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The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions
within the brain network, known as the brain’s cores or hubs. These regions require high energy cost
but possess highly efficient neural information transfer in the brain’s network and are termed the rich-
club. The rich-club of the brain network is essential as it directly regulates functional integration across
multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent
advances in rich-club organization to address the fundamental roles of the rich-club in the brain and dis-
cuss how these core brain regions affect brain development and disorders. We describe the concepts of
the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight
novel insights based on animal studies related to the rich-club and illustrate how human studies using
neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant
to the rich-club phenomenon in the brain network.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

A network represents a formal mathematical model in which a
complex system can be decomposed into elements (i.e., nodes or
vertices) and their interactions (i.e., edges, links, or connections).
The comprehensive structural description of the brain as a network
of neural elements and their interconnections is known as the con-
nectome [1]. Structural scales in the nervous system range from
molecules to the whole brain [2], and the association between
these elements in the brain network is generally described by its
structural (or functional) connections at four different scales:
macroscale at the level of gray matter,mesoscale at the level of neu-
ronal subgroups, microscale at the level of individual neurons, and
nanoscale at the level of synapses [3]. From a network perspective,
brain functions are considered to be highly dependent on the
brain’s structural network architecture at each scale [4]. Accord-
ingly, several fields in modern network neuroscience utilize their
own approach to studying brain connections depending on the
acquired level of the dataset (i.e., elements). Recent developments
in noninvasive techniques for mapping brain connectivity enable
better characterization of the structural and functional properties
of a specific neuronal system [139].

The structure of networks has been analyzed within a mathe-
matical framework known as graph theory (Fig. 1). Using graph the-
ory, networks including neural systems such as the brain can be
described as a quantitative and comparative model of real-world
systems at all scales (i.e., macro, meso, micro, and nano) and
modalities (e.g., single-cell recording, neuronal tracing, and neu-
roimaging) [5]. An early finding from the macroscopic brain net-
work perspective was that the human brain is organized in a
highly efficient manner for integrated information transfer [6],
known as small-world topology, as anticipated in several biological,
ig. 1. The construction of brain networks using neuroimaging and neurophysiological
gions, often using high-resolution anatomical magnetic resonance imaging (MRI). Sub
nnectivity may indicate the existence or weight of a connection between two parcella

arying brain activity measured with electrophysiological signal measurements or funct
nnectivity. Graph theoretical measures (Table 1) can be computed using the structura
technical, and social networks [7]. Two assumptions are postulated
to form a small-world network. First, a subgroup of network ele-
ments should form dense, interconnected clusters to confirm local
network segregation, as defined by a clustering coefficient [7]. A
higher clustering coefficient of each network element often leads
to network communities or modules (Fig. 2 and Table 1). Second,
lengths or distances between any pairs of network elements, often
defined by the reciprocal of the connectivity strength, should be
shorter for a greater degree of global integration, resulting in a
lower shortest path length [7]. The small-world topology designates
networks in which the clustering coefficient is significantly larger
than (and the shortest path length is similar to) those of randomly
connected networks, defined as small-worldness [8]. However, the
existence of small-world topology provides limited information
on network architecture and has several pitfalls in terms of its
evaluation, utility, and interpretation [5,9]. As such, more appro-
priate network measures such as modularity have been proposed
to characterize local and global network architecture [10]. Network
modules (i.e., communities or clusters) are defined by a set of net-
work elements with a number of interconnections within each
module and fewer connections among modules [11,12].

A macroscopic structural brain network derived from anatomi-
cal magnetic resonance imaging (MRI) has revealed groups of cor-
tical regions that are morphologically connected, subserving
distinct brain functions such as language, motor, and visual func-
tions [13]. More detailed analyses using diffusion spectrum imag-
ing and higher resolution of cortical parcellation have identified
six structurally distinct modules comprising posterior medial and
parietal cerebral cortices, and several distinct temporal and frontal
modules [14]. Several findings have suggested the following: (1)
brain network modules possess a large number of relatively short
connections among adjacent brain regions, and (2) these modules
data. For a structural network, the brain is parcellated into a number of segregated
sequently, the fiber tracts are generated using diffusion tensor imaging. Structural
ted regions, resulting in a connectivity matrix. For a functional network, the time-
ional MRI can be used to compute functional interdependence leading to functional
l and functional connectivity matrix.



Fig. 2. Basic graph theoretical measures. (A) Networks are described as a set of nodes and edges, in which nodes can be a set of neurons, brain regions, or specific recording
sites, and edges can be either structural connections or functional relationships between two nodes. (B) Degree is defined by the number of connections of each node. (C) In a
weighted network, the sum of the weights connected to the node represents the strength. (D) The highly clustered node (red) has three neighboring nodes (blue), and they are
also connected (orange) to form a cluster. (E) Path length represents the sum of steps (or connection distances) required to travel from one node to another. For example, four
steps are required from node a (red) to b (blue) for the left network, while two steps are required for the right network. (F) Highly clustered nodes are likely to have more
mutual connections to form a module. (G) Some nodes in a network may play central roles as hubs for network information transfer. (H) Rich-club nodes represent a set of
hub nodes that are also highly connected with each other. (I) Rich-club, feeder, and local connections represent the connections only among rich-club nodes, between rich-
club and non-rich-club nodes, and only among non-rich-club nodes, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Table 1
Description of graph theoretical measures.

Measure Description

Graph A set of nodes and edges (often called a network).
Node In a brain network, a node can be a single neuron, set of neurons, brain region, or specific recording site (e.g.,

electroencephalography electrode position). Each node has a unique topological location within a network.
Edge An edge, also called a connection or link, is defined by an interrelationship between two nodes. It may be structural or

functional. Simply, it could indicate the existence of a connection (i.e., binary, 0 or 1) or strength (i.e., weight; e.g., neural
density or functional correspondence). It may have a direction (e.g., positive to the efferent connection and negative to the
afferent connection).

Neighborhood Connected nodes to a node by an edge forming a subnetwork.
Degree The number of edges attached to a node.
Strength Sum of the edge weights attached to a node, when all network edges have their own weights (i.e., weighted network).
Clustering coefficient The probability that the neighborhood (i.e., connected) nodes for a node are also connected to each other. The global clustering

coefficient for a network is computed by averaging clustering coefficients across all nodes in the network.
Distance Topological length, often defined by an inverse of the edge weight (i.e., if the weight = 0, then the distance ? 1).
Shortest path length Distance between two nodes. It may be the number of steps for a binary network or the sum of connection distances for a

weighted network along the shortest path from one node to another.
Characteristic path length Average shortest path length across all nodes in the network.
Small-worldness Ratio of clustering coefficient and characteristic path length, which are normalized relative to those of the random networks. A

small-world network is more clustered with a similar characteristic path length than degree-preserved random networks.
Efficiency Average of the ‘‘inverse” of connection distances from a node to all other nodes refers to nodal efficiency. Global efficiency

represents average of the nodal efficiencies of all nodes. Local efficiency is computed at a node and its neighborhood
subnetworks. Contrary to the path length, efficiency is less influenced by isolated nodes (i.e., if the path length ? 1, then the
efficiency = 0).

Module A set of highly connected nodes. In general, the number (or strength) of connections within modules is more than that between
modules.

Hub Nodes with topologically important roles in a network. A hub can be a node with high degree or strength (often called a core).
Rich-club A set of hub nodes with more connections to each other. A subnetwork with only rich-club nodes should have more

connections than a random network with the same degree and edge distributions.
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are interconnected via a limited set of network nodes termed net-
work hubs, which play central roles in neuronal information flow.
Hub regions in brain network modules are defined by network
nodes with a larger number of connections and have been identi-
fied in the cat, macaque [15], and human brain [14]. Hubs are clas-
sified into two categories: connector hubs corresponding to the
interconnection among network modules and provincial hubs
within each network module. Damage to connector hub regions
(e.g., lesions) causes larger disturbances across widespread brain
networks [16,17].

The concept of the rich-club phenomenon within a network
arose due to the observation that certain hub nodes of a network
are more densely interconnected among themselves than other
non-hub nodes [18]. Evidence for the rich-club phenomenon in
other biological networks such as the protein interaction network
is insufficient, suggesting a higher level of functional specification
solely of densely connected network nodes. In this regard, several
networks including scientific collaboration networks [18] and
power grids [19] exhibit rich-club properties, implying a critical
role of rich-club nodes for global communication in the most effi-
cient way. In the human brain network, the existence of rich-club
organization has been detected, and certain hub regions are con-
sidered rich-club members which form tight subnetworks by
themselves [20]. Following the initial discovery of rich-club organi-
zation in macroscopic structural networks of the human brain, sev-
eral studies have demonstrated the characteristics of the rich-club
phenomenon in terms of cost-efficiency theory, and brain develop-
ment and diseases [21–25].

