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Bacteria adapt themselves to various environmental conditions in nature, which
can lead to bacterial adaptation and persistence in the host as commensals or
pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic
bacteria/commensals from becoming a pathological infection. However, certain
pathological conditions can impair normal defense barriers leading to bacterial survival
and persistence. Under pathological conditions such as chronic lung inflammation,
bacteria employ various mechanisms from structural changes to protease secretion
to manipulate and evade the host immune response and create a niche permitting
commensal bacteria to thrive into infections. Therefore, understanding the mechanisms
by which pathogenic bacteria survive in the host tissues and organs may offer new
strategies to overcome persistent bacterial infections. In this review, we will discuss and
highlight the complex interactions between airway pathogenic bacteria and immune
responses in several major chronic inflammatory diseases such as asthma and chronic
obstructive pulmonary disease (COPD).
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INTRODUCTION

Human lungs are in constant interaction with different bacteria and bacterial particles and are
exposed to a variety of environmental threats. The healthy human lungs used to be considered
sterile, but recent studies have reshaped this belief. In fact, human lungs are colonized with
diverse bacteria including the genera Prevotella, Streptococcus, Klebsiella, Veillonella, Neisseria,
Haemophilus, pseudomonas, and Fusobacterium (1, 2). These bacterial species can particularly
persist in the lungs and often give rise to super infections particularly followed by viral infections.
Microbes maintain a lower density in a healthy lung (about 103–105 CFU per gram of the tissue)
as compared to the gut with a load of 1011 CFU per gram of the tissue. It has been shown that in
airway chronic inflammatory diseases such as asthma, there is a shift in the lung microbiota toward
a greater diversity in species richness (3).

Normal human lung resident cells such as macrophages and epithelial cells employ a complex
defense mechanism to cope with the pathogenic infection vs. commensal bacteria and their
products. The innate immune response is the first line of defense that protects the lungs from
pathogenic microbes and their secreted products. The lung epithelium cells act as a barrier
with goblet cells secreting mucus and ciliated cells transporting mucus containing microbes and
microbial particles away from the distal lung. In chronic respiratory diseases, such as cystic
fibrosis (CF), COPD, and asthma, mucus hypersecretion and dysfunctional ciliated cells can
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disturb this barrier leading to less to no clearance of the bacteria
from the lungs (3–5). Alveolar macrophages act as the primary
phagocytes of the innate immunity in the lung. Airway epithelial
cells and macrophages also secrete inflammatory cytokines
in response to pathogens and their particles (6). Immune
system utilizes several pathways such as toll like receptors
(TLRs), NOD like receptors (NLRs), and inflammasome to
recognize microbial particles and induce the production of
antimicrobial proteins and peptides like lyzozymes, defensins
and cathelicidines that effectively stop microbial infection
(7–9). Some of these antimicrobial peptides like defensins
and cathelicidines have chemotactic properties and recruit
immune cells like macrophages and neutrophils to the site of
infection (10, 11).

Although inflammation is a pivotal response to microbial
infections, it may damage the host cells or tissues and create
an environment that allows pathogenic bacteria to employ
evading mechanisms to outsmart the host for their survival
and persistence. The major goal of this review is to present
some unique survival mechanisms exploited by several strains
of bacteria commonly seen in lung infectious and inflammatory
processes related to the utilization of the host TLR signaling
pathways. In addition, our review is mainly focused on the
evasion of bacterial infection in chronic inflammatory lung
diseases, and there is no doubt that these examples only scratch
the surface of this forthcoming research area. We foresee
that current research is moving toward investigating bacterial
infections in specific niche environments of the host, and that
these insights discussed here can enhance our perspective in
which the pathogen evade the immune system.

TLRS SIGNALING: A TWO-EDGE SWORD
IN BACTERIAL INFECTION OF
ASTHMATIC OR ALLERGIC AIRWAYS

Toll like receptors are a family of highly conserved and pattern
recognition receptors (PRRs) that bind to microbial pathogen
associated molecular patterns (PAMPs) also called microbial
associated molecular patterns (MAMPs). TLRs also bind to
endogenous molecules released from the host dying cells known
as danger associated molecular pattern (DAMPs). Different TLRs
are expressed on different cell types including immune cells and
airway epithelial cells and bind to different ligands, which upon
activation in healthy individuals can promote an appropriate
inflammatory response. TLR ligands consists of, but not limited
to, bacterial cell wall components like lipopolysaccharides (LPS)
in Gram-negative bacteria and teichoic acid in Gram-positive
bacteria, viral double stranded RNA, single stranded or double
stranded DNA, flagellin, etc (5, 12). TLRs are transmembrane
receptors that contain a leucine rich extracellular domain and a
highly conserved Toll interleukin-1 receptor (TIR) domain. So
far, there have been 10 human and 12 murine TLRs identified, and
each recognizes a specific set of molecular pattern. In humans,
TLR1, 2, 4, 5, and 6 reside on the cell membrane, while TLR3,
7, 8, and 9 are located in endosomes, lysosomes, or endoplasmic
reticulum (ER). Upon binding to their ligand, TLRs initiate the

inflammatory response by activating their target downstream
signaling pathways, including the recruitment of adaptor proteins
such as myeloid differentiation factor 88 (MyD88) to the
TIR domain. MyD88 activates downstream signaling targets
including IRAK family kinases and results in activation of
transcription factors of nuclear factor-κB (NF-κB), mitogen-
activated protein kinases (MAPK), and activator protein-1 (AP-
1). These transcription factors facilitate up-regulation of pro-
inflammatory cytokines and type I interferons transcription (13).

