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Abstract

Recent studies suggest that the deregulation of pathways, rather than individual genes, may be critical in triggering
carcinogenesis. The pathway deregulation is often caused by the simultaneous deregulation of more than one gene in the
pathway. This suggests that robust gene pair combinations may exploit the underlying bio-molecular reactions that are
relevant to the pathway deregulation and thus they could provide better biomarkers for cancer, as compared to individual
genes. In order to validate this hypothesis, in this paper, we used gene pair combinations, called doublets, as input to the
cancer classification algorithms, instead of the original expression values, and we showed that the classification accuracy
was consistently improved across different datasets and classification algorithms. We validated the proposed approach
using nine cancer datasets and five classification algorithms including Prediction Analysis for Microarrays (PAM), C4.5
Decision Trees (DT), Naive Bayesian (NB), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN).
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Introduction

The use of DNA microarrays has resulted in the identification

and monitoring of numerous cancer marker genes. These genes

have been widely used to differentiate not only cancerous tissue

samples from normal healthy ones, but also between different sub-

types of cancer [1–3]. From a diagnostic point of view, it is

important to correctly identify cancerous tissue so that the most

appropriate treatment can be given as early as possible.

Numerous classifiers have been proposed and evaluated for

their comparative accuracy in correctly identifying cancer tumors

[4–7]. The most prominent of these classifiers are PAM [8], SVM

[9,10], k-NN [11], DT [12], Top Scoring Pair (TSP) [13], and k-

Top Scoring Pair (k-TSP) [6]. The results from these studies

indicate that there is no single classifier that has the highest

accuracy for all the microarray expression datasets. In this paper,

we introduce a novel method that uses gene pairs to improve the

overall accuracy of the existing classification methods without

altering the underlying algorithms.

Recent research has revealed that biomolecular pathways

may be stronger biomarkers for cancer, as compared to the

deregulation of individual genes [14]. The deregulation of a

different subset of genes, associated with the same pathway, may

result in the deregulation of the pathway. Inspecting gene

combinations may thus be more effective for cancer classification

as compared to independently inspecting individual genes.

Motivated by that, the proposed method uses the information

derived from the gene pair combinations, instead of the original

expression values of the genes. We use the derived information as

the input to the existing classification methods. We show that these

gene pair combinations, called doublets, consistently improve the

classification accuracy of the existing classification algorithms.

The significance of the proposed method is that without

changing the underlying classification algorithms we can signifi-

cantly improve the performance of the algorithms by simply

constructing doublets and by using them as input, instead of the

raw gene expression values. The doublets can be constructed in

various ways. In this paper, we experimented with three different

types of doublets: sumdiff, mul and sign doublets. The sumdiff

doublets are constructed by taking the sum and difference of all

pairs of the gene expression vectors such that a doublet is

represented as a vector sum or difference of two gene vectors. The

mul doublets are similarly constructed by taking multiplication, and

the sign doublets are constructed by taking the signs of the

differences of the two gene vectors. Refer to the ‘‘Materials and

Methods’’ section for more details.

Results

LOOCV (Leave One Out Cross Validation) was conducted to measure

the accuracy of doublet-based classification. To test a sample, all

the samples, but the tested one, are used to compute the t{scores
of genes, and the genes are arranged in accordance with the

descending absolute values of the scores. The formula used to
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calculate this score is

t{score~
�XX C1
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where �XXC1
, �XXC2

represent the class means; s2
C1

,s2
C2

represent the

variances; and NC1
,NC2

represent the number of samples for the

two classes C1 and C2, respectively.

We then select the top 0.2%, 0.4%, 0.6%, 0.8%, 1%, 2%, 4%,

10% of the total number of genes in the dataset for making

doublets. We further prune the doublets so that no gene appears

more than once in the final set of doublets. The algorithm we use

to formulate these unique doublets from the original microarray

expression dataset is outlined as below.

Input: Gene Expression Matrix Q with N genes and M samples,

class vector y for the M samples and T for the number of the

genes required for analysis.

Output: Unique doublets

1. Compute t-scores for matrix Q using class vector y.

2. Make an ordered list H of all the genes gi , in decreasing

value of their absolute t-score.