In the present review, we examine the key contribution of rich-
club approaches to understanding its potential roles in brain net-
works. We first briefly summarize the mathematical background
underpinning key concepts of rich-club topology. We then clarify
explicit findings in Caenorhabditis elegans, the only organism for
which the complete neuronal wiring diagram has been mapped.
We also assess relevant rich-club data for mammals such as mice,
rats, and cats. We then review the background and recent advance-
ments in network studies focusing on the rich-club and structural
neuroimaging in human brain development and psychiatric/neuro-
logical applications, which constitute one of the most extensively
researched areas of the rich-club. We conclude this review by high-
lighting future prospects in relation to the effectiveness and poten-
tial use of this computational and theoretical tool.
2. Construction of neuronal networks

Serial reconstruction of electron micrographs was initially used
to elucidate the complete connectome, particularly for Caenorhab-
ditis elegans [26]. This worm has a relatively small number of neu-
rons, which enabled manual reconstruction of its complete
neuronal wiring diagram. Nevertheless, this approach suffered
from its labor-intensive nature, in particular for neural systems
with a larger number of neurons such as the mammalian brain.
As a suitable alternative to investigate macroscale neural net-
works, MRI has been used extensively to define whole brain wiring
diagrams in vivo for larger neural systems, enabling the compar-
ison of network characteristics across species. Since the introduc-
tion of white matter fiber tractography, an MRI-based 3D
reconstruction technique that visualizes neural tracts using water
diffusivity in the brain predominantly with diffusion tensor imag-
ing (DTI) [27], noninvasive neuroimaging methods such as DTI
have been utilized for macroscopic brain network analysis. Other
methods for constructing complete whole-brain networks include
functional modalities such as functional MRI (fMRI), electroen-
cephalography (EEG), or magnetoencephalography (MEG), by com-
puting the statistical interdependency as a measure of the network
edge between spatial locations. Of these, structural neuroimaging
modalities such as DTI have overarching benefits from several
aspects [28,29]. First, the DTI technique is specialized for extracting
white matter connections and is suitable for macroscale network
analysis to investigate larger functional and structural brain subre-
gions (e.g., Brodmann areas). Second, it can reduce computational
complexity, which often arises due to the large number of network
elements and interactions. For example, the human brain com-
prises approximately 16 � 109 neurons in the cerebral cortices
and 69 � 109 neurons in the cerebellum, with more than 1012 neu-
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ronal connections [30,31]. DTI has a 1–2-millimeter resolution,
comprising millions of neurons in an acquired voxel, which enables
whole-brain network analysis with a reasonable number of net-
work constituents (e.g., 52 distinct Brodmann regions with distinct
anatomical parcellations). Third, when combined with functional
neuroimaging techniques (e.g., resting and task fMRI), an intuitive
approach for examining structural and functional associations is
afforded [4,32].

3. Detection of the rich-club

Zhou and Mondragon [33] defined rich-club elements as a set of
highly interconnected nodes forming a tight subnetwork within a
network. The mathematical description of the rich-club1 phe-
nomenon is provided by the rich-club coefficient / [18] as follows:

/ kð Þ ¼ 2E>k

N>kðN>k � 1Þ
where k represents the number of connections attached to each net-
work node (the degree); N>k represents the number of nodes whose
degree is larger than a given value k; and E>k represents the number
of connections of a subnetwork comprising N>k nodes. It should be
noted that the rich-club coefficient / is a function of the degree k,
because it corresponds to the measure of the density of the subnet-
work comprising nodes with degree greater than k. Practically, the
detection procedure involves the following steps: (1) for an N � N
network matrix where N is the number of all network nodes, the
degree (k) is computed at each node; (2) for each k (where
1 � k < N), all nodes with degrees less than or equal to k are
removed to construct a new N>k � N>k subnetwork; (3) the number
of existing connections and possible maximum connections of the
subnetwork are denoted by E>k and calculated by N�k(N�k � 1)/2,
respectively; and (4) the rich-club coefficient /(k) is computed as
the ratio of E>k and N�k(N�k � 1)/2. Higher degree nodes in a ran-
domly connected network (e.g., the Erdos-Renyi network, a random
network with a Poisson degree distribution) tend to have a higher
probability of being interconnected to each other by chance
[18,20]. Therefore, to evaluate the statistical significance of /(k),
the coefficient is typically normalized to the rich-club coefficient
/random(k) computed from a set of random uncorrelated networks
with preserved degree distribution:

/normalized kð Þ ¼ / kð Þ
h/randomðkÞi

where hi represents the average. If the rich-club coefficient /(k) of a
network is larger than the average rich-club coefficient across ran-
domized networks (i.e., /(k) > h/randomðkÞi or /normalized(k) > 1), the
density of the subnetwork for k is considered to be higher than that
of its randomized networks, and the network is considered to have
a rich-club architecture. For a weighted network, the weighted rich-
club coefficient /w is calculated using the following equation:

/w kð Þ ¼ W>k
PE>k

l¼1w
rank
l

where W>k represents the sum of weights in the N>k � N>k subnet-
work, wrank

l � wrank
lþ1 with 1 � l � E represents the ranked weights of

the links of the network [34], and the coefficient /w should be nor-
malized over a set of random networks. A unifying framework for
the weighted network has been proposed by Alstott and colleagues
[35]. In addition to using a network structural attribute (e.g., net-
work degree) to compute rich-club phenomenon, Cinelli [36]
1 Network rich-club can be computed with BCT (https://sites.google.com/site/
bctnet/) in MATLAB, braingraph (https://github.com/cwatson/brainGraph) in R, or
NetworkX (https://networkx.github.io/documentation/networkx-1.9.1/index.html)
and bctpy (https://pypi.org/project/bctpy/) in Python.
recently suggested a generalized rich-club framework using non-
structural information (e.g., social or technical attributes related
to network nodes). In his work, instead of using only the network
degree, any structural measures distinct to degree (e.g., node cen-
trality measures) could also be used to evaluate rich-club ordering.
Furthermore, when network nodes have a certain attribute which is
not directly derived from the network structure itself (i.e., node
metadata such as the wealth of each person in a social network),
he suggested two types of network randomization:

/rewiring
normalized mð Þ ¼ / mð Þ

h/rewiring
random ðmÞi

/reshuffling
normalized mð Þ ¼ / mð Þ

h/rereshuffling
random ðmÞi

where the value m corresponds to the value of the node metadata,

and /rewiring
random and /reshuffling

random represent rich-club coefficients with
degree-preserving rewiring and metadata reshuffling, respectively.
This generalization may be useful for investigating the importance
of node metadata in a network and the association between topo-
logical and nontopological properties.

4. Rich-club of Caenorhabditis elegans

In 2013, Towlson and colleagues investigated the neural net-
work of the nematode worm Caenorhabditis elegans, anatomically
defined at a cellular scale with 2287 synaptic connections of 279
neurons [37,38]. Towlson and colleagues determined 11 neurons
as rich-club members, in which eight neurons (AVAR/L, AVBR/L,
AVDR/L, and AVER/L) were located in the lateral ganglia of the head
and three neurons in the lumbar (PVCR/L) and dorsorectal (DVA)
ganglia. The efficiency of the subnetwork with only 11 rich-club
neurons (i.e., network efficiency [39]) was 0.92, comparable to the
efficiency of 268 non-rich neurons (i.e., 0.38). Most of the rich-
club neurons (i.e., 10 of 11 rich-club neurons) are command
interneurons with functional roles in forward or backward locomo-
tion circuits [37], while DVA is a proprioceptive interneuron which
modulates sensorimotor integration during locomotion [40]. Nota-
bly, 4% (~11/297) of these elite neurons were involved in 48% of the
total connection distance and 52% of inter-modular connections,
suggesting a critical role of rich-club neurons in communication
between distant network modules. Towlson and colleagues also
reported that rich-club neurons were generated in earlier develop-
mental stages before the main phase of developmental elongation
of the body, findings that were replicated by Ma and Mondragon
[41]. The importance of the small number of modulatory neurons
was revealed in the full hermaphrodite C. elegans network with
all 302 neurons using the aminergic signaling map [42], in which
the monoamine network contains a distinct rich-club comprising
dopamine, serotonin, and tyramine-releasing neurons correspond-
ing to sensory and motor activities. These findings were distinct to
those of Towlson and colleagues [37] (i.e., interneurons) but fur-
ther suggested a distinct functional rich-club phenomenon of
extrasynaptic networks from synaptic networks in the same nema-
tode worm. More recently, distinctive transcriptional properties of
rich-club neurons in C. elegans alongside coupled gene expression
have been reported, in which rich-club neurons exhibit similar
gene expression regulating higher-order behaviors (e.g., locomo-
tion by command interneurons) [43]. Thus, rich-club analyses
using neural, chemical, and genetic transcription of this nematode
worm may support investigations of higher-order functions and
species-conserved mechanisms in the behavioral repertoire of
other animals.

The rich-club studies on C. elegans are valuable as they con-
tribute to deriving fundamental hypotheses on biological network
formation. For example, an important aspect of network formation

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
https://github.com/cwatson/brainGraph
https://networkx.github.io/documentation/networkx-1.9.1/index.html
https://pypi.org/project/bctpy/
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revealed by studies on C. elegans is the minimization of network
costs (i.e., biological networks are likely to have less connections
with shorter paths to minimize the spending of neural resources).
However, to reduce costs in a ‘‘global” network, revised connection
strategies may be more beneficial to facilitate more efficient infor-
mation propagation. A selected set of network nodes (e.g., rich-
club) enables the network to rewire certain connections with
increased topological paths and to consequently reduce overall
connection costs. Rich-club neurons in C. elegans are predomi-
nantly command interneurons related to locomotion, suggesting
that the existence of rich-club members in a network is crucial
to optimize the most important network function (e.g., movement
in the case of C. elegans).