Toll like receptors-mediated proper inflammatory response
in healthy individuals leads to inflammation induction and
bacterial clearance from the lungs. In the field of experimental
asthma and allergic airways, the pre-existing type 2 inflammation
environment reduces normal TLR function to allow the bacteria
to survive and hide from the immune response in part by
inhibiting the production of antimicrobial substances (Figure 1).
The persistence of bacteria in turn attempts to suppress the type 2
inflammatory response, but it may fail to do so, leading to asthma
exacerbations. One of the mechanisms is that bacterial products
can hijack the immune system for their benefit by recruiting
regulatory T cells (14, 15). Efforts of reducing inflammation can
be at the cost of higher risk of opportunistic/commensal bacteria
persistence in the lungs as an appropriate pro-inflammatory
response is critical to recruit leukocytes such as neutrophils
to eliminate pathogens. Collectively, insufficient TLR signaling
activation by bacteria in allergic airways and asthma may lead to
bacterial survival and persistence.

EVADING MECHANISMS OF BACTERIA
IN LUNG DISEASES

Patients with chronic airway inflammatory diseases are generally
susceptible to opportunistic bacterial infections that can persist
from months or even years. Notably, about more than 50% of
COPD infective exacerbations are due to bacterial infections (16).
These infections can cause disease exacerbations and promote
disease progression. Here, we will discuss how several common
bacterial species utilize their tactics to evade the host effective
defending mechanisms.

NON-TYPEABLE HAEMOPHILUS
INFLUENZAE, AN UNWANTED GUEST IN
SMALL AIRWAYS

Non-typeable Haemophilus influenzae (NTHi) is a non-
capsulated Gram-negative bacterium, which resides in human
nasopharynx as a common commensal. Interestingly, NTHi
is a common opportunistic and human exclusive pathogen
bacterium of lower respiratory tract and small airways causing
chronic and repetitive infections and structural damages
especially in COPD patients (17). It has consistently been shown
that NTHi can survive in the lungs by attaching and or entering
human airway epithelial cells (18–20). NTHi invasion and
entry into airway epithelial cells can be through microvilli and
lamellipodia extensions of epithelial cells that form a vesicle
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FIGURE 1 | TLR signaling in healthy individuals and asthmatics. Bacteria and their components bind to TLRs on the cell membrane (TLR2/6, TLR4, or TLR5) or enter
the cell cytoplasm and bind to endosomal TLRs (TLR 7 or TLR9). Upon binding the bacterial particle to its receptor, TLR recruit MyD88 and subsequently induce
host defense cytokines and antimicrobial mediators as well as the type 1 immune response, enhancing bacterial clearance from the tissue (e.g., lung). However, in
allergic asthma or type 2 inflammation environment, TLR activity is dampened, which allows the bacteria to survive and hide from the normal defense mechanisms.

around the live bacteria and facilitate NTHi entrance into these
cells (21). Additionally, the role of actin and tubulin cytoskeletons
was confirmed in NTHi internalization since inhibiting actin
and tubulin construction with Cytochalasin D and colchicine,
constrained NTHi invasion into epithelial cells (18, 20, 22).
Another mechanism for NTHi cell entry is endocytosis mediated
by lipid rafts since lipid raft inhibitors were able to hinder
NTHi invasion (23). Lipid rafts are cholesterol enriched areas
on the epithelial cells plasma membrane that play pivotal roles
in trafficking and signal transduction (24). Receptor mediated
endocytosis or Clathrin mediated endocytosis was suggested as
a possible way for the NTHi bacteria to invade airway epithelial
cells and alveolar macrophages and evade the immune system
by hiding in these cells (21, 25). NTHi infection has been shown
to reduce E-cadherin, a protein required for tight junction
formation and airway epithelial integrity (26). The mechanism
in which NTHi reduces E-cadherin in airway epithelial cells is
currently unknown. Nonetheless, NTHi-mediated reduction
of E-cadherin in airway epithelial cells can lead to bacterial
colonization at the basal lamina and result in perturbations of
the airway epithelial cell barrier (27).

Recent studies have emphasized on the important role of
NTHi-derived human IgA-protease B1 and B2 in cleaving
human lysosomal-associated membrane protein 1 (LAMP1) that
mediates NTHi survival inside the airway epithelial cells (17,
28). The mechanism by which LAMP1 cleavage results in NTHi
survival within the airway epithelial cells needs to be further
studied. Additionally, NTHi secreted IgA protease cleaves the
human IgA1. IgA attaches to the bacteria and this attachment
prevents binding of NTHi to the epithelial cells and inactivates
the bacterial toxins (29). Remarkably, the secreted IgA levels in
COPD and asthma patients are reduced compared to healthy

individuals (30). By cleaving the remaining IgA in airways, NTHi
can escape the immune surveillance of IgA to facilitate their
survival within the cells.

