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Abstract

In liver fibrosis, conversion of fibroblasts to profibrogenic myofibroblasts significantly drives
the development of the disease. A crucial role of cyclic adenosine monophosphate (CAMP)
in regulation of fibroblast function has been reported. Increase in cAMP levels has been
found to decrease fibroblast proliferation, inhibit their conversion to myofibroblast, and stim-
ulate their death. cAMP is generated by adenyl cyclase (AC), and degraded by cyclic nucle-
otide phosphodiesterase (PDE). In this study, the antifibrotic effect of a PDE inhibitor,
cilostazol (Cilo), on a rat model of liver fibrosis induced by thioacetamide (TAA) was investi-
gated. Four groups of rats were used; the first group received the vehicles and served as
the normal control group, while liver fibrosis was induced in the other groups using (TAA,
200 mg/kg/biweekly for 8 successive weeks, ip). The last two groups were treated with Cilo
(50 and 100 mg/kg/day, po, respectively). Induction of liver fibrosis in TAA-treated rats was
observed as evidenced by the biochemical and histopathological findings. On the other
hand, a potent antifibrotic effect was observed in the groups treated with Cilo, with prefer-
ence to the higher dose. In these groups, a significant increase in the liver content of cCAMP
was demonstrated that was accompanied by reduction in the hepatic expression of key
fibrogenic cytokines, growth factors, and inflammatory biomarkers, including interleukin-6,
tumor necrosis factor-alpha, nuclear factor kappa B, and transforming growth factor-beta as
compared to TAA group. Moreover, amelioration of TAA-induced oxidative stress and apo-
ptosis in the liver has been observed. These findings reveal the antifibrotic effect of Cilo
against TAA-induced liver fibrosis in rats, and suggest regulation of CAMP pathway, together
with the modulation of oxidative stress, inflammation, and apoptosis as mechanistic cas-
sette underlines this effect.
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Introduction

Liver fibrosis is a major health problem that threatens life and results in a significant percent
in morbidity and mortality [1]. It is a reversible wound-healing response that occurs as a result
of acute or chronic liver injury. The pathogenesis of liver injury is complex and it is character-
ized by the deposition of extracellular matrix (ECM) [2-4]. All liver cell types has their own
role in the development of liver fibrosis, and it is now believed that there is a cross talk between
cells of different types in the process of fibrosis through specific mediators released as interleu-
kins, growth factors and reactive oxygen species (ROS) [5]. Many strategies have been made to
attenuate liver fibrosis by inhibiting pathways or inhibiting certain molecular targets involved
in the development of liver fibrosis [6].

In contrast, some protective molecular pathways become repressed during the course of
liver injury. One of these important including signaling pathways is the cyclic adenosine
monophosphate (cAMP) pathway [7]. cAMP is a second messenger that plays a central role in
cellular responses to neurotransmitters and hormones [8]. It regulates various cellular func-
tions including inflammation and cell differentiation by affecting gene/protein expression and
function [9]. Increasing cAMP levels has been found to inhibit the conversion of resting fibro-
blasts/fibroblast-like cells (such as hepatic stellate cells, HSC) to profibrogenic myofibroblasts
after cell injury [10], decrease their proliferation [11], stimulate their death [12], and inhibit
ECM protein synthesis [13, 14]. Hence, cAMP pathway is a potential target to blunt fibrosis
[6].

cAMP is generated by adenyl cyclase (AC) in response to activation of G-protein-coupled
receptors, and degraded by cyclic nucleotide phosphodiesterase (PDE) into adenosine mono-
phosphate; thus, both AC and PDE regulate the intracellular level of cAMP [15]. Cilostazol
(Cilo) is a selective type-3 PDE inhibitor that is used to inhibit platelet aggregation by increas-
ing the intracellular cAMP. Besides, Cilo showed other cAMP pathway-dependent and -inde-
pendent pharmacological effects including anti-inflammatory [16, 17], antioxidant [18], and
anti-apoptotic actions [19, 20]. A beneficial effect of Cilo against some rodents models of liver
injury induced by ethanol [19], galactosamine [21], ischemia reperfusion [22], and carbon tet-
rachloride (CCly) [23] has been demonstrated. However, its potential hepatoprotective effect
against thioacetamide (TAA)-induced hepatic fibrogenesis in rats has not been evaluated,
which is the aim of the current experiment, along with the study of the possible mechanistic
scenario.

