (89.2) 47 (62.7) 11 (2.0) 3 (1.5) 14 (37.8)
Positive 19 (10.8) 28 (37.3) 526 (98.0) 194 (98.5) 23 (62.2)

PR_status_by_IHC (%) Negative 163 (93.7) 62 (80.5) 54 (10.1) 39 (19.8) 17 (45.9)
Positive 11 (6.3) 15 (19.5) 480 (89.9) 158 (80.2) 20 (54.1)

HER2_status_by_IHC
(%)

Negative 114 (92.7) 13 (20.6) 304 (82.8) 99 (74.4) 20 (87.0)
Positive 9 (7.3) 50 (79.4) 63 (17.2) 34 (25.6) 3 (13.0)
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mRNAsi stem cell index of breast cancer samples was cal-
culated based on the obtained RNA expression data of breast
cancer samples and the weights of eigenvectors calculated
before. &e stemness indices were utilized to stratify the
breast cancer samples, which were then employed for the
integrative analysis.

2.3. Calculating the Relationship between Breast Cancer
Stemness Index and Clinical Features. In order to clarify the
correlation between the stem index of breast cancer and the
types and metastasis status, we compared mRNAsi of dif-
ferent subtypes (LumA, LumB, Basal, Normal, Her2 sub-
types) and metastasis (non-metastasis) status. Assessing
mRNAsi differences between groups to see if our calculated
breast cancer stem cell index correlates with clinical traits of
the disease.

&e stemness index was treated as an independent
continuous covariate in the present research. Using a three-
phase approach, we investigated the correlation between
stemness indices and OS in breast cancer. Specifically, we
utilized the univariate Cox proportional hazard regression to
compute hazard ratios (HRs) for overall survival (OS). Some
of the parameters included mRNAsi gender, metastatic
status, tumor histology, age, and subgroup. &e results of
Cox univariate regression showed the clinical indicators of
breast cancer associated with the patients’ prognosis. In
addition, patients were divided into high- and low-risk
groups according to their mRNAsi levels, which were ob-
tained utilizing the “cutp” module of the R package
“survMisc” (https://cran.r-project.org/web/packages/
survMisc) with default settings, and the differences in
survival among subjects with elevated mRNAsi and those
with reduced mRNAsi were assessed utilizing Kaplan–Meier
(K–M) survival plots. Finally, only patients in the Basal
subgroup were shown to have a statistically significant
survival difference between those with higher mRNAsi and
those with lower mRNAsi.

With the aid of the “createDataPartition” module of the
R package “caret” (https://cran.r-project.org/web/packages/
caret), we were able to divide the Basal subgroup dataset at
random into two parts, namely, the 70 percent training set
and the 30 percent validation set. We then utilized non-
default parameters for the “createDataPartition” module as
follows: P � 0.7 and list� FALSE. &e Chi-square test for
categorical variables and Kruskal–Wallis test for continuous
variables were utilized to examine the distributions of
clinical features across the training set as well as the vali-
dation set. In the training set, we divided the gene expression
data into mRNA, lncRNA, and performed Cox univariate
regression, respectively. Significantly related genes were
selected, and then the correlation between their expression
and the stem cell index of samples was calculated.&ose with
correlation coefficients cor >0.2 and correlation test P-value
<0.05) were selected as candidate genes.

2.4.Lasso toBuild theBestMultivariateCOXModel. &is step
uses machine learning to further filter the candidate
lncRNAs and mRNAs, to construct the best gene predicting

panel in the Basal subtype. We calculated the lncRNA panel
and mRNA panel risk score for each sample based on ex-
pression and multiple regression coefficients. &e equation
for determining risk scores is shown below:

Riskscore � 
n

i�1
βi
∗
xi. (1)

&e samples were divided into high index group and low
index group according to the risk index (only 2 miRNAs
were not screened by Lasso, they were divided into high
expression group and low expression group according to
their expression levels and drawn, respectively),
Kaplan–Meier survival analysis was performed, and survival
curves were drawn. Furthermore, based on the risk index of
mRNA and lncRNA, ROC curves of three-year, five-year,
and ten-year survival periods were drawn. We explored
whether the models were accurate predictors based on the
area under the curve (AUC) of a time-dependent receiver
operating characteristic (ROC) study.