3. Take the top T genes from the ordered list H, and extract

their expression values from Q. The new expression

matrix Q’ has T rows and M columns.

4. Make doublets from Q’ to get a new matrix Q’’,
with T(T{1) rows and M columns.

5. Compute t-scores for matrix Q’’ using class vector y.

6. Make an ordered list V of all the doublets gigp in Q’’, in

decreasing value of their absolute t-score.

7. Initialize w as an empty list.

8. forall doublets gigp in V do (in decreasing absolute t-score

order); If neither of the genes in the doublet gigp is in w,

then add doublet gigp to w

9. Return w

The accuracy of the original algorithms is measured using all

the raw expression values of the genes as input. We shall refer to

the accuracy of the original algorithm, for example for PAM, as

PAM, and the accuracy obtained using sumdiff/mul/sign doublets as

input to PAM as sumdiff/mul/sign-PAM, respectively. Figure 1

compares the accuracy of the standard PAM classifier to that of

sumdiff/mul/sign-PAM, obtained by taking the top n% genes, for

the nine datasets listed in Table 1. It can be seen that even taking a

small percentage of the top genes and making doublets could

improve the performance of PAM. The sumdiff/mul/sign-PAM

classifier outperforms the standard PAM classifier in many

datasets.

For the two datasets, CNS and DLBCL, this gain is substantial.

For example, with sign-PAM using the top 2% genes, the accuracy

has increased from 82.4% to 91.2% for the CNS dataset; and for

the DLBCL dataset, the accuracy has increased from 85.5% to

97.4%. The average accuracy of the PAM classifier for the nine

datasets has increased from 88.7% to 90.6%, 89.3% and 91.7%

with sumdiff, mul and sign-PAM with top 2% genes, respectively.

We can make two observations from this result. Only a small

number of the top genes are required to achieve improvements

and that the improvements are quite consistent across the datasets.

In order to show whether or not these observations are still valid

for other classification methods, we performed the same

experiments using different classification methods including the

DT, NB, SVM and k-NN classifiers.

Figure 2 shows the comparison results with DT. The accuracy

of DT was consistently improved across the nine datasets. In some

cases, the improvements were significant. For example, sumdiff-DT

improved the accuracy of DT from 64.8% to 77.3% in the Pros.2

dataset using the top 4% genes; from 73.6% to 93.1% in the

Leukemia dataset with only the top 0.2% genes; and from 80.5%

to 98.7% in the DLBCL dataset with only the top 0.2% genes.

Similarly, mul-DT improved the accuracy of DT from 64.8% to

84.1% in the Pros.2 dataset using the top 0.4% genes; from 84.9%

to 100% in the Pros.3 dataset with the top 0.4% genes; and from

80.5% to 97.4% in the DLBCL dataset with the top 1% genes.

Finally, sign-DT improved the accuracy of DT from 84.9% to

97.0% in the Pros.3 dataset using the top 0.2% genes; from 73.6%

to 95.8% in the Leukemia dataset with the top 0.6% genes; and

from 77.4% to 93.6% in the Colon dataset with the top 0.6%

genes. On average, over the nine datasets, the accuracy of DT was

improved from 78.9% to 85.2%, 84.2% and 89.1% using sumdiff,

mul and sign doublets with the top 0.8% genes, respectively.

Similarly for NB, the accuracy was significantly improved with

sumdiff and mul doublets. The result is shown in Figure 3. One

interesting observation we made is that for NB the sign doublets

have consistently performed worse than the others independent of

the number of the top genes used for doublet generation. This is

because the sign doublets transform the expression values into

binary variables indicating the order of expression level between

the genes in the gene pairs and the transformed binary values do

not retain enough information to compute the class probability

used for classification. Thus, the sign doublets are not suitable for

the NB classifiers. Nonetheless, the performance gains with sumdiff

and mul doublets were substantial. In the Pros.1 dataset, both

sumdiff/mul-NB improved the accuracy from 62.8% to 91.2% with

the top 0.2% genes; in the Colon dataset, the accuracy was

improved from 56.5% to 87.1% and 88.7% with the top 1%

genes, respectively. Finally, in the DLBCL dataset, the accuracy

was improved from 80.5% to 96.1% and 92.2% with the top 0.2%

genes, respectively. On average, the accuracy was improved from

81% to 90.7% and 89.5% with sumdiff and mul doublets with the

top 0.2% genes, respectively.