Materials and methods
Drugs and chemicals

TAA was purchased from Sigma-Aldrich Co. (USA) and was dissolved in 0.9% w/v saline solu-
tion for intraperitoneal (ip) injection. Cilo was purchased from Otsuka Pharmaceuticals (UK),
and used orally (po). All other chemical reagents were purchased from Sigma-Aldrich chemi-
cal Co. (USA).

Experimental animals

Animals used were adult male Wister rats, weighing 150-200 g each, purchased from the Ani-
mal House at the National Research Centre (NRC, Egypt). Rats were maintained under stan-
dard conditions of temperature (25 °C) with a 12 h (light)- 12 h (dark) cycle, and were
allowed free access to standard laboratory food and water. This study has been approved by
the ethics committees of the Committee of Animal Care and Use of NRC (Egypt). All proce-
dures and experiments were performed according to the protocol approved by them, and the
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animals were treated according to the national and international ethics guidelines. The earliest
scientifically justified endpoint was used in this study to prevent pain or distress in the experi-
mental animals. Rats were sacrificed by cervical dislocation under ether anesthesia.

Induction of liver fibrosis and experimental design

Rats were randomly allocated into four groups (8 animals per group), and treated for eight
consecutive weeks according to the following scheme:

1. The normal control group, where rats received saline ip twice weekly, and the vehicle orally
once daily.

2. The fibrotic control (TAA group), where rats received TAA (200 mg/kg, ip) twice weekly to
provoke liver fibrosis [24], and received the vehicle orally once daily.

3. TAA-Cilo50 group, where rats received Cilo (50 mg/kg/day, po) [25] for eight consecutive
weeks, together with injection of TAA twice weekly.

4. TAA-Cilo100 group, where rats received Cilo (100 mg/kg/day, po) [25] for eight consecu-
tive weeks, together with injection of TAA twice weekly.

Twenty-four hours following the last drug administration, blood samples were withdrawn
from the retro-orbital plexus of the rats under light ether anesthesia. Then, rats were sacrificed
by cervical dislocation under the same anesthesia for collection of liver samples. A weighed
part of the liver of each animal was rapidly dissected out, washed and homogenized using
phosphate-buffered saline (PBS, 50 mM potassium phosphate, pH 7.5) at 4°C to produce a
20% homogenate. Liver homogenates were kept at -80°C till time of analysis. Another part of
liver tissues were kept in 10% formalin-saline for histopathological examination.

Assessment of liver functions biomarkers

Levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were
determined colorimetrically using commercially available kits (Biodiagnostic, Egypt) [26].

Assessment of oxidative stress markers

Reduced glutathione (GSH) was determined in the liver homogenate with Ellman’s reagent
according to a previously described method [27]. In addition, the products of lipid peroxida-
tion (mainly malondialdehyde, MDA) were determined as thiobarbituric acid-reactive sub-
stances [28].

Enzyme-linked immunosorbent assay (ELISA) of some biomarkers in liver
homogenate

Liver homogenates were assayed for cAMP using specific Rat ELISA kit (R&D Systems, USA;
Catalogs Number: KGE012B).

Tumor necrosis factor (TNF-a), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-xB)
as important signals in liver injury [29], were also assayed, as well as transforming growth fac-
tor-beta (TGF-P) as a fibrogenesis-driving cytokine [30], using specific Rat ELISA kits (Sun-
Long Biotech Co., LTD, China; Catalogs Number: SL0722Ra, SL0411Ra, SL0537Ra, and
SL0705Ra, respectively).

As caspase-3 is involved in the apoptosis of hepatocytes during liver injury [31], CUSABIO
Rat Casp-3 ELISA Kit (USA; Catalog Number: CSB-E08857r) was used to measure the level of
caspase-3 in liver homogenate. Moreover, evaluation of o-smooth muscle actin (-SMA) and
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type I collagen (COL-1) as classic liver fibrosis markers was also performed using specific Rat
ELISA kits (CUSABIO, USA; Catalogs Number: CSB-E 14407r and CSB-E10134r,
respectively).