2.5. Assessment of Relationships between Stemness Indices and
the Immune Landscape. By means of CIBERSORT
(a deconvolution algorithm according to gene expression)
(https://cibersort.stanford.edu/) [8], we calculated the rel-
ative abundance of the immune cells in the sample that was
received. Using ESTIMATE [9], we calculated individual
immunity scores to anticipate the level of infiltration of
immune cells in each basal sample. &e association between
mRNAsi and immunological score was also analyzed.

2.6.CMapPredictmRNAsi-RelatedDrugs. &e newly revised
CMap (September 2017) [10] is a data-driven and systematic
technique for uncovering associations among genes,
chemicals, and biological circumstances, to screen for
prospective substances that could target pathways associated
with breast cancer stemness. Using the CMap database, a
sum of 42080 perturbation factors were analyzed and 473647
reference signatures were generated. &e CMap workflow
consists of querying the CMap reference signature dataset
(a LISTof DEGs associated with the biologic state of interest)
using a pattern-matching algorithm. &e scores fell within
the range of −100 to 100. Molecular compounds are ordered
on the basis of their proportion to produce the most similar
as well as the most opposite compounds.&e website https://
clue.io provides the CMap data as well as relevant tools. &e
“lmFit” module of the R package “limma” was utilized to
determine the DEGs between the Basal subgroup samples
that had elevated mRNAsi and those with reduced mRNAsi
on the basis of default settings [11]. A number of genes that
had differential expression across Basal subgroup samples
with elevated mRNAsi and reduced mRNAsi was compiled,
and the topmost 300 genes (150 of which were upmodulated
and 150 of which were downmodulated) were chosen for
further investigation in the CMap database. Compounds
having an enrichment score of ≤−95 were identified as
promising chemotherapeutic drugs for the treatment of
basal breast cancer.
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2.7. Statistical Analysis. In the present research, all statistical
analyses were conducted utilizing R (version: 3.4.1) (R Core
Team, R Foundation for Statistical Computing, Vienna,
Austria). In the case when using the default settings of the R
package “gelnet,” the OCLR technique was applied suc-
cessfully [12]. We calculated the P values for the correlations
between stemness indices and the immune milieu utilizing
Pearson’s correlation coefficient tests, followed by multiple
testing utilizing the BH technique. Statistical significance
was reached when the value of P was less than 0.05.

3. Results

3.1. Breast Cancer Stemness Indices Predicated on mRNA
Expression. On the basis of the analysis of the relationship
between stemness index and survival of patients, there is an
overall significant difference among each subtype
(P � 0.0374) (Figure 1(a)). We also found the Basal subtype
has higher mRNAsi compared with others, and significant
different mRNAsi among them (P< 0.05). Significant dif-
ferences were not observed between metastatic (M0) and
nonmetastatic (M1) samples, as well as in each subtype of
M0 and M1 samples (Figures 1(b)–1(d)). Based on their
specific mRNAsi values (ranging from low to high stemness
index), we graded the breast cancer samples and searched for
correlations with any demographic/molecular/clinical
characteristics that were associated with either a higher or
lower stemness index (Figure 1(e)).

3.2. Associations between Breast Cancer Stemness Indices and
Clinical Outcome. Based on sample survival data, a uni-
variate Cox regression analysis was conducted to test the
association between clinical indicators and patients’ overall
survival (OS). &e forest chart is displayed in Figure 2(a). To
address the effect of mRNAsi on survival, we did the K–M
plots by splitting all patients or each subtype sample into low
and high mRNAsi groups (Figures 2(b)–2(g)). &e results
showed that mRNAsi exhibited a statistically significant
impact on OS for Basal patients (HR, 0.32; P � 0.01). &en,
in basal patients, we conducted cox regression analysis for
gene expression and survival. All genes with a significant
survival relationship (P< 0.05) were subjected to correlation
analysis with mRNAsi, and the genes with significant cor-
relation (|cor|> 0.2, P< 0.05) were selected for statistical
analyses. As a result, we got 2 miRNAs, 111 lncRNAs, and
389 mRNAs (Tables S1–S3).