5. Rich-club of mammals

5.1. Cat

The cerebral cortex of mammals such as cats has a functionally
subdivided modular structure (i.e., four main modules of modally-
related areas with visual, auditory, somatosensory-motor, and
fronto-limbic modules) [44,45]. Gómez-Gardeñes and colleagues
suggested a newmodule with highly connected but not necessarily
module-related areas forming a rich-club connectivity pattern in
the cat, in which the rich-club regions of the cat’s cerebral cortex
(i.e., 53 network nodes + 826 cortico-cortical neural projections)
[46] consist of 11 cortical areas (three visual areas: 20a, 7, and
anterior ectosylvian sulcus; one auditory area: posterior part of
posterior ectosylvian gyrus; two somatosensory-motor areas:
medial area 6 and lateral area 5A; and five fronto-limbic areas:
agranular and granular insula, posterior cingulate cortex, area 35,
and area 36) [47]. Their findings emphasized that these rich-club
areas enable a network transition in terms of its dynamics from a
simple modular structure to global synchronization, related to
higher cognitive tasks in mammals such as planning and integra-
tion. The impact of these rich-club regions has been investigated
by Lameu and colleagues, who elucidated that a rich-club is highly
related to network suppression and global neural synchronization
of a network [48]. More detailed analyses of the cat’s cerebral net-
work were performed in 2013 by de Reus and van den Heuvel, who
defined rich-club members as the top 15 (23%) highest degree
nodes with 11 regions based on a previous study [47] and four
additional regions (i.e., suprasylvian fringe, dorsolateral division
of the prefrontal cortex, anterior part of cingulate cortex, and ante-
rior limbic cortex) [49]. Based on rich-club and non-rich-club
nodes, existing connections in the cat network were classified into
three categories: (1) rich-club connections only linking rich-club
nodes, (2) feeder connections linking rich-club and non-rich-club
nodes, and (3) local connections only linking non-rich-club nodes.
Importantly, even with the lower connection density of rich-club
connections (i.e., 14%, which was comparable to 48% and 38% for
feeder and local connections, respectively), approximately 86% of
the inter-modular communications were related to rich-club con-
nections, which extended the role of rich-club brain regions to
form a larger infrastructure for global and modular communication
between different domains in the mammalian brain. The connec-
tions of the cat’s cerebral network were recently described accord-
ing to two independent factors: relative cytoarchitectonic
differentiation and spatial distance of brain regions, in which a lin-
ear combination of these two factors predicted the existence or
absence of connections with >85% accuracy in the cat brain [50].

5.2. Rat and mouse

Using an open-access tract-tracing connectivity dataset on the
rat [51], van den Heuvel and colleagues demonstrated that the
white matter network of rats (with 67 nodes and 1396 connec-
tions) contained 14 rich-club members (~21%) with secondary
motor, infralimbic, piriform, dorsal anterior cingulate, prelimbic,
medial orbital, posterior agranular insular, temporal association,
ectorhinal, perirhinal, lateral entorhinal, medial dorsal entorhinal,
lateral amygdalar, and posterior basolateral amygdalar areas [52].
Similar to those in the cat, rich-club connections in the rat consti-
tuted 11% of total connections in the network, of which 75% were
inter-modular, corresponding to significantly longer distances
when compared to feeder and local connections. The association
between large-scale network topology and molecular function in
the mouse was reported in a transcriptional coupling study [53],
in which the highest coupling observed in rich-club connections
was driven by genes regulating oxidative synthesis and metabo-
lism of ATP. This study suggested that the connections between
brain hub regions are characterized by tightly coupled gene
expression related to the regulation of oxidative metabolism.
Specifically, approximately 46% of neuronal types comprised the
rich-club in the rodent hippocampal neuronal network; indeed,
this set had substantially tighter connections, termed the richest
of the rich club [54].
5.3. Macaque

The cortical connectivity matrix (binarized with 242 nodes and
4090 connections) defined from 410 neural tracing studies of the
macaque revealed rich-club regions in the prefrontal, paracingu-
late, anterior cingulate, parietal, and temporal cortices [55]. Consis-
tent with those in other species, rich-club regions in the macaque
have inter-modular connections rather than isolated subnetworks,
and global information flow is mediated by these regions [56].
Moreover, microscale cortical neuronal complexity is associated
with macroscale network topology (e.g., degree), particularly in
rich-club regions [57], highlighting the importance of neuronal
architecture within macroscopic brain networks. Furthermore,
structural connectivity is positively associated with resting-state
functional connectivity, in which rich-club regions exhibit the
greatest functional stability over time depending on their struc-
tural topology [58]. More specifically, a small number of neurons
in a network seem to be strongly interconnected with oscillatory
synchrony to form a rich-club [59]. These neuronal regions may
eventually lead to more complex network dynamics in terms of
brain function [60], in which connectivity strength could enhance
neuronal synchronization, particularly between rich-club regions
[61].
5.4. Rich-club implications in mammals

While rich-club neurons in C. elegans consist primarily of com-
mand interneurons, macroscopic rich-club regions are consistently
detected in mammals such as the rat, cat, and macaque; i.e., a set of
highly connected and central brain regions forming a densely con-
nected rich-club. In mammals, rich-club regions are more highly
spatially distributed across the whole brain to facilitate inter-
modular communications rather than intra-modular connections.
Further, mammalian rich-club regions exhibit greater connection
strength among themselves than feeder and local connections
(Fig. 3). While caution should be exercised in cross-species com-
parisons [62], the considerable overlap in rich-club organization
across mammals suggests the existence of ‘‘common” biological
substrates across mammalian species that may contribute to the
integration of neural information resulting in optimal behavioral
functioning. Of note, the detailed aspects of rich-club distribution
may be related to the characteristics of a species. For example,
the rich-club members in the macaque include more prefrontal



Fig. 3. Rich-club regions in different species. Brown colors represent the cortical rich-club regions in the rat [52], cat [49], macaque [57], and human [20]. The rat connectivity
data were obtained from the open-access BAMS-II database (https://bams1.org) [51] and parcellated into 67 regions and 1397 directed axonal projections. The cat cortex was
parcellated into 65 regions and 1139 axonal projections as reported by Scannell and colleagues [44], resulting in a binarized connectivity matrix. The macaque axonal
projections are based on the open-source CoCoMac database (http://cocomac.g-node.org/main/index.php) with 39 � 39 unweighted directed connectivity matrices. The
human brain is parcellated using Freesurfer (http://freesurfer.net) into 34 (low resolution) and 1170 (high resolution) cortical regions, and the corresponding rich-club
regions are depicted in dark and light brown colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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regions than those in the rat and cat (Fig. 3), which may be related
to the higher-order behavioral functions in this species.

6. Rich-club of humans

Rich-club organization in the human brain was first examined
using DTI, in which 12 bilateral rich-club regions from 82 cortical
and subcortical parcellations were consistently detected in the
superior parietal lobule, precuneus, superior frontal cortex, puta-
men, hippocampus, and thalamus [20,63]. Consistent with those
in the macaque, cat, and rat, all brain regions had at least one link
connected to rich-club members, suggesting a key role in global
information communication in distant regions via crucial areas in
the brain. Simulations of the extent to which the brain network
is damaged from an ‘‘attack,” defined by an arbitrary decrease in
connection strength, to a certain set of connections (e.g., (1) ‘‘tar-
geted attack” only to rich-club connections, (2) ‘‘hub attack” to fee-
der connections, and (3) ‘‘random attack”) have revealed that
measures of network efficiency are decreased, particularly in
rich-club attacks. These findings underscore a potential framework
for connectivity disturbances linked to neuropathology. Rich-club
regions constitute approximately 69% of all connection paths with
40% of the total communication cost (defined by the number of
streamlines based on physical length between two regions), imply-
ing the high cost and capacity of these regions for global brain
communication [22]. Moreover, structural rich-club regions are
strongly associated with resting-state functional networks and
regional volume, metabolic energy use, maturation, temporal vari-
ability, and structural–functional associations [21,64], in which the
involvement of each functional network of the rich-club varies
from a minimum of 3–9% (e.g., extrastriate visual, motor, sensory,
and auditory networks) to a maximum of 22% (e.g., default-mode
network) [65]. These findings highlight the relevance of centrally
collective brain structures in the flexible and reconfigurative nat-
ure of brain community organization for integrative cognitive
function [65–67]. Key findings from human rich-club neuroimag-
ing studies are summarized in Table 2.