SVM is known to be one of the most robust classifiers in many

domains. Although its performance was compelling by itself, we

observed that in some cases our doublet approach improved its

performance significantly. The result is shown in Figure 4. In the

Colon dataset, the performance gain was most striking. The

accuracy was improved from 82.3% to 87.1%, 87.1% and 93.6%

with sumdiff/mul/sign doublets with the top 1% genes, respectively.

In the Pros.2 dataset, the accuracy was improved from 76.1% to

80.7%, 84.1% and 85.2% with the top 8%, 0.2% and 1% genes,

respectively. On average, the accuracy was improved from 91.2%

to 92%, 91.9%, and 89.4% with sumdiff/mul/sign doublets with the

top 4% genes, respectively.

Lastly, for k-NN, the same was observed, as is shown in Figure 5.

For k-NN, the performance gain was substantial in almost all

datasets. For example, in the Leukemia dataset, the accuracy was

improved from 84.7% to 98.6%, 98.6%, and 100% with sumdiff/

mul/sign doublets with the top 2%, 0.8% and 0.2% genes,

respectively. On average, the accuracy was improved from 84.3%

to 91%, 90.1% and 90.7% with sumdiff/mul/sign doublets with the

top 4% genes, respectively.

Other than the sign doublets in the NB classifier, use of three

doublets led to improved performance of the baseline classifiers.

The baseline classifiers’ average accuracy rates over the nine

datasets ranged from 79% to 91% (i.e., DT = 79%, kNN = 84%,
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NB = 81%, SVM = 91%, and PAM = 89%). On the other hand,

their average rates with doublets hovered at a higher range, or

from 89% to 92% (i.e., sign-DT = 89%, sumdiff-kNN = 91%,

sumdiff-NB = 89%, sumdiff-SVM = 92%, and mul-PAM = 90%; all

the figures with top 4% genes). The baseline classifiers showed a

substantial performance difference among them. When it comes to

doublets, however, the difference was minimized and the

performance was improved. All of the three doublet types almost

equally contributed to performance enhancement across various

datasets (except the sign doublets in the NB). The sumdiff/mul/sign

doublets with the top 4% genes marked average accuracies over

the five classifiers of 88.7% (std. 3.4), 88.5% (std. 3.8), and 85.4%

(std. 9.9), respectively. The sumdiff doublets demonstrated a slightly

better performance than the others did. This result is possibly

attributable to the following fact: The sumdiff doublets capture both

of the upwards and downwards relations (i.e., up-up, down-down,

and up-down) and of the order relations of the expression values of

each gene pair. On the contrary, the mul doublets capture the

Figure 1. The accuracy of sumdiff/mul/sign-PAM for the top n% genes compared with the PAM accuracy for each of the nine datasets.
doi:10.1371/journal.pone.0014305.g001

Table 1. The microarray datasets used for classification.

Dataset Platform Total Total Reference

Genes (N) Samples (M)

Colon cDNA 2000 62 Alon [23]

Leukemia Affy 7129 72 Golub [24]

CNS Affy 7129 34 Pomeroy [25]

DLBCL Affy 7129 77 Shipp [26]

Lung Affy 12533 181 Gordon [27]

Prostate1 Affy 12600 102 Singh [28]

Prostate2 Affy 12625 88 Stuart [29]

Prostate3 Affy 12626 33 Welsh [30]

GCM Affy 16063 280 Ramaswamy [31]

doi:10.1371/journal.pone.0014305.t001
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former alone, and the sign doublets capture the latter alone. (See

the Materials section for more details.)

Discussion

A recent study suggested that the pathway level deregulation is

more important to carcinogenesis than the deregulation of

individual genes [14]. A pathway is typically deregulated by the

deregulation of more than one gene that is associated with that

pathway. This supports our motivation to use doublets as features

for classification, as the doublets could capture potentially more

information about the pathway level deregulation than the

individual genes. In this study, however, the doublets were pooled

from diverse pathways; namely, not limited to those of the gene

pairs belonging to the same pathways. By allowing all possible

gene combinations, we attempted to capture not only the direct

intra-pathway interactions, but also some of the potential indirect

inter-pathway associations. We plan to pursue in our future work,

the cases where only the intra-pathway doublets are used.