Histopathological examination

For histopathological examination, morphometry and fibrosis assessment, liver tissues were
immediately fixed to 10% formal saline for paraffin embedding, sectioning, and staining with
Hematoxylin & Eosin (H&E) and Masson trichrome stains. The Masson trichrome specifically
stain the collagen to give blue color staining of the fibrous tissue. Quantitative analysis was
done in the Pathology Department of the NRC, using the Leica Qwin 500 Image Analyzer
(LEICA Imaging Systems Ltd, Cambridge, England).

Ten random fields were examined for estimation of fibrous tissue percent, portal tract area
(um?), inflammatory cell infiltration, and hepatocytic degeneration. The mean from these ten
fields was calculated which represent the histopathological condition of the liver tissue.

Statistical analysis

All the values are presented as means + standard error of the means (SE), n = 8. Comparisons
between different groups were carried out using one-way analysis of variance (ANOVA) fol-
lowed by Tukey-Kramer test for multiple comparisons. Graphpad Prism software, version 5
(USA) was used to carry out these statistical tests. The difference was considered significant
when p < 0.05.

Results

Effect of Cilo on the serum AST and ALT levels in TAA-induced liver
fibrosis in rats

Injection of TAA resulted in a considerable elevation in serum ALT and AST levels as com-
pared to normal group values (1.85 and 1.57 fold, respectively). Both Clio-treated groups had a
significant decrease in serum ALT and AST when compared to TAA control group. Cilo 50
and 100 mg/kg depleted the raised ALT levels by 27%, and 35%, respectively, as compared to
TAA control group. Moreover, cilostazol 50 and 100 mg/kg depleted the raised AST levels by
24%, and 21%, respectively as compared to TAA control group (Fig 1).

Effect of Cilo on the liver contents of oxidative stress markers in TAA-
induced fibrosis in rats

Injection of TAA resulted in a significant depletion in reduced glutathione (GSH) levels (24%)
(Fig 2A) as well as a significant elevation in MDA values (50%) as compared to normal group
values (Fig 2B). On the other hand, Cilo 50 and 100 mg/kg raised the depleted GSH levels by
16% and 21%, respectively, while decreased the raised MDA levels by 4% and 30%, respec-
tively, as compared to TAA control group.

Effect of Cilo on the liver content of cAMP in TAA-induced fibrosis in rats

A significant reduction of the normal hepatic content of cAMP was observed in the rats with
TAA-induced liver fibrosis. However, a dose-dependent increase of this content was observed
in the groups treated with Cilo, 50 and 100 mg/kg (Fig 3).
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Fig 1. Effect of cilostazol on the serum ALT (A), AST (B) levels in rats with TA A-induced liver fibrosis. Normal, rats treated with
vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with thioacetamide and
cilostazol (50 or 100 mg/kg/day for 8 weeks, po); ALT, alanine aminotransferase; AST, aspartate aminotransferase. Data presented as
mean + S.E; n = 8. * Significantly different from Normal group at p<0.05. @ Significantly different from TAA group at p<0.05.

https://doi.org/10.1371/journal.pone.0216301.g001

Effect of Cilo on the hepatic contents of some cytokines and chemokines in
TAA-induced fibrosis in rats

Injection of TAA resulted in a significant elevations in liver TNF-a, IL-6, NFkP and TGF-B
(2.14, 2.1, 2.13 and 2.3 fold respectively) as compared to normal group values.

Only Cilo 100 mg/kg significantly decreased the raised TNF-a: and TGF-P hepatic levels as
compared to TAA control group. On the other hand, both doses of cilo, 50 and 100 mg/kg, sig-
nificantly decreased the raised IL-6 levels by 33% and 31%, respectively, as well as NF-kp levels
by 27 and 56%, respectively, comparing to TAA control group (Fig 4).
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Fig 2. Effect of cilostazol on liver GSH (A) and MDA (B) in TAA-induced fibrosis in rats. Normal, rats treated with
vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with
thioacetamide and cilostazol (50 or 100 mg/kg/day for 8 weeks, po); GSH: reduced glutathione, MDA,
malondialdehyde. Data presented as mean + S.E.; n = 8. * Significantly different from Normal group at p<0.05. @
Significantly different from TAA group at p<0.05.