After the lasso machine learning on candidate 389
mRNA and 111 lncRNA, the mRNA panel (FAM72C,
ZFP36, GRASP, FOSB, SERPINE1, P2RX6), the lncRNA
panel (AC104260.1, AC126177.4, LINC02511,
DKFZp779M0652, AC025040.1), and the miRNA panel
(hsa-mir-143 and hsa-mir-221) for Basal breast cancer were
identified. Using univariate (Figures 3(a)–3(c)) and multi-
variate (Figures 3(d)–3(f )) cox regression beta index anal-
ysis, the expression of majority genes in each panel
contributed to the prognosis of patients with Basal breast
cancer (P< 0.05). Combined with gene expression and beta
index of multivariate cox regression, we calculated the risk

scores (RS) for each sample and then separated them into
two groups in each panel, high RS and low RS. Based on the
different RS level, three-year, five-year, and ten-year survival
ROC curves were drawn for each panel (Figures 4(a)–4(c)).
&e prediction performance of the prognostic model was
evaluated by computing the AUC of the ROC curves. With
regard to the mRNA set, the AUCs concerning the 6-mRNA
biomarker prognostic model were 0.748, 0.766, and 0.843 for
the 3-, 5-, and 10-year survival times (Figure 4(a)). In the
lncRNA set, AUCs concerning the 5-lncRNA biomarker
prognostic model were 0.755, 0.822 and 0.547 for the 3-, 5-,
and 10-year survival times (Figure 4(b)). For the 2 miRNA-
based prognostic model, the AUCs were 0.575, 0.568, and
0.618 for the 3-, 5-, and 10-year survival (Figure 4(c)). &en,
the K–M plot was produced between low and high-risk score
groups. &e results showed that the risk model of mRNA,
lncRNA, and miRNA panels were all significantly related to
the survival of Basal patients (Figures 4(d)–4(f )). Taken
together, mRNAsi-related genes were independent factors
affecting the prognosis of Basal breast cancer.

3.3. Relationship between Stemness Indices and the Immune
Milieu. We evaluated associations between specific kinds of
immune cells and mRNAsi in order to better understand the
relationships between stemness in Basal patients and the
tumor immune milieu in the present study. CIBERSORT
was used to calculate the relative abundance of immune cells
in each sample based on the expression profile data of the
sample (Supplementary Figure S1), and the corresponding
immune index of each sample was obtained from ESTI-
MATE. Combining the relative abundance and immune
score of the immune cells of each subtype sample, the re-
lationships between mRNAsi index and immune cell, four
immune cell activation status, and immune score in different
subtypes were investigated. Out of all other subtypes of
breast cancer, Her2 enrichment and Normal subtypes have
higher immune activity, while the LumA subtype has lower
immune activity. Among them, Basal subtype mRNAsi has a
high positive correlation with the activation status of T cells
and NK immune cells and a negative correlation with the
resting or naive immune cells (Figures 5(a)–5(b)).