A number of independent studies have attested to the

effectiveness of combining gene pairs. Zhou and her colleagues

have introduced a technique called second-order correlation analysis in

which the pair-wise correlations of genes are utilized for the

functional classification of genes [15]. Their approach operates, as

follows: First computed are all pair-wise correlations of genes

within each dataset (1st-order correlations); then, the correlation

patterns are analyzed across multiple datasets (2nd-order correla-

tions). Selection is made of the gene pairs that show high

correlations in multiple datasets, and the selected form doublets. A

doublet is represented as a vector such that its dimension and

value, respectively, correspond to a dataset and to the correlation

value of the gene pair in the corresponding dataset. The doublets

Figure 2. The accuracy of sumdiff/mul/sign-DT for the top n% genes compared with the DT accuracy for each of the nine datasets.
doi:10.1371/journal.pone.0014305.g002
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are then clustered using the correlation as similarity metric. The

doublets clustered together are considered to share similar

functions, because they are turned-on and off collectively across

datasets.

We also have developed microarray data integration techniques

that exploit inter-gene relations, such as correlation signature [16] and

signature cube [17]. The correlation signature projects heterogeneous

microarray expression data onto a coherent information space

where a gene is represented by the vector of its correlations against

a series of landmark genes. If the same set of landmarks is used,

heterogeneous microarray datasets, which could not have been

directly combined, can be integrated, because the correlation

signatures of the genes have compatible dimensions. The signature

cube generalizes the principles of the correlation signature by

providing a heterogeneous microarray data mining framework

where data are represented in relative terms (i.e., inter-gene

relations). Thus, mining algorithm is coherently applicable all

across datasets. Besides the microarray data integration, we also

have applied the principle to the clustering problem and have

introduced a novel clustering framework, SignatureClust [18].

SignatureClust clusters microarray data after projecting it into a

signature space defined by a set of landmark genes chosen by the

user, allowing biologists to get different perspectives of the same

underlying data simply by changing the landmark genes.

It also has been proved that the inter-gene information is useful

for cancer classification purposes. The k-TSP exploits changes in

the expression levels of gene pairs in order to improve the

classification accuracy [6]. The k-TSP classifier uses gene pairs

that are similar to our sign doublets. The k-TSP classifier identifies

the gene pairs whose expression orders are consistently reversed

across the classes; i.e., if gi§gj in most of the control samples and

givgj in most of the cancer samples, then the k-TSP classifier

Figure 3. The accuracy of sumdiff/mul/sign-NB for the top n% genes compared with the NB accuracy for each of the nine datasets.
doi:10.1371/journal.pone.0014305.g003
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regards the gene pair gi and gj as a good indicator of the classes.

The k-TSP classifier finds the top-k pairs, referred to as TSP (Top

Scoring Pairs), and it uses them to determine the classes. The k-

TSP classifier combines the prediction of each TSP using the

unweighted majority voting to determine the final class of a

sample. Recently, the k-TSP algorithm has also been used to

improve the classification accuracy of the SVM classifier [19].

Our method is different from the k-TSP classifier in three

important aspects. First, k-TSP is designed to work with only one

type of gene pairing (similar to our sign doublets), whereas our

method is not limited to specific types of pairing. In this paper, we

have defined three doublets, i.e., sumdiff, mul and sign, but various

other doublets can also be used with the proposed framework.

Second, our method uses existing well established classifiers

instead of devising new classification models. This was made

possible because our method separates the gene pairing step (i.e.,

feature extraction step) from the classification model construction.