6.1. Application to brain development

Rich-club organization is established prior to the time of birth
[24]. It develops throughout childhood, adolescence, and adult-
hood [68–71]; and is sustained throughout the lifespan [72].
Specifically, the connection density between rich-club regions
and the rest of the cortex increases during the third trimester
[24] in neonates [73], and even in late adolescence [74]. The intel-
ligence quotient of typically developing children exhibits a stron-
ger positive association with rich-club connectivity than with
feeder and local connectivity [75]. Although developmental trajec-
tories in the structural and functional rich-clubs are similar in neo-
nates and adults [76], adults exhibit greater functional rich-club
organization compared to that in the younger population [68].
The cost of rich-club connections is strongly associated with prena-
tal maternal cortisol levels, a measure of maternal stress during
pregnancy; this effect is unique to women, suggesting sex-
specific rich-club contributions during development [77]. The
development of term and preterm children using rich-club analy-
ses is an active research area. Preterm neonates were reported to
have reduced connectivity of rich-club regions [78], and children
with longer gestation exhibit more efficient structural networks
with higher rich-club connectivity when compared to children
with shorter gestation [69]. In contrast, rich-club characteristics

https://bams1.org
http://cocomac.g-node.org/main/index.php
http://freesurfer.net


Table 2
Summary of outcomes from human rich-club neuroimaging studies.

Refs. Sample size Age (mean ± SD
years)

Modality Parcellation: Number of
network nodes

Connectivity Rich-club findings

van den Heuvel et al. [20] 21 29.95 ± 8.3 DTI 82 and 1170 for low and
high resolution

Deterministic fiber
tractography. SC is binary or
weighted (Nf, Nf normalized
by regional volumes, and
Nf � FA).

First RC analysis in the human brain. RC exists in the
bilateral superior parietal, precuneus, superior frontal
cortex, putamen, hippocampus, and thalamus.

Kocher et al. [63] 43 37.1 ± 11.7 DTI 82 Nf corrected by their length
and regional volume.

RC nodes are symmetrically distributed across all brain
regions. Marked anatomical consistency of RC regions
exists.

van den Heuvel et al. [22] 80 Set 1: 28.6 ± 7.9,
Set 2: 27.0 ± 6.9

DTI 1170 Nf Network cost (defined as Nf � path length) of RC
connections was high (~40% of the total cost). About 69%
of connection paths pass through RC.

van den Heuvel et al. [64] 77 28.2 ± 8.0 DTI and rs-fMRI DTI was processed as in [22]. RSNs were extracted with ICA
to rs-fMRI.

RC nodes are present in all RSNs and coincide in regions
with multiple RSNs. Inter-RSN connections are involved
in RC.

Collin et al. [21] 42 29.0 ± 8.0 DTI, MTI, and rs-fMRI 68 cortical regions SC = FA, MD, TD, and PD.
FC = CC

RC regions and connections have high levels of volume,
white matter organization, metabolic energy usage, long
maturational trajectories, more variable regional time-
series, and more inter-regional functional couplings.

Crossley et al. [65] Meta-analysis (>1600 studies) rs-fMRI 638 brain regions Coactivation matrix Functional RC is located in the parietal and prefrontal
cortices. It is connected over long distances and
coactivated by multiple tasks.

Baggio et al. [66] 30 66.2 ± 10.4 DTI 68 Nf RC connectivity is associated with general cognitive
performance.

Miŝic, et al. [67] 156 subjects in HCP DTI and rs-fMRI 114 FA and Nf Structural RC connections are more involved in network-
level SC–FC associations. RC regions are
disproportionately involved in network-wide
communication.

Ball et al. [24] 46 27+1 (24+4–34+5)
gestational weeks

DTI ~500 regions, probabilistic
fiber tractography, and
binarized SC matrix.

1 for connected and 0 for
disconnected regions

RC is present by 30-week gestation. Connections
between RC and the rest of the brain proliferate until the
time of normal birth. RC organization remains intact
following premature birth, but both cortical–subcortical
connectivity and short-distance corticocortical
connections are disrupted.

Kim et al. [69] 147 8.12 ± 1.35 DTI 90 cortical and subcortical
regions

FA of interconnecting fiber
tracts

Connectivity strength is higher: (1) among RC nodes in
children with longer gestation, and (2) in RC nodes
compared to the feeder and local connections.

Grayson et al. [68] 14 adults and 15
children

Adults: 24–35,
children: 7–11

DTI and rs-fMRI 219 cortical regions Nf Both adults and children have similar structural RC
organization, but the adults have greater functional RC
organization.

Perry et al. [70] 115 76–94 DTI 512 cortical and subcortical
regions

Nf corrected by their length RC organization is consistent in both elderly and young
adults.

Zhao et al. [71] 113 38.2 ± 21.4, 9–85 DTI 1024 cortical and
subcortical regions

Nf Structural RC connectivity has an inverted U-shaped
trajectory across the lifespan. RC regions are distributed
in the medial frontal, parietal, and occipital cortices in
children and young adults, but RC connections in the
frontal regions are reduced in older age.

Cao et al. [72] 126 36.8 ± 21.2, 7–85 rs-fMRI 1024 cortical and
subcortical regions

CC Functional RC connectivity has an inverted U-shaped
lifespan trajectory.

Zhao et al. [73] 77 25.0–41.4 weeks DTI 58 cortical regions Nf � FA Efficiency of RC networks is increased more rapidly than
that of non-RC networks in term-born brain networks.

Baker et al. [74] 31 16.58 ± 0.54 DTI 80 cortical and subcortical
regions

Nf and FA RC connectivity between subcortical regions decreased
over time. Frontal–subcortical and frontal–parietal hub–
hub connectivity is increased over time.
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associated with preterm births have been reported to be main-
tained in school-age children [79] or to be stronger in adults
[80]. These findings emphasize that the overall topological charac-
teristics in the brains of children are associated with longer gesta-
tion, and shorter gestation does not significantly impact rich-club
organization particularly in children (Table 2). In summary, the
structural and functional rich-club framework provides a method
to map the age-dependent patterns of brain development and to
answer several key questions: (1) What are the critical roles of
‘‘core” brain regions in brain development? (2) Can improved
development of rich-club organization lead to improved brain
function? (3) Are peripheral connections merely supplementary
to brain functions when compared to rich-club connections?
Empirical studies have demonstrated that brain network evolution
is particularly centered with rich-club regions in the developing
brain. However, critical challenges related to the network develop-
ment should be addressed in future studies, which include: (1) the
precise mapping of developmental stages in both structural and
functional rich-clubs, (2) the neural substrates of abnormal rich-
club development, and (3) the predominance of rich-club versus
non-rich-club regions in network development.

6.2. Clinical findings: Psychiatric disorders

Both structural and functional brain networks exhibit rich-club
organization in schizophrenia [23,81–83], suggesting that the
effects of altered brain connectivity are more concentrated in
rich-club connections than in feeder or local connections in
patients with schizophrenia. The connection density of rich-club
regions derived from DTI and white matter tractography is often
observed to be reduced in patients with schizophrenia, while
rich-club density is intermediate in unaffected siblings relative to
that in patients and healthy controls, and is lower in their offspring
than in healthy controls [25,84,85]. These findings have been repli-
cated in subjects with high clinical risk for psychosis [86]. Further-
more, decreased rich-club connection density is associated with
lower levels of global communication capacity (i.e., network effi-
ciency), resulting in a stronger association between structural
and resting-state functional connectivity in patients [23]. Impor-
tantly, the increased structural–functional association in patients
is interpreted as more stringent and less dynamic brain function
from the illness that is more directly associated with the underly-
ing structural connectivity. Additionally, higher connectivity
strength of rich-club connections is associated with positive
changes in general functioning over time in schizophrenia
[87,88]. Rich-club connections among rich-club nodes are lower
in major depressive disorder (MDD) and late-life depression
patients than in healthy controls, in which higher rich-club con-
nectivity is associated with lower symptom severity score (i.e.,
Hamilton Depression Rating Scale) [89,90]. However, the remission
of MDD patients is more strongly associated with feeder-local sub-
networks than with rich-club connections [91], suggesting that
compensatory effects from treatment may be more distinct in
non-core brain regions in patients with this psychiatric disorder.
Additionally, the development of age-related rich-club organiza-
tion has been reported in typically developing adolescents but
not in patients with autism spectrum disorder (ASD) [92]. Ball
and colleagues reported that the rich-club connections in ASD
patients exhibited an inverted U-shaped association with age
[93], which is similar to that in healthy controls [71]. While the
phenotypes of impaired neurodevelopmental disorders such as
attention deficit hyperactivity disorder (ADHD) and ASD overlap
substantially in terms of clinical comorbidity, ADHD and ASD chil-
dren exhibit distinct patterns of rich-club and non-rich-club con-
nections [94]. Global network efficiency has been reported to be
decreased in bipolar disorder (BD) patients, but no significant dif-
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ferences have been noted in the strength of brain hub connections
with rich-club regions [95–97], suggesting that aberrant network
organization may not be specific to the central core system of
BD. However, more recent studies have indicated that BD patients
possess decreased rich-club and feeder connectivity density [98]
and increased rich-club connectivity [99].