https://doi.org/10.1371/journal.pone.0216301.9002
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Fig 3. Effect of cilostazol on liver content of cAMP in TAA-induced fibrosis in rats. Normal, rats treated with
vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with
thioacetamide and cilostazol (50 or 100 mg/kg/day for 8 weeks, po); cAMP: cyclic adenosine monophosphate. Data
presented as mean + S.E.; n = 8. * Significantly different from Normal group at p<0.05. @ Significantly different from
TAA group at p<0.05.

https://doi.org/10.1371/journal.pone.0216301.9003

Effect of Cilo on caspase-3 in TAA-induced fibrosis in rats

Induction of liver fibrosis in rats using TAA resulted in a significant elevation in hepatic cas-
pase-3 (4.7-fold) as compared to normal group value (Fig 5). Treatment of rats with Cilo, 50
and 100 mg/kg, significantly decreased the raised hepatic caspase-3 levels by 44% and 62%,
respectively, as compared to TAA group.

Effect of Cilo on a-SMA and COL-1 in TAA-induced fibrosis in rats

Induction of liver fibrosis in rats using TAA resulted in a significant elevation in hepatic o-
SMA and COL-1 as compared to the normal group (Fig 6). Treatment of rats with Cilo, 50 and
100 mg/kg, significantly decreased the raised hepatic o-SMA and COL-1 levels comparing
with TAA group.

Effect of Cilo on the liver histopathological findings in TAA-induced
fibrosis in rats

Liver of normal rats revealed normal hepatic parenchyma with normal hepatocytes (Fig 7a)
and scant faint blue-stained fibrous tissue demonstrated in the portal area (Fig 8a). On the
contrary, disrupted hepatic parenchyma, with massive fibrous tissue proliferation extending
from the portal area, associated with ballooning degeneration of hepatocytes in addition to
apoptosis, was demonstrated in TAA-treated group (Fig 7b). Atypical biliary epithelial hyper-
plasia associated with leukocytic cell infiltration was characteristically demonstrated in this
group. The collagen fibers were strongly blue in Masson s trichrome stained sections (Fig 8b).
Diminution of fibrosis with minimal inflammatory infiltrates were demonstrated in TAA-Ci-
lo50-treated group (Figs 7c and 8c). Interestingly, pronounced amelioration was demonstrated
in TAA-Cilo100-treated group, in which the hepatic parenchyma in most examined sections
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Fig 4. Effect of cilostazol on liver TNF-a (A), IL-6 (B), NFxp (C) and TGF§ (D) in TAA-induced fibrosis in rats.
Normal, rats treated with vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio,
rats treated with thioacetamide and cilostazol (50 or 100 mg/kg/day for 8 weeks, po); TNF-a: tumor necrosis factor o; IL-6,
interleukin-6; NF-kB, nuclear factor-kappa B; TGF-, transforming growth factor-beta. Data presented as mean + S.E;

n = 8. * Significantly different from Normal group at p<0.05. @ Significantly different from TAA group at p<0.05.

https://doi.org/10.1371/journal.pone.0216301.9004

appeared normal with scarce fibrous tissue confined to the portal area (Figs 7d and 8d)
(Table 1).

Discussion

The current study has targeted evaluation of Cilo as a therapeutic alternative to liver fibrosis
and analyzing the mechanism by which it acts to attenuate liver fibrosis elicited in rats by
TAA. Induction of liver fibrosis by TAA is occurred as a result of its biotransformation, by
CYP2E1 enzymes in the liver cells’ microsomes, to a very reactive intermediate known as TAA
sulphur dioxide through oxidation [32]. This results in variable grades of hepatotoxicity
including nodular cirrhosis, proliferation of hepatic cells, and necrosis of parenchyma cells
[33]. TA is a common hepatotoxicant model to study liver injury due to its outstanding solu-
bility in the water, and a prolonged injury and recovery pattern giving significant time to study
mechanisms [34, 35]. Unlike CCl4, TA toxicity does not depend on induction of oxidative
stress only [36]. Therefore, using TAA-induced liver fibrosis model allows assessing different
pathophysiological factors, parameters and mechanisms that may underline the progression of
liver diseases rather than oxidative stress only. This adds an advantage to the TAA-hepatotoxic
model by its potential to simulate some clinical conditions where many precipitating factors
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Fig 5. Effect of cilostazol on liver caspase-3 in TAA-induced fibrosis in rats. Normal, rats treated with vehicles;
TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with thioacetamide
and cilostazol (50 or 100 mg/kg/day for 8 weeks, po); Caspase 3. Data presented as mean + S.E.; n = 8. * Significantly
different from Normal group at p<0.05. @ Significantly different from TAA group at p<0.05.