Lastly, the k-TSP classifier uses frequency as a metric to assign

score to their gene pairs, whereas we use reliable t-scores. Table 2

summarizes the accuracy results of the doublets and the baseline

classifiers, as well as the accuracy of TSP and k-TSP. TSP refers to

the case where only the single most influential TSP was used for

classification. The TSP and k-TSP classifiers reported a robust

performance, outperforming most of the baseline classifiers. Still,

the two classifiers fall short for the purpose of our study. This study

is significant in that it was demonstrated that a simple doublet-

based feature extraction method remarkably improves the

accuracy of conventional classifiers all the way up to the level of

specialized classification algorithms such as TSP and k-TSP.

The top 15 doublets and their associated KEGG pathways for

the CNS dataset are shown in Table 3. One possible explanation

on why the doublet accuracy is higher than those of the baseline

Figure 4. The accuracy of sumdiff/mul/sign-SVM for the top n% genes compared with the SVM accuracy for each of the nine datasets.
doi:10.1371/journal.pone.0014305.g004
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classifiers could be that the pathways associated with each element

of the doublet are somehow interlocked with each other, and

therefore form a more robust biomarker compared to each of the

pathways taken individually. However, a more robust investigation

is required before any hypothesis can be validated. In our future

work, we intend to conduct a systematic analysis of these top

doublets, their associated pathways and their possible links to

cancer.

We have shown that combining the expression data from gene

pairs increases the accuracy of classifiers. We also have shown that

increasing the number of genes for making doublets does not

necessarily result in a commensurate increase in accuracy. This is

significant because we can get a very high accuracy even though

we use a very small subset of the total number of genes. Thus, the

computational complexity of computing doublets, which can

potentially be quadratic to the total number of genes in the

dataset, is not critical since only a very small subset of the genes is

used.

The genes comprising the top doublets also provide easily

interpretable results, as compared to other methods like SVM.

Although SVM may provide a higher accuracy than others, it is

essentially a black box and no insight can be gained regarding

biomarker genes. Doublets, on the other hand, are easily

interpretable. Doublets identify which genes and which gene pairs

can serve as biomarkers for tumor classification.

In the future, we plan to analyze these doublets across datasets

and cancer types to select more robust cancer biomarker gene

pairs. Especially, we will investigate how the individual doublets

map to real genes’ relations, such as suppression or stimulation,

and how the relations function with regard to the carcinogenesis. It

Figure 5. The accuracy of sumdiff/mul/sign-k-NN for the top n% genes compared with the k-NN accuracy for each of the nine
datasets.
doi:10.1371/journal.pone.0014305.g005
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is further intended to exam the effectiveness of doublets in

classifying multi-class cancer datasets.

Conclusion
The contribution of this paper is twofold. First, it has introduced

doublets, a novel method to combine expression data from gene

pairs. Gene pairs are more robust biomarkers as compared to

individual genes, perhaps reflecting the fact that genes are

interacting to perform a molecular function and the deregulation

of the genes in the interaction, rather than independent genes,

may be responsible for deregulating the critical pathways. Second,

we have combined doublets with conventional classifiers to

produce classifiers whose accuracy is greater than that of the

original ones. We validated the framework using five well-known

classifiers including PAM, DT, NB, SVM, and kNN. We showed

that doublets can be easily incorporated into the existing classifiers

without having to change the underlying algorithms, and that

using doublets can consistently improve the classification accuracy

of the original algorithms across different datasets.

Materials and Methods

Gene Doublets
Let there be N genes fg1, . . . ,gNg in a tissue sample, and let

there be M such tissue samples fx1, . . . ,xMg. The cancer dataset

could then be represented as matrix Q of dimension N|M.

Then, gij would denote the expression value of the i-th gene,

i[f1, . . . ,Ng in the j-th sample, j[f1, . . . ,Mg. The gene vector gi

= fgi1, . . . ,giMg would denote the expression value of the i-th

gene across the M tissue samples, and the column vector xj =

fg1j , . . . ,gNjg would represent the j-th tissue sample across the N

genes. The class labels for the tissue samples are represented by

vector y = fy1, . . . ,yMg, where yj[fC1, . . . ,CKg, the set of all

class labels. For our binary classification problem, K~2, where C1

denotes cancerous and C2 denotes normal tissue samples.