6.3. Clinical findings: Neurological disorders

Rich-club organization is more predominant in patients with
Alzheimer’s disease (AD), and a recent study suggested that rich-
club connectivity (as measured by the fiber density interconnect-
ing two regions) is decreased in the early-onset AD [100]. However,
low-degree regions, and not rich-club regions, have been found to
be more strongly associated with network disruption in AD
patients [101–103]. This suggests that peripheral connections
may be more vulnerable and contribute to cognitive decline in this
neurodegenerative disease. Moreover, patients with generalized
tonic-clonic seizures have reduced rich-club connectivity, which
is associated with longer durations of illness and seizure frequen-
cies [104]. Structural connectivity of rich-club regions is decreased
in patients with multiple sclerosis, in whom decreased rich-club
connectivity is associated with mobility, hand function, informa-
tion processing speed [105], and cognitive impairments [106]. In
patients with traumatic brain injury (TBI), the strength of local
connections is increased, but rich-club connectivity is decreased
[107]. These results have been replicated in cognitively impaired
and nonimpaired active professional fighters [108]. These findings
suggest that peripheral subnetworks may compensate for biologi-
cally high-cost rich-club subnetworks after TBI. Finally, decreased
structural connectivity has been observed in rich-club regions in
patients with cerebral small vessel disease, which was positively
associated with psychomotor speed and executive function [109].
However, connectivity disruption in rich-club regions did not have
specific effects over time, as observed in a longitudinal study [110].

6.4. Rich-club implications for brain disorders

Highly interconnected network hub regions often form rich-
clubs. A coactivation network meta-analysis using functional neu-
roimaging data revealed that topological characteristics such as
network module, small-worldness, and rich-club are often consis-
tent across psychiatric and neurological brain disorders [111].
However, pathological lesions are likely to be found in hub regions
rather than peripheral regions, whereby rich-club regions have
lesions twice as often as peripheral network nodes. These findings
suggest that: (1) brain regions do not function equally in brain net-
work architecture, (2) brain disorders are more strongly associated
with damage to central brain regions such as rich-clubs, and (3) the
disruption of network rich-clubs may be common across various
brain diseases. Of note, the relationship between a specific brain
dysfunction and network rich-club regions is dependent on the
‘‘location” of lesions. For example, while schizophrenia and AD
share hub-specific distributions of lesions, regions more strongly
implicated in each disease are located in the frontal and cingulate
regions for schizophrenia, and in the medial temporal and parietal
regions for AD.
7. Summary and outlook

The functional roles of biological network elements vary
according to their anatomical locations. This differentiated func-
tional organization of the central nervous system has often been
associated with specific functions of the network system such as
sensorimotor function, mental activities, and behaviors [112].
The concept of ‘‘functional specialization” is supported by various
neurophysiological, anatomical, and noninvasive neuroimaging
findings, and has formed a theoretical neural substrate underlying
cognition. However, the complex nature of human cognition
prompts the following question: How do functionally specialized
units communicate with each other optimally? The conceptual
framework used by researchers to understand neural systems such
as the brain emerged from the idea that individual neural elements
are functionally integrated and orchestrate higher-order brain
activities such as sensory recognition, emotion, language process-
ing, and social cognition in a coordinated manner [113]. The orga-
nization of functionally segregated and anatomically integrated
biological systems has been investigated from the perspective of
complex network theory [114]. Network science or graph theory
has revealed a structural basis for the dynamic functional interac-
tions emerging from a diverse set of neural elements and defined
how structural topology gives rise to modular brain function rang-
ing from C. elegans to mammals and humans. A key organizational
feature is the existence of crucial elements that attribute functional
specialization to neural networks, known as hubs. Hub elements
have been found to produce efficient neural information flow at
the expense of neural cost [115]. They have more connections
(i.e., higher degree) or higher levels of connectivity, particularly
for long-distance connections exhibiting the ‘‘rich” aspects of hub
elements, forming the ‘‘rich-club” [20,22].

Several important issues arise from the current rich-club per-
spective and network analysis. It is necessary to develop optimal
computational and mathematical frameworks for each data modal-
ity in each neuronal system in terms of network construction,
statistics, and their interpretations [116]. First, defining network
nodes and edges is crucial for modeling neural systems [117] and
depends strongly on the research domain (e.g., anatomical and
functional networks acquired from neuronal, physiological, and
neuroimaging datasets). Regarding macroscale brain networks
(i.e., brain regions), parcellation techniques have been used to sub-
divide the whole brain into anatomically distinct areas resulting in
segregated nodes of the brain network. Such parcellations include
predefined anatomical segregations (e.g., Brodmann areas,
Desikan-Killiany atlas [118], and anatomical automatic labeling
map [119]), atlas-independent random cortical segmentation
[24], and data-driven clusters, which are often derived from func-
tional correspondence [120–123] with individualized state-specific
parcellations [124,125] (refer to the study by Arslan and colleagues
[126] for a comparison of each parcellation scheme). While the
predefined parcellation templates integrate network properties
across each individual leading to unbiased group comparisons, it
should be noted that the size and distribution of each parcel mod-
ulate quantitative topological properties including the rich-club
organization of a brain network [127,128]. The significance of net-
work edges is also considered important. Anatomical neuroimag-
ing techniques represent diverse definitions of structural
connectivity between two brain regions (e.g., the number of
streamlines generated from fiber tractography, tract-based diffu-
sion characteristics such as fractional anisotropy and mean diffu-
sivity, cortical thickness, and the amount of myelination in white
matter) [20,129,130], while functional edges are designated by
functional similarity such as Pearson correlation coefficient,
covariance, coherence, and mutual information measured with
fMRI, EEG, and MEG recordings. In addition to the definitions of
structural and functional connectivity, functional networks are
intrinsically more dynamic than structural networks and act as
determinants of brain function and dysfunction that are con-
strained by brain structure [131]. Furthermore, weighted struc-
tural and functional connectivity measures are often noisy due to
physiological and methodological limitations. Binarization or
thresholding techniques may be applicable to enhance the contrast
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between relevant and irrelevant connectivity values [132]. How-
ever, binarization or thresholding is highly dependent on whether
the connectivity is absolute (retaining values over a threshold) or
proportional (retaining a fixed percentage of values) and may have
a greater impact on certain global network measures particularly
derived from functional connectivity [133]. In addition, a general
consensus on the definition of network threshold is lacking, and
researchers use empirical values to determine thresholds. These
binarization or thresholding techniques may diminish or exagger-
ate connectivity values below or above the threshold, leading to
under- or over-estimated network characteristics, respectively. It
is challenging to determine whether individual or group-wise vari-
ations in rich-club regions are indicative of methodological limita-
tions resulting from the aforementioned computational and
technical challenges, or whether they truly reflect additional bio-
logical information in terms of inter- and intra-individual variabil-
ity. For instance, rich-club regions identified in an initial report
[20] consist of the superior parietal and frontal cortex, precuneus,
putamen, hippocampus, and thalamus. However, more recent
studies have identified the insula as another rich-club region
[21,24,74,77]. This may arise from the arbitrary threshold for
rich-club detection based on statistical rich-club coefficients /(k)
(e.g., top 10% [24,77], 12% [21], and 18% [74]). Since the number
of connections across nodes in the brain network often increases
gradually and not distinctively, a more liberal or conservative def-
inition of the rich-club may affect subsequent analyses. Thus,
although the rich-club organization exists regardless of definitions
of brain parcellation and connectivity, these may affect qualitative
characteristics of the rich-club, reflecting distinct aspects of rich-
club regions in the brain network. In this regard, a robust and con-
sistent rich-club characterization remains unsolved in brain net-
work science.

Rich-club analysis and whole brain anatomical network analy-
ses are often based on neuroimaging techniques such as DTI and
fiber tractography. While technological advancements in these
techniques are rapidly increasing, the intrinsic nature of neu-
roimaging remains an open question. First, fiber tractography is a
deterministic approach which often provides one-to-one connec-
tions from a seed point that may miss crossing, splitting, and/or
branching tracts. Although probabilistic algorithms have been
applied as an alternative to resolve this issue, other false-positive
connections may be detected. This approach may not comprehen-
sively assess rich-club detection and connections because fiber
tracts related to the rich-club are relatively insensitive to false-
positive and false-negative tracts. However, feeder and local con-
nections are highly dependent on the quality of fiber tractography
and may have a larger impact on peripheral associations to rich-
club regions. The development of better qualified tractography
algorithms is required. Second, similar to conventional graph the-
oretical analysis, the rich-club organization is relatively dependent
on the definition of structural connectivity derived from DTI. For
example, the number of streamlined fiber tracts is commonly used
for the detection of the rich-club and other network measures. In
addition to variations in streamlines related to parameter adjust-
ment during fiber-tracking, investigating the association between
the connections with neuronal tracing as true connectivity and
the number of streamlines or other variations (e.g., scalar measures
along fiber tracts such as fractional anisotropy) is recommended.
Third, the structural and functional rich-club organization
extracted from neuroimaging is strongly associated with genetic
variation [53,134], structural–functional coupling [23,84], and
metabolism [135]. Therefore, higher cost and central roles of
rich-club regions may be established based on the high metabolic
energy consumption in these core regions and coupled with certain
patterns of gene expression related to metabolism. This may lead
to higher levels of functional and structural connections with lar-
ger gray matter volume and improved white matter microstruc-
ture, thereby establishing a closer relationship between brain
structure and function. To establish the consequences of rich-
club formation in the brain, various modalities including genetic,
metabolic, microbiological measurements, and neuroimaging are
required to elucidate the convergent implications of brain rich-
club organization. Fourth, graph theoretical brain network analy-
sis, which enables the investigation of rich-club organization, is
dependent on the scales-of-interest at multiple levels for a given
network (i.e., global, modular, or local network organization). Thus,
detection of the rich-club architecture at the level of individual
regions is often associated with modular or global brain network
properties. In addition to the global communication efficiency
derived from rich-club architecture (i.e., role as connector hubs),
rich-club nodes often form subnetwork communities or modules
with a relatively sparsely connected set of nodes (i.e., peripheral
nodes). The implications of each rich-club node (as in psychiatric
and neurological disorders) may exert its influence on the partici-
pating module within the network rather than on the individual
node itself (i.e., role as provincial hubs). Therefore, analyses at
the level of intermediate-networks (i.e., modules) and individual
rich-club nodes are crucial to extend the utility of these central
and rich network units. Of importance, detection of network mod-
ules or communities is dependent on the applied optimization
algorithm, often resulting in non-unique network subdivisions,
which may restrict the unbiased interpretation of consistent mod-
ular structures related to specific rich-club nodes. Deriving strate-
gies for optimal modular detection techniques will be crucial to
understand the resilience and vulnerability of rich-club nodes at
the level of higher-order network structures. Fifth, the rich-club
comprises a set of core brain regions, which is relatively invulner-
able to external attacks (i.e., brain disease) because the brain has
several neural resources (i.e., high cost). This suggests that rich-
club abnormalities are more easily detected when the attack
exceeds the resistance and tolerance to external insults (i.e., critical
point). Therefore, beyond conventional graph theoretical measures,
rich-club investigations of the brain network should pay more
attention to determining thresholds at which external attacks
exceed a critical point (i.e., occurrence of a certain disease).