3.4. Analysis of the Connectivity Map Reveals New Potential
Drugs that Target the Basal Stemness Signature. For the
purpose of developing efficacious drugs that can target the
pathways correlated with Basal stemness, we utilized mRNA
expression signatures to query the connectivity map (CMap)
database, followed by the analysis of differential expression
in low or highmRNAsi values on breast cancer subgroups. A
total of 1,308 potential drugs were obtained, of which the top
ten most relevantly positive-regulated drugs were HC toxin,
cytochalasin B, dopamine, oxamic acid, cantharidin, dex-
verapamil, corynanthine, GW-8510, verteporfin, and eto-
fenamate. &e top ten most relevantly negative-regulated
drugs were 5286656, demecolcine, 2-deoxy-D-glucose,
sulindac sulfide, tyrphostin AG-1478, DL-PPMP, 5186324,
benzbromarone, BW-B70C, and topiramate (Figure 5(c)).
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Figure 1: Survival for patients in the subtypes and clinical characteristics correlated with the mRNA expression-based stemness index
(mRNAsi) in breast cancer. (a) Patients’ survival curves in distinct the subtypes for breast cancer. (b) Individual sample boxplots of mRNAsi
classified by subtypes. (c) Individual mRNAsi boxplots classified by metastatic status. (d) Individual mRNAsi boxplots for each subtype
classified by metastatic state. (e) Summary of the known associations between clinical and molecular characteristics (subtype, stage, race,
pathologic TNM stage, and age) and mRNAsi in breast cancer.
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Figure 2: Association between OS of patients and mRNAsi. &e K–M survival curves depict the OS rate for patients with low- and high
mRNAsi, classified by the ideal threshold. (a) Cox regression studies of univariate data on clinical andmolecular characteristics related to OS
in MB patients. (b) K–M curves depicting the OS of all patients in breast cancer having a low or high mRNAsi. (c–g) K–M curves depicting
the OS of patients respectively in subtype Basal (c), Her2 (d), LumB (e), LumA (f), and Normal (g).
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4. Discussion

Using a stemness index model-based OCLR machine-
learning algorithm, we calculated the stemness index of
breast cancer samples in the TCGA database. With the aid of
the stemness index, we compared the differences in stemness
characteristics of distinct breast cancer subtypes and ana-
lyzed the association between breast cancer stemness and
patient survival, as well as tumor immune invasion. We
found that the stemness of different subtypes is significantly
different. Although the survival time of patients within
different subtypes is significantly different, we found no
substantial association between the stemness index and the
overall survival of patients in all breast cancer samples.
Stemness also has no significant correlation with the pa-
tient’s stage or metastasis. &en, we stratified the patients
according to the subtype and found that the tumor stemness
index in the Basal subtype is relatively high. At the same
time, there are two groups of patients with low and high
stemness only in the Basal subtype, which have significant
differences in overall survival. Patients with high stemness
have a longer overall survival, and patients with low
stemness have a short overall survival. &ese suggest that the
Basal subtype has higher internal heterogeneity and com-
plexity in tumor stemness than other subtypes.

Stemness refers to cells with the capacity for self-renewal
and differentiation, while tumor cells lose their original
cellular characteristics during progression and alienate into
poorly differentiated and highly proliferating cells, somehow
similar to normal stem cells. It is generally believed that these
stem cells with elevated stemness have a high likelihood of
being migrated to distant organs due to high proliferation
and invasion, which will result in an unfavorable prognosis

of patients [13, 14]. However, our study found that higher
stemness tumors are not as malignant. &e breast stemness
index of each subtype in breast cancer is not significantly
correlated with the presence or absence of distant metastasis
of tumors, and the prognosis of patients with high stemness
in Basal is better. &is is contrary to the oncogenic dedif-
ferentiation in most malignant tumors, which tends to be
stem-like. In fact, the association between high dryness and a
good prognosis is not identified in all breast tumors. &e
stemness value of the Basal subtype is relatively high, al-
though we know that the prognosis of patients with basal
subtype is usually not good. To be noted, the two groups of
high and low stemness we found here are stratified in Basal.
&is difference between high and low can only suggest that
there are different types of Basal subtypes, and the stem cell
genes signature could be applied in this classification. &en,
we found that this stemness signature is actually related to
tumor immune cell infiltration. &e prognosis of the patient
may be due to the difference in infiltrated immune cells.