https://doi.org/10.1371/journal.pone.0216301.g005

are involved in the development of liver fibrosis, and different mechanisms underline its pro-
gression [2-4]. Moreover, because of its limited use as a model toxicant comparing to other
experimental animal models, especially in the chronic studies, the exact mechanism of TA-
induced necrotic cell death is not clear. Thus, using it in more studies investigating different
pathways are required and would add to the knowledge.

In the present study, TAA-induced liver damage in rats was evidenced, biochemically, by
the alterations in serum levels of ALT and AST, as well as hepatic fibrosis biomarkers in TAA-
induced group, and confirmed by the histopathological findings. Moreover, induction of oxi-
dative stress state in the current TAA-treated group has been proved by the decline in the nor-
mal liver GSH content as well as an elevation in MDA content. These results are in accordance
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Fig 6. Effect of cilostazol on liver a-SMA (A) and COL-1 (B) in TAA-induced fibrosis in rats. Normal, rats treated
with vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with
thioacetamide and cilostazol (50 or 100 mg/kg/day for 8 weeks, po); a-SMA, o-smooth muscle actin; COL-1, type I
collagen. Data presented as mean + S.E.; n = 8. * Significantly different from Normal group at p<0.05. @ Significantly
different from TAA group at p<0.05.

https://doi.org/10.1371/journal.pone.0216301.g006
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Fig 7. liver tissue, stained with H&E, of (a) normal rats showing normal hepatic parenchyma with normal hepatocytes, (b) TAA-treated group showing
disrupted hepatic parenchyma, with massive fibrous tissue proliferation extending from the portal area, associated with ballooning degeneration of
hepatocytes in addition to apoptosis, (c) TAA-Cilo50-treated group showing diminished fibrosis with minimal inflammatory infiltrates, and (d)
TAA-Cilo100-treated group showing normal preserved parenchyma. (H&E, 20X). Normal, rats treated with vehicles; TAA, rats treated with thioacetamide (200
mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with thioacetamide and cilostazol (50 or 100 mg/kg/day for 8 weeks, po).

https://doi.org/10.1371/journal.pone.0216301.9007

with previous studies showed that TAA, by its oxidative stress capacity that exceeds the capac-
ity of body’s antioxidative and protective mechanisms [37], damages liver cell membranes,
resulting in the leakage of the cytoplasmic liver enzymes ALT and AST into blood stream in
amounts related to the extent of liver damage [38-40].

Administration of Cilo in the current study significantly improved the liver function, oxida-
tive stress, and liver fibrosis biomarkers, together with the histopathological findings, when
compared to the control TAA group; this was in preference to the higher dose (100 mg/kg).
These findings indicate the beneficial effects of Cilo in the healing and regeneration of the
hepatocytes, and show its antioxidant potential [18]. Same effects of Cilo have been shown
before when other research groups used other rodent’s models of liver fibrosis induced by eth-
anol and CCly [19, 23]. Other PDE inhibitor, pentoxifylline, has shown similar results against
TAA-induced model [41].

In the current TAA-induced liver fibrosis model, reduction of the hepatic cAMP content
was observed. This support the data that cAMP pathway is considered as protective signaling
pathway against liver fibrosis that become repressed during liver injury [7]. In line with that,
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Fig 8. liver tissue, stained with Masson s trichrome staine, of (a) normal rats showing scant faint blue-stained fibrous in the portal area, (b) TAA-treated
group showing strong blue-stained collagen fiber, (c) TAA-Cilo50-treated group showing diminished blue-stained collagen fibers, and (d)
TAA-Cilo100-treated group showing scarce blue-stained fibrous tissue confined to the portal area. (Masson s trichrome staine, 20X). Normal, rats treated with
vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with thioacetamide and cilostazol (50 or 100 mg/kg/day
for 8 weeks, po).

https://doi.org/10.1371/journal.pone.0216301.9g008

the increased level of cAMP observed in the liver of the rats treated with the PDE inhibitor,
Cilo, justifies its hepatoprotective effects.