In this review, we have described how rich-club organization
has been applied to neural systems to reveal neuroanatomical cor-
relates with brain development and disorders. Network neuro-
science investigates brain structure, function, behavior, and
cognition. Considering the weaker statistical power of typical clin-
ical studies, systematically collected large-scale datasets frommul-
ticenter and multimodal data collection (e.g., Human Connectome
Project [136–138]) will be essential to comprehensively assess the
phenomenon of rich-club organization and understand the neural
architecture underlying brain development and disorders. Making
sense of these brain network datasets presents an exciting chal-
lenge of bridging the gap between topological findings related to
core brain regions and the biological significance of computational
interpretations.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the Korea University Future
Research Grant (grant number K2006911 to B.K.M.), the Basic
Science Research Program (grant number 2018R1A2B6004084 to
B.K.M.), the Convergent Technology R&D Program for Human Aug-



1772 D.-J. Kim, B.-K. Min / Computational and Structural Biotechnology Journal 18 (2020) 1761–1773
mentation (grant number 2020M3C1B8081319 to B.K.M.), and the
Information Technology Research Center (ITRC) support program
(grant number IITP-2020-2016-0-00464 to B.K.M.), funded by the
Korean government (MSICT) through the National Research Foun-
dation of Korea. The authors declare no competing interests.

References

[1] Sporns O, Tononi G, Kotter R. The human connectome: a structural
description of the human brain. PLoS Comput Biol 2005;1(4):e42.

[2] Churchland PS, Sejnowski TJ. Perspectives on cognitive neuroscience. Science
1988;242(4879):741–5.

[3] Swanson LW, Lichtman JW. From cajal to connectome and beyond. Annu Rev
Neurosci 2016;39:197–216.

[4] Sporns O. Structure and function of complex brain networks. Dialogues Clin
Neurosci 2013;15(3):247–62.

[5] Sporns, O., Networks of the brain. 2011, Cambridge, Mass.: MIT Press. xi, 412
p., 8 p. of plates.

[6] Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics
2004;2(2):145–62.

[7] Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks. Nature
1998;393(6684):440–2.

[8] Humphries MD, Gurney K. Network ’small-world-ness’: a quantitative
method for determining canonical network equivalence. PLoS One 2008;3
(4):e0002051.

[9] Papo D et al. Beware of the small-world neuroscientist!. Front Hum Neurosci
2016;10:96.

[10] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses
and interpretations. Neuroimage 2010;52(3):1059–69.

[11] Girvan M, Newman ME. Community structure in social and biological
networks. Proc Natl Acad Sci U S A 2002;99(12):7821–6.

[12] Newman ME. Modularity and community structure in networks. Proc Natl
Acad Sci U S A 2006;103(23):8577–82.

[13] Chen ZJ et al. Revealing modular architecture of human brain structural
networks by using cortical thickness from MRI. Cereb Cortex 2008;18
(10):2374–81.

[14] Hagmann P et al. Mapping the structural core of human cerebral cortex. PLoS
Biol 2008;6(7):e159.

[15] Sporns O, Honey CJ, Kotter R. Identification and classification of hubs in brain
networks. PLoS One 2007;2(10):e1049.

[16] Aerts H et al. Brain networks under attack: robustness properties and the
impact of lesions. Brain 2016;139(Pt 12):3063–83.

[17] Gratton C et al. Focal brain lesions to critical locations cause widespread
disruption of the modular organization of the brain. J Cogn Neurosci 2012;24
(6):1275–85.

[18] Colizza V et al. Detecting rich-club ordering in complex networks. Nat Phys
2006;2(2):110–5.

[19] McAuley JJ, da Fontoura Costa L, Caetano TS. Rich-club phenomenon across
complex network hierarchies. Appl Phys Lett 2007:91(8).

[20] van den Heuvel MP, Sporns O. Rich-club organization of the human
connectome. J Neurosci 2011;31(44):15775–86.

[21] Collin G et al. Structural and functional aspects relating to cost and benefit of
rich club organization in the human cerebral cortex. Cereb Cortex 2014;24
(9):2258–67.

[22] van den Heuvel MP et al. High-cost, high-capacity backbone for global brain
communication. Proc Natl Acad Sci U S A 2012;109(28):11372–7.

[23] van den Heuvel MP et al. Abnormal rich club organization and functional
brain dynamics in schizophrenia. JAMA Psychiatry 2013;70(8):783–92.

[24] Ball G et al. Rich-club organization of the newborn human brain. Proc Natl
Acad Sci U S A 2014;111(20):7456–61.

[25] Collin G et al. Impaired rich club connectivity in unaffected siblings of
schizophrenia patients. Schizophr Bull 2014;40(2):438–48.

[26] White JG et al. The structure of the nervous system of the nematode
Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986;314
(1165):1–340.

[27] Basser PJ et al. In vivo fiber tractography using DT-MRI data. Magn Reson Med
2000;44(4):625–32.

[28] Kaiser M. A tutorial in connectome analysis: topological and spatial features
of brain networks. Neuroimage 2011;57(3):892–907.

[29] Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain
connectome. Annu Rev Clin Psychol 2011;7:113–40.

[30] Herculano-Houzel S. The human brain in numbers: a linearly scaled-up
primate brain. Front Hum Neurosci 2009;3:31.

[31] Azevedo FA et al. Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J Comp Neurol
2009;513(5):532–41.

[32] Uddin LQ. Complex relationships between structural and functional brain
connectivity. Trends Cogn Sci 2013;17(12):600–2.

[33] Zhou S, Mondragon RJ. The rich-club phenomenon in the Internet topology.
IEEE Commun Lett 2004;8(3):180–2.

[34] Opsahl T et al. Prominence and control: the weighted rich-club effect. Phys
Rev Lett 2008;101(16):168702.

[35] Alstott J et al. A unifying framework for measuring weighted rich clubs. Sci
Rep 2014;4:7258.
[36] Cinelli M, Costa L. Generalized rich-club ordering in networks. J Complex
Networks 2019;7(5):702–19.

[37] Towlson EK et al. The rich club of the C. elegans neuronal connectome. J
Neurosci 2013;33(15):6380–7.

[38] Varshney LR et al. Structural properties of the Caenorhabditis elegans neuronal
network. PLoS Comput Biol 2011;7(2):e1001066.

[39] Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev
Lett 2001;87(19):198701.

[40] Li W et al. A C. elegans stretch receptor neuron revealed by a
mechanosensitive TRP channel homologue. Nature 2006;440(7084):684–7.

[41] Ma A, Mondragon RJ. Rich-cores in networks. PLoS One 2015;10(3):
e0119678.

[42] Bentley B et al. The multilayer connectome of Caenorhabditis elegans. PLoS
Comput Biol 2016;12(12):e1005283.

[43] Arnatkeviciute A et al. Hub connectivity, neuronal diversity, and gene
expression in the Caenorhabditis elegans connectome. PLoS Comput Biol
2018;14(2):e1005989.

[44] Scannell JW, Blakemore C, Young MP. Analysis of connectivity in the cat
cerebral cortex. J Neurosci 1995;15(2):1463–83.

[45] Scannell JW et al. The connectional organization of the cortico-thalamic
system of the cat. Cereb Cortex 1999;9(3):277–99.

[46] Hilgetag CC et al. Anatomical connectivity defines the organization of clusters
of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond
B Biol Sci 2000;355(1393):91–110.

[47] Gomez-Gardenes J et al. From modular to centralized organization of
synchronization in functional areas of the cat cerebral cortex. PLoS One
2010;5(8):e12313.

[48] Lameu EL et al. Suppression of bursting synchronization in clustered scale-
free (rich-club) neuronal networks. Chaos 2012;22(4):043149.