With respect to the Basal subtype, we found that the
stemness index was substantially correlated with the status of
tumor immune infiltration. A strong positive association
was observed between the ratio of stemness index and
follicular helper T cells, also known as antigen-experienced
CD4+T cells. Moreover, the stemness index was signifi-
cantly correlated with immune cells participating in tumor
killing, such as CD8+Tcells, macrophageM1 type, activated
NK, DC, and CD4+memory T cells, while being negatively
correlated with macrophage M2 type and naı̈ve B and
CD4+Tcells.&is suggests that tumors with a high stemness
index tend to trigger activated immune cells infiltration,
which has the tumor-killing effect. &is result also explains
why we found that patients with higher stemness have a
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Figure 3: Univariate andmultivariate cox regression beta index analysis inmRNA, lncRNA, andmiRNA panel. (a–c) Predictive significance
of each gene in mRNA, lncRNA, and miRNA panel using univariate cox regression beta index analysis. (d–f) Predictive significance of each
gene in mRNA, lncRNA, and miRNA panel using Multivariate cox regression beta index analysis.
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better prognosis than patients with lower stemness. Our
findings show that the differentiation of M1 and M2 is
significantly related to the stemness of the tumor. Patients
with high tumor stemness have a high proportion of M1
infiltration, long overall survival, and patients with low
tumor dryness have a high M2 infiltration ratio and poor
prognosis. &is is completely in line with the findings of
earlier studies on tumor immunity [15–17].

Comparing the two groups of Basal subtypes with high
and low stemness, we first identified the related mRNA and
lncRNA and then screened and constructed a prognostic
model based on 6 mRNA or 5 lncRNA, which can be a very
good predictor for the patient’s overall survival. It indicates
that the expression of genes in this model is related to the
tumor’s stemness, and it can be associated with patients’
prognoses. &e clinical examination of these genes may be

utilized to anticipate the patients’ prognoses. Among these
genes, ZFP36 is negatively correlated with drug resistance
and proliferation [18]. FOSB is a transcription factor that
affects tumor differentiation, proliferation, and metastasis in
breast cancer [19]. SERPINE1 affects metastasis by affecting
EGFR signaling [20]. To our knowledge, these lncRNAs have
not been reported to be associated with breast cancer. &e
genes identified in these prognostic models can be used as
new molecular markers for Basal subtyping of breast cancer.

We used the CMap database to analyze the differentially
expressed genes of two groups of patients with high and low
stemness whose prognosis is significantly different in the
Basal subtype and obtained some drug compounds that can
respond to these gene expression changes. Most of these
compounds that are positively related to stemness are drugs
that inhibit tumor metastasis and progression [21–25],
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Figure 4: Predictive significance of the mRNA-, lncRNA-, and miRNA-based prognostic model in Basal subgroup patients. (a–c) Time-
dependent ROC curves illustrated the prediction power of the mRNA-, lncRNA-, and miRNA-based on the prognostic model in Basal
patients. (d–f) K–M curves for Basal patients showed the prediction power of the mRNA-, lncRNA-, and miRNA-based on risk scoring
prognostic model.
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Figure 5: Continued.
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indicating that these patients with high stemness are under
the effective control of tumor metastasis and progression.
Compounds that are negatively related to stemness are
generally not used for tumor therapy, indicating that pa-
tients with low stemness need more effective tumor drug
treatment to inhibit tumor progression.

Of course, this study also has some limitations. First, most of
the samples in this study are Caucasian and African American
(69.3%), so whether our results are also applicable to large
sample data of other populations needs more data to support.
Second, regarding the genes involved in our prognosismodel, we
only speculate that the function of these genes is associated with
the occurrence and progression of breast cancer, and we need to
add more experimental evidence to prove their molecular
mechanism. &ird, although we can explain why high-stemness
tumor tissue has a better prognosis in the perspective of immune
infiltration, more single-cell breast cancer data are still needed to
confirm that stem-like cells in breast tumor tissues will induce or
recruit more activated immune cells.

5. Conclusions

&e present research is the first to refine the concept of
tumor stem cell index into different subtypes of breast
cancer. Among the subtypes, Basal is the one with the
most closely related stem cell index and survival. We
identified a stratification of Basal subtypes that are not
only related to the stemness but also the prognosis and
built a 6 mRNA-based or 5 lncRNA-based prognostic
models for patients’ overall survival. Further tumor im-
mune infiltration and drug analysis confirmed that the
two groups have different immune microenvironments
and that different tumor drugs should be applied for their
treatment. &e classification signature in the present re-
search might be used to improve individualized prediction
of the prognosis of basal breast cancer and serve as a
promising biomarker for basal breast cancer prognosis
and responsiveness to differentiation treatments in clin-
ical practice.
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