For each pair of genes i,p[f1, . . . ,Ng,1ƒivpƒN in a dataset,

we define a positive doublet vector and a negative doublet vector

as

gigpz~fgi1zgp1,gi2zgp2, . . . ,giMzgpMg ð2Þ

gigp{~fgi1{gp1,gi2{gp2, . . . ,giM{gpMg ð3Þ

Thus, for our dataset with N genes, we have N(N{1)=2 positive

doublets and N(N{1)=2 negative doublets, and our original

microarray dataset of dimension N|M is transformed into an

N(N{1)|M matrix. Each row in this new matrix represents a

doublet (positive or negative). We denote this matrix as S, with

dimension D|M, where D~N(N{1); thus, the defined

doublets are known as sumdiff doublets. In another variation of

making doublets, we define the mul doublets as:

gigp|~fgi1|gp1,gi2|gp2, . . . ,giM|gpMg ð4Þ

and sign doublets as:

Table 2. LOOCV accuracy of the classifiers for the binary class expression datasets.

Method Leukemia CNS DLBCL Colon Pros.1 Pros.2 Pros.3 Lung GCM Avg.

TSP* 93.80 77.90 98.10 91.10 95.10 67.60 97.00 98.30 75.40 88.26

k-TSP* 95.83 97.10 97.40 90.30 91.18 75.00 97.00 98.90 85.40 92.01

DT 73.61 67.65 80.52 77.42 87.25 64.77 84.85 96.13 77.86 78.90

sumdiff-DT{ 91.67 70.59 97.40 64.52 82.35 77.27 87.88 95.03 81.43 83.13

mul-DT{ 84.72 55.88 97.40 79.03 86.27 69.32 90.91 92.27 83.21 82.11

sign-DT{ 93.06 82.35 97.40 88.71 86.27 73.86 96.97 98.34 85.00 89.11

NB 100.00 82.35 80.52 56.45 62.75 73.86 90.91 97.79 84.29 80.99

sumdiff-NB{ 98.61 82.35 92.21 87.10 82.35 76.14 96.97 99.45 81.43 88.51

mul-NB{ 97.22 79.41 89.61 85.48 85.29 75.00 100.00 100.00 82.50 88.28

sign-NB{ 65.28 73.53 75.32 64.52 50.98 56.82 72.73 82.87 67.86 67.77

k-NN 84.72 82.35 89.61 74.19 74.51 73.86 93.94 98.34 86.79 84.26

sumdiff-k-NN{ 98.61 85.29 94.81 83.87 91.18 76.14 96.97 99.45 92.86 91.02

mul-k-NN{ 97.22 85.29 93.51 80.65 85.29 77.27 100.00 100.00 91.79 90.11

sign-k-NN{ 97.22 85.29 96.10 82.26 88.24 76.14 100.00 99.45 91.79 90.72

SVM 98.61 82.35 97.40 82.26 91.18 76.14 100.00 99.45 93.21 91.18

sumdiff-SVM{ 98.61 82.35 96.10 88.71 93.14 78.41 100.00 99.45 91.07 91.98

mul-SVM{ 97.22 88.24 96.10 87.10 88.24 79.55 100.00 99.45 91.07 91.89

sign-SVM{ 97.22 79.41 97.40 79.03 89.22 75.00 100.00 99.45 87.5 89.36

PAM 94.03 82.35 85.45 89.52 90.89 81.25 94.24 97.90 82.32 88.66

sumdiff-PAM{ 95.83 79.41 87.01 87.10 93.14 77.27 96.97 98.34 83.57 88.74

mul-PAM{ 95.83 85.29 92.21 90.32 92.16 79.55 93.94 98.90 82.86 90.12

sign-PAM{ 95.83 85.29 94.81 88.71 90.20 76.14 100.00 98.9 81.07 90.11

*Results obtained in [6]
{Results from taking the top 4% of genes for making unique doublets.
doi:10.1371/journal.pone.0014305.t002
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Table 3. KEGG pathways related to the top 15 doublets for the CNS dataset.