[49] de Reus MA, van den Heuvel MP. Rich club organization and intermodule
communication in the cat connectome. J Neurosci 2013;33(32):12929–39.

[50] Beul SF, Grant S, Hilgetag CC. A predictive model of the cat cortical
connectome based on cytoarchitecture and distance. Brain Struct Funct
2015;220(6):3167–84.

[51] Bota M, Swanson LW. Online workbenches for neural network connections. J
Comp Neurol 2007;500(5):807–14.

[52] van den Heuvel MP, Scholtens LH, de Reus MA. Topological organization of
connectivity strength in the rat connectome. Brain Struct Funct 2016;221
(3):1719–36.

[53] Fulcher BD, Fornito A. A transcriptional signature of hub connectivity in the
mouse connectome. Proc Natl Acad Sci U S A 2016;113(5):1435–40.

[54] Rees, C.L., et al. Graph theoretic and motif analyses of the hippocampal
neuron type potential connectome. eNeuro, 2016. 3(6)

[55] Harriger L, van den Heuvel MP, Sporns O. Rich club organization of macaque
cerebral cortex and its role in network communication. PLoS One 2012;7(9):
e46497.

[56] Misic B, Sporns O, McIntosh AR. Communication efficiency and congestion of
signal traffic in large-scale brain networks. PLoS Comput Biol 2014;10(1):
e1003427.

[57] Scholtens LH et al. Linking macroscale graph analytical organization to
microscale neuroarchitectonics in the macaque connectome. J Neurosci
2014;34(36):12192–205.

[58] Shen K et al. Network structure shapes spontaneous functional connectivity
dynamics. J Neurosci 2015;35(14):5579–88.

[59] Dann B et al. Uniting functional network topology and oscillations in the
fronto-parietal single unit network of behaving primates. Elife 2016:5.

[60] Zamora-Lopez G et al. Functional complexity emerging from anatomical
constraints in the brain: the significance of network modularity and rich-
clubs. Sci Rep 2016;6:38424.

[61] de Lange SC, Ardesch DJ, van den Heuvel MP. Connection strength of the
macaque connectome augments topological and functional network
attributes. Netw Neurosci 2019;3(4):1051–69.

[62] Sereno MI, Tootell RB. From monkeys to humans: what do we now know
about brain homologies?. Curr Opin Neurobiol 2005;15(2):135–44.

[63] Kocher M et al. Individual variability in the anatomical distribution of nodes
participating in rich club structural networks. Front Neural Circ 2015;9
(APR):16.

[64] van den Heuvel MP, Sporns O. An anatomical substrate for integration
among functional networks in human cortex. J Neurosci 2013;33
(36):14489–500.

[65] Crossley NA et al. Cognitive relevance of the community structure of the
human brain functional coactivation network. Proc Natl Acad Sci U S A
2013;110(28):11583–8.

[66] Baggio HC et al. Rich club organization and cognitive performance in healthy
older participants. J Cogn Neurosci 2015;27(9):1801–10.

[67] Misic B et al. Network-level structure-function relationships in human
neocortex. Cereb Cortex 2016;26(7):3285–96.

[68] Grayson DS et al. Structural and functional rich club organization of the brain
in children and adults. PLoS One 2014;9(2):e88297.

[69] Kim DJ et al. Longer gestation is associated with more efficient brain
networks in preadolescent children. Neuroimage 2014;100:619–27.

[70] Perry A et al. The organisation of the elderly connectome. Neuroimage
2015;114:414–26.

[71] Zhao T et al. Age-related changes in the topological organization of the white
matter structural connectome across the human lifespan. Hum Brain Mapp
2015;36(10):3777–92.

http://refhub.elsevier.com/S2001-0370(20)30328-7/h0005
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0005
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0010
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0010
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0015
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0015
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0020
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0020
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0030
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0030
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0035
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0035
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0040
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0040
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0040
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0045
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0045
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0050
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0050
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0055
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0055
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0060
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0060
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0065
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0065
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0065
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0070
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0070
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0075
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0075
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0080
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0080
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0085
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0085
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0085
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0090
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0090
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0095
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0095
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0100
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0100
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0105
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0105
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0105
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0110
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0110
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0115
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0115
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0120
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0120
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0125
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0125
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0130
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0130
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0130
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0135
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0135
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0140
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0140
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0145
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0145
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0150
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0150
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0155
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0155
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0155
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0160
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0160
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0165
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0165
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0170
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0170
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0175
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0175
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0180
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0180
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0185
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0185
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0190
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0190
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0195
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0195
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0200
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0200
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0205
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0205
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0210
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0210
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0215
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0215
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0215
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0220
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0220
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0225
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0225
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0230
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0230
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0230
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0235
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0235
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0235
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0240
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0240
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0245
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0245
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0250
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0250
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0250
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0255
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0255
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0260
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0260
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0260
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0265
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0265
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0275
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0275
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0275
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0280
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0280
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0280
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0285
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0285
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0285
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0290
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0290
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0295
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0295
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0300
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0300
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0300
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0305
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0305
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0305
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0310
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0310
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0315
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0315
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0315
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0320
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0320
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0320
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0325
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0325
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0325
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0330
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0330
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0335
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0335
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0340
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0340
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0345
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0345
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0350
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0350
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0355
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0355
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0355


D.-J. Kim, B.-K. Min / Computational and Structural Biotechnology Journal 18 (2020) 1761–1773 1773
[72] Cao M et al. Topological organization of the human brain functional
connectome across the lifespan. Dev Cogn Neurosci 2014;7:76–93.

[73] Zhao T et al. Structural network maturation of the preterm human brain.
Neuroimage 2019;185:699–710.

[74] Baker ST et al. Developmental changes in brain network hub connectivity in
late adolescence. J Neurosci 2015;35(24):9078–87.

[75] Kim DJ et al. Children’s intellectual ability is associated with structural
network integrity. Neuroimage 2016;124(Pt A):550–6.

[76] van den Heuvel MP et al. The neonatal connectome during preterm brain
development. Cereb Cortex 2015;25(9):3000–13.

[77] Kim DJ et al. Prenatal maternal cortisol has sex-specific associations with
child brain network properties. Cereb Cortex 2017;27(11):5230–41.

[78] Scheinost D et al. Preterm birth alters neonatal, functional rich club
organization. Brain Struct Funct 2016;221(6):3211–22.

[79] Fischi-Gomez E et al. Brain network characterization of high-risk preterm-
born school-age children. Neuroimage Clin 2016;11:195–209.

[80] Karolis VR et al. Reinforcement of the brain’s rich-club architecture following
early neurodevelopmental disruption caused by very preterm birth. Cereb
Cortex 2016;26(3):1322–35.

[81] Yu Q et al. Disrupted correlation between low frequency power and
connectivity strength of resting state brain networks in schizophrenia.
Schizophr Res 2013;143(1):165–71.

[82] de Reus MA et al. An edge-centric perspective on the human connectome:
link communities in the brain. Philos Trans R Soc Lond B Biol Sci 2014:369
(1653).

[83] Cui LB et al. Connectome-based patterns of first-episode medication-naive
patients with schizophrenia. Schizophr Bull 2019;45(6):1291–9.

[84] Collin G et al. Affected anatomical rich club and structural-functional
coupling in young offspring of schizophrenia and bipolar disorder patients.
Biol Psychiatry 2017;82(10):746–55.

[85] Zhao X et al. Abnormal rich-club organization associated with compromised
cognitive function in patients with schizophrenia and their unaffected
parents. Neurosci Bull 2017;33(4):445–54.

[86] Schmidt A et al. Structural network disorganization in subjects at clinical high
risk for psychosis. Schizophr Bull 2017;43(3):583–91.

[87] Collin G et al. Connectome organization is related to longitudinal changes in
general functioning, symptoms and IQ in chronic schizophrenia. Schizophr
Res 2016;173(3):166–73.

[88] Yeo RA et al. Graph metrics of structural brain networks in individuals with
schizophrenia and healthy controls: group differences, relationships with
intelligence, and genetics. J Int Neuropsychol Soc 2016;22(2):240–9.

[89] Yoon S et al. Effects of creatine monohydrate augmentation on brain
metabolic and network outcome measures in women with major
depressive disorder. Biol Psychiatry 2016;80(6):439–47.

[90] Mai N et al. Weight rich-club analysis in the white matter network of late-life
depression with memory deficits. Front Aging Neurosci 2017;9(AUG):279.

[91] Wang X et al. Rehabilitative compensatory mechanism of hierarchical
subnetworks in major depressive disorder: a longitudinal study across
multi-sites. Eur Psychiatry 2019;58:54–62.

[92] Watanabe T, Rees G. Age-associated changes in rich-club organisation in
autistic and neurotypical human brains. Sci Rep 2015;5:16152.

[93] Ball G, Beare R, Seal ML. Network component analysis reveals developmental
trajectories of structural connectivity and specific alterations in autism
spectrum disorder. Hum Brain Mapp 2017;38(8):4169–84.

[94] Ray S et al. Structural and functional connectivity of the human brain in
autism spectrum disorders and attention-deficit/hyperactivity disorder: a
rich club-organization study. Hum Brain Mapp 2014;35(12):6032–48.

[95] Collin G et al. Brain network analysis reveals affected connectome structure
in bipolar I disorder. Hum Brain Mapp 2016;37(1):122–34.