The liver is considered as a main organ controlling cytokines activity and its production
depending on the initial early pro-inflammatory cytokines released from macrophages [42,
43]. TAA, as a hepatotoxin, induces pro-inflammatory and inflammatory cytokines and

Table 1. Histopathological parameters of the liver in the studied groups.

Fibrous tissue% Portal tract area (um®) Inflammatory cell infiltrate Hepatocyte degeneration
Normal 24 180.2 --- ---
TAA 7.6 894.3 ++ + steatosis
TAA-Cilo50 4.5 335.4 + + hydropic degeneration
TAA-Cilo100 4.3 319.4 - -

Normal, rats treated with vehicles; TAA, rats treated with thioacetamide (200 mg/kg/biweekly for 8 weeks, ip); TAA-Clio, rats treated with thioacetamide and cilostazol
(50 or 100 mg/kg/day for 8 weeks, po). Values represent the means in ten fields.

https://doi.org/10.1371/journal.pone.0216301.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0216301 May 8, 2019 10/15


https://doi.org/10.1371/journal.pone.0216301.g008
https://doi.org/10.1371/journal.pone.0216301.t001
https://doi.org/10.1371/journal.pone.0216301

@ PLOS|ONE

Regression of fibrosis by cilostazol in a rat model of thioacetamide-induced liver fibrosis

mediators by macrophages (Kupffer cells) such as TNF-a, IL-6, NF-«xf and TGFp that play
important roles in hepatic inflammation [44, 45]. The findings of our study are in line with
these previous observations. NF-kB plays an important role in the expression of many pro-
inflammatory genes [46], and its induction has been found to play a crucial role in TAA-
induced liver fibrosis [47, 48]. After activation with pro-inflammatory cytokines, NF-B acts as
the driving force of fibrosis. It activates TGFp, which is considered as the key mediator in
fibrogenesis as it potentiates the conversion of HSCs into myofibroblasts that stimulates the
synthesis of ECM proteins, and hinders its degradation [49]. An increase in the relative genetic
expression of TGF due to TAA administration has been reported [50, 51].

Many studies have shown that HSCs activation can be attenuated by blocking the NF«} sig-
naling pathway [52, 53]. In our study, Cilo, in a dose-dependent manner, significantly reduced
the hepatic proinflammatory cytokines, TNF-o and IL-6, contents, as well as NFxf and TGFp1
levels when compared to TAA-induced group. These findings suggest that one of the possible
mechanisms involved in the antifibrotic effect of Cilo might be through its previously reported
anti-inflammatory action [16, 17] with suppression of proinflamatory and fibrogenic
cytokines.

Moreover, elevation of caspase-3, as a marker of apoptosis, was odserved in the liver of
TAA-treated rats. Fourteen caspases have been involved in the apoptotic pathway cascade
[54]. Among these, caspase-3 is considered to be a major execution protease. Caspase-3 is a
sensitive marker reflecting liver damage and is associated with liver fibrosis as well [55]. It is
suggested that the inflammation that occurred in the liver cells elicited by TAA lead in the
later stages to apoptosis of hepatocytes reflected by the elevated level of caspase-3 in the TAA-
induced rats. Cilo in both doses significantly depleted caspase-3 level elevation, indication a
protective and anti-apoptotic effect of Cilo. This observation is in agreement with other data
reported the anti-apoptotic effect of Cilo [56, 57].

Conclusion

These findings revealed that the PDE inhibitor Cilo showed hepatoprotective effects against
TAA-induced liver fibrosis in rats. It modulated many process in the liver, including the oxida-
tive stress, CAMP pathway, inflammation, ECM and collagen deposition, as well as apoptosis.
The study proposes that these effects worked together to reduce fibrogenesis, and suggest Cilo
as a promising antifibrotic agent against liver fibrosis. More comprehensive mechanistic stud-
ies are recommended to bring to light the antifibrotic role of Cilo in liver injury.
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