Doublet No. Probe 1 Gene 1 KEGG 1 Probe 2 Gene 2 KEGG 2

1 U40317_s_at PTPRS Unknown U27459_at ORC2L Cell cycle

2 J00212_f_at IFNA21 Cytokine-cytokine receptor interaction U33920_at SEMA3F Axon guidance

Regulation of autophagy

Antigen processing and presentation

Toll-like receptor signaling pathway

Jak-STAT signaling pathway

Natural killer cell mediated cytotoicity

Autoimmune thyroid disease

3 D50924_at DHX34 Unknown X04707_at THRB Neuroactive ligand-
receptor interaction

4 U31215_s_at GRM1 Calcium signaling pathway M64929_at PPP2R2A Tight junction

Neuroactive ligand-receptor interaction

Gap junction

Long-term potentiation

Long-term depression

5 U52828_s_at CTNND2 Unknown U33267_at GLRB Neuroactive ligand-
receptor interaction

6 D50582_at KCNJ11 Type II diabetes mellitus Y10204_at Unknown Unknown

7 U83600_at TNFRSF25 Cytokine-cytokine receptor interaction HG2260-HT2349_s_at Unknown Unknown

8 S77835_s_at IL2 Cytokine-cytokine receptor interaction M60858_rna1_at NCL Pathogenic Escherichia
coli infection - EHEC

Jak-STAT signaling pathway Pathogenic Escherichia
coli infection - EPEC

T cell receptor signaling pathway

Type I diabetes mellitus

Autoimmune thyroid disease

Allograft rejection

Graft-versus-host disease

9 L32179_at AADAC Alkaloid biosynthesis II M14660_at IFIT2 Unknown

10 D50310_at CCNI Unknown L78833_cds2_at RND2 Unknown

11 HG2417-HT2513_at Unknown Unknown U35451_at CBX1 Unknown

12 U03090_at PLA2G5 Glycerophospholipid metabolism M16594_at GSTA2 Glutathione
metabolism

Ether lipid metabolism Metabolism of
enobiotics by
cytochrome P450

Arachidonic acid metabolism Drug metabolism -
cytochrome P450

Linoleic acid metabolism

alpha-Linolenic acid metabolism

MAPK signaling pathway

VEGF signaling pathway

Fc epsilon RI signaling pathway

Long-term depression

GnRH signaling pathway

13 U68536_at ZNF24 Unknown X64728_at CHML Unknown

14 L43964_at PSEN2 Notch signaling pathway X98206_at Unknown Unknown

Alzheimers disease

15 D13118_at ATP5G1 Oxidative phosphorylation U78556_at MTMR11 Unknown

Alzheimers disease

Parkinsons disease

doi:10.1371/journal.pone.0014305.t003
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gigpsign
~fh1,h2, . . . ,hMg,hj~

1 if gij§gpj

{1 otherwise

�
ð5Þ

The sumdiff doublets capture up-up, down-down (i.e. positive

doublets) and up-down (i.e. negative doublets) relations of the

expression values of gene pairs. Furthermore, the negative

doublets capture the order of expression values between the genes

in the gene pair. Please be noted that the datasets were processed

to have a minimum value of 10 and a maximum of 16,000.

Thereafter, the values were converted through log2. Then, all the

samples were standardized to zero mean and unit variance. The

mul doublets not only capture the up-up, down-down, and up-

down relations of gene pairs, but also amplify the relations through

multiplication. However, the mul doublets do not capture the

expression orders between genes. On the other hand, the sign

doublets capture the inter-gene expression orders alone.

Microarray Data and Classification Methods
The microarray data is taken from several studies, as is shown in

Table 1. These are the same datasets that were used in [6] for

comparing TSP and k-TSP with various classifiers. The micro-

arrays consist of the expression data for the tissues associated with

colon, blood, lung, breast, prostate, and cancer of the central

nervous system. The number of samples and the number of genes

in each study are also shown in Table 1. For the baseline

classifiers, we used the implementations available in Bioconductor

(for PAM) [20] and Weka (for DT, NB, SVM and kNN) [21].

Classification Accuracy
We use the LOOCV (Leave One Out Cross Validation) method to

estimate the classifier accuracy. For each sample xj in the dataset,

we use the rest of the M{1 samples in the dataset to predict the

class of the xj sample. The classification accuracy of each dataset is

the ratio of the number of the correctly classified samples (True

Positives+True Negatives) to the total number of samples (M) in

that dataset.
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