[96] O’Donoghue S et al. Anatomical integration and rich-club connectivity in
euthymic bipolar disorder. Psychol Med 2017;47(9):1609–23.

[97] Roberts G et al. Structural dysconnectivity of key cognitive and emotional
hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry
2018;23(2):413–21.

[98] Wang Y et al. Disrupted rich club organization and structural brain
connectome in unmedicated bipolar disorder. Psychol Med 2019;49
(3):510–8.

[99] Zhang R et al. Aberrant brain structural-functional connectivity coupling in
euthymic bipolar disorder. Hum Brain Mapp 2019;40(12):3452–63.

[100] Daianu M et al. Disrupted rich club network in behavioral variant
frontotemporal dementia and early-onset Alzheimer’s disease. Hum Brain
Mapp 2016;37(3):868–83.

[101] Daianu M et al. Rich club analysis in the Alzheimer’s disease connectome
reveals a relatively undisturbed structural core network. Hum Brain Mapp
2015;36(8):3087–103.

[102] Yan T et al. Rich club disturbances of the human connectome from
subjective cognitive decline to Alzheimer’s disease. Theranostics 2018;8
(12):3237–55.

[103] Cai S et al. Potential biomarkers for distinguishing people with Alzheimer’s
disease from cognitively intact elderly based on the rich-club hierarchical
structure of white matter networks. Neurosci Res 2019;144:56–66.

[104] Li R et al. Disrupted structural and functional rich club organization of the
brain connectome in patients with generalized tonic-clonic seizure. Hum
Brain Mapp 2016;37(12):4487–99.
[105] Stellmann JP et al. Reduced rich-club connectivity is related to disability in
primary progressive MS. Neurol Neuroimmunol Neuroinflamm 2017;4(5):
e375.

[106] Shu N et al. Progressive brain rich-club network disruption from clinically
isolated syndrome towards multiple sclerosis. Neuroimage Clin
2018;19:232–9.

[107] Verhelst H et al. Impaired rich club and increased local connectivity in
children with traumatic brain injury: local support for the rich?. Hum Brain
Mapp 2018;39(7):2800–11.

[108] Mishra VR et al. Understanding white matter structural connectivity
differences between cognitively impaired and nonimpaired active
professional fighters. Hum Brain Mapp 2019;40(17):5108–22.

[109] Tuladhar AM et al. Disruption of rich club organisation in cerebral small
vessel disease. Hum Brain Mapp 2017;38(4):1751–66.

[110] van Leijsen EMC et al. Longitudinal changes in rich club organization and
cognition in cerebral small vessel disease. Neuroimage Clin 2019;24:102048.

[111] Crossley NA et al. The hubs of the human connectome are generally
implicated in the anatomy of brain disorders. Brain 2014;137(Pt 8):2382–95.

[112] Finger, S., Origins of neuroscience: a history of explorations into brain
function. 1994, New York: Oxford University Press. xviii, 462 p

[113] Friston KJ. Functional and effective connectivity: a review. Brain Connect
2011;1(1):13–36.

[114] Sporns O et al. Organization, development and function of complex brain
networks. Trends Cogn Sci 2004;8(9):418–25.

[115] Achard S, Bullmore E. Efficiency and cost of economical brain functional
networks. PLoS Comput Biol 2007;3(2):e17.

[116] Medaglia JD, Lynall ME, Bassett DS. Cognitive network neuroscience. J Cogn
Neurosci 2015;27(8):1471–91.

[117] Butts CT. Revisiting the foundations of network analysis. Science 2009;325
(5939):414–6.

[118] Fischl B et al. Automatically parcellating the human cerebral cortex. Cereb
Cortex 2004;14(1):11–22.

[119] Tzourio-Mazoyer N et al. Automated anatomical labeling of activations in
SPM using a macroscopic anatomical parcellation of the MNI MRI single-
subject brain. Neuroimage 2002;15(1):273–89.

[120] Yeo BT et al. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J Neurophysiol 2011;106(3):1125–65.

[121] Power JD et al. Functional network organization of the human brain. Neuron
2011;72(4):665–78.

[122] Gordon EM et al. Generation and evaluation of a cortical area parcellation
from resting-state correlations. Cereb Cortex 2016;26(1):288–303.

[123] Glasser MF et al. A multi-modal parcellation of human cerebral cortex.
Nature 2016;536(7615):171–8.

[124] Salehi M et al. There is no single functional atlas even for a single individual:
Functional parcel definitions change with task. Neuroimage
2020;208:116366.

[125] Salehi M et al. Individualized functional networks reconfigure with cognitive
state. Neuroimage 2020;206:116233.

[126] Arslan S et al. Human brain mapping: a systematic comparison of
parcellation methods for the human cerebral cortex. Neuroimage
2018;170:5–30.

[127] de Reus MA, van den Heuvel MP. The parcellation-based connectome:
limitations and extensions. Neuroimage 2013;80:397–404.

[128] Bassett DS et al. Conserved and variable architecture of human white matter
connectivity. Neuroimage 2011;54(2):1262–79.

[129] He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human
brain revealed by cortical thickness from MRI. Cereb Cortex 2007;17
(10):2407–19.

[130] van den Heuvel MP et al. Aberrant frontal and temporal complex network
structure in schizophrenia: a graph theoretical analysis. J Neurosci 2010;30
(47):15915–26.

[131] Melozzi F et al. Individual structural features constrain the mouse functional
connectome. Proc Natl Acad Sci U S A 2019.

[132] van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different
size and connectivity density using graph theory. PLoS One 2010;5(10):
e13701.

[133] Garrison KA et al. The (in)stability of functional brain network measures
across thresholds. Neuroimage 2015;118:651–61.

[134] Markett S et al. Serotonin and the brain’s rich club-association between
molecular genetic variation on the TPH2 gene and the structural connectome.
Cereb Cortex 2017;27(3):2166–74.

[135] Liang X et al. The rich-club organization in rat functional brain network to
balance between communication cost and efficiency. Cereb Cortex 2018;28
(3):924–35.

[136] Somerville LH et al. The lifespan human connectome project in development:
a large-scale study of brain connectivity development in 5–21 year olds.
Neuroimage 2018;183:456–68.

[137] Bastiani M et al. Automated processing pipeline for neonatal diffusion MRI in
the developing Human Connectome Project. Neuroimage 2019;185:750–63.

[138] Bookheimer SY et al. The lifespan human connectome project in aging: an
overview. Neuroimage 2019;185:335–48.

[139] Min BK, Hämäläinen MS, Pantazis D. New cognitive neurotechnology
facilitates studies of cortical-subcortical interactions. Trends in
Biotechnology 2020. https://doi.org/10.1016/j.tibtech.2020.03.003. In press.

http://refhub.elsevier.com/S2001-0370(20)30328-7/h0360
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0360
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0365
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0365
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0370
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0370
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0375
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0375
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0380
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0380
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0385
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0385
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0390
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0390
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0395
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0395
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0400
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0400
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0400
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0405
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0405
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0405
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0410
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0410
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0410
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0415
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0415
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0420
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0420
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0420
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0425
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0425
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0425
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0430
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0430
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0435
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0435
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0435
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0440
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0440
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0440
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0445
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0445
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0445
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0450
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0450
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0455
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0455
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0455
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0460
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0460
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0465
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0465
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0465
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0470
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0470
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0470
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0475
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0475
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0480
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0480
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0485
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0485
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0485
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0490
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0490
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0490
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0495
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0495
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0500
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0500
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0500
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0505
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0505
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0505
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0510
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0510
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0510
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0515
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0515
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0515
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0520
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0520
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0520
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0525
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0525
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0525
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0530
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0530
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0530
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0535
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0535
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0535
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0540
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0540
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0540
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0545
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0545
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0550
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0550
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0555
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0555
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0565
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0565
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0570
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0570
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0575
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0575
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0580
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0580
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0585
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0585
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0590
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0590
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0595
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0595
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0595
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0600
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0600
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0605
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0605
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0610
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0610
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0615
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0615
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0620
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0620
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0620
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0625
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0625
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0630
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0630
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0630
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0635
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0635
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0640
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0640
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0645
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0645
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0645
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0650
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0650
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0650
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0655
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0655
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0660
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0660
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0660
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0665
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0665
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0670
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0670
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0670
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0675
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0675
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0675
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0680
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0680
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0680
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0685
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0685
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0690
http://refhub.elsevier.com/S2001-0370(20)30328-7/h0690
https://doi.org/10.1016/j.tibtech.2020.03.003

	Rich-club in the brain’s macrostructure: Insights from graph theoretical analysis
	1 Introduction
	2 Construction of neuronal networks
	3 Detection of the rich-club
	4 Rich-club of Caenorhabditis elegans
	5 Rich-club of mammals
	5.1 Cat
	5.2 Rat and mouse
	5.3 Macaque
	5.4 Rich-club implications in mammals

	6 Rich-club of humans
	6.1 Application to brain development
	6.2 Clinical findings: Psychiatric disorders
	6.3 Clinical findings: Neurological disorders
	6.4 Rich-club implications for brain disorders

	7 Summary and outlook
	Declaration of Competing Interest
	Acknowledgments
	References