By hiding in airway epithelial cells and undergo structural
changes, secreting proteases and reducing host defense
mediators, NTHi can cause repetitive and chronic infections of
the lower respiratory tract.

EVADING MECHANISMS BY
KLEBSIELLA PNEUMONIAE

Klebsiella pneumoniae (Kp) is a Gram-negative bacterium most
commonly known as a pulmonary pathogen (31). Kp infection
has gained more attention due to its immunomodulatory effects
and antibiotic resistance features. Interestingly, it has been shown
in asthma and allergic inflammation environments, the lung Kp
burden increases (32).

Klebsiella pneumoniae can overcome the human immune
system and cause persistent infections in the lung. One
mechanism employed by Kp to survive within the airways
is to reduce airway neutrophil production of α-defensin,
an antimicrobial peptide. Thijs et al. demonstrated that
the nasal levels of α-defensins are significantly lower in
asthma patients who are more susceptible to Kp infections
(33). Furthermore, Kp hijacks airway cells by employing
deubiquitinase cylindromatosis (CYLD) that is involved in
NF-κB signaling inactivation (34, 35). Additionally, Kp can
inhibit the production of inflammatory mediators and α-
defensins from airway epithelial cells through inhibiting
MAPK signaling pathway by upregulating MAPK phosphatase-
1 (MKP-1) and activating nucleotide-binding oligomerization
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domain-containing protein 1 (NOD1). NOD1 is an intracellular
PRR that responds to bacterial particles. MKP-1 and CYLD can
synergistically inhibit production of neutrophil chemoattractant
IL-8 from airway epithelial cells (36–38). Manipulating the
immune system with these mechanisms can contribute to
persistence of Kp infections in the lung. It has been shown
that Kp-specific Outer membrane protein A (OmpA) favors an
anti-inflammatory response in early stages of pneumonia (39).
Fagundes et al. demonstrated that Kp infection in germfree mice
was able to induce IL-10 production in the lung and inhibit the
inflammatory response development by restricting production
of pro-inflammatory mediators (40). Furthermore, Kp exploits
the IL-10 production to attenuate the innate immune response
through activation of its downstream target signal transducer
and activator of transcription 3 (STAT3) (41). Interestingly,
Greenberger et al. showed that neutralizing and inhibiting IL-
10 was able to enhance the Kp clearance from the lung (42).
To further support role of IL-10 in Kp infection, Dolgachey
et al. showed that overexpression of IL-10 in the lung of Kp
infected mice significantly increased bacterial survival and mouse
mortalities (43).

In summary, Kp exploits several mechanisms to evade
host immune system in order to persist in the lungs, which
include inhibition of anti-inflammatory peptides, host defense
inflammatory cytokines and chemokines, and promotion of anti-
inflammatory cytokines.

PSEUDOMONAS AERUGINOSA IMPAIRS
HUMAN AIRWAY INNATE IMMUNITY

Pseudomonas aeruginosa (Pa), is a Gram-negative opportunistic
bacterium that causes acute infections in patients with CF, COPD,
ventilator-associated pneumonia, and bronchiectasis (44). This
facultative anaerobe bacterium is capable of adhering to human
airway epithelial cells via their flagellum, pili, and other cell
membrane components (45). Pa secretes several virulence factors
that potentially sabotage innate immunity (45, 46).

In CF airway chronic Pa infection, the bacterium changes from
an active moving form to a passive form by down-regulating
its flagellin expression (47). Pa flagellin is one of the best
known PAMPs that activate TLR5 signaling pathway through
MyD88 and induce multiple pro-inflammatory cytokines (IL-
8, IL-1ß) from airway epithelial cells and macrophages to
recruit neutrophils and other inflammatory cells into the
airways (48–50). Pa uses different strategies to escape the
protective role of flagellin-mediated host immune response.
Notably, Pa can secrete alkaline protease AprA and elastase
LasB, which cleave the exogenous flagellin as a mechanism to
evade flagellin mediated immune responses (47). Interestingly,
degradation of flagellin monomers by AprA and LasB can
reduce TLR5 activation induced inflammatory responses (47).
In addition, Pa secretes other proteases including LasA and
protease IV. These proteases interact with a wide range of
molecules including the host and the bacteria as mentioned
above, resulting in structural component and inflammatory
mediator degradation and dampening the immune responses.

Pa proteases have been shown to degrade a variety of host
defense mediators and components including but not limited
to IL-8, CXCL1, CXCL5, IFN-γ, IL-6, immunoglobulins, and
antimicrobial peptides (51–54).

The effects of elastase LasB in modulating the immune
response during Pa infections have been well studied. Pa
exploits LasB to inhibit alveolar macrophages oxidative burst
and down-regulate reactive oxygen species (ROS) generation
during phagocytosis (55). LasB is also involved in degradation of
surfactant protein SP-A resulting in phagocytosis resistance of the
bacteria (56, 57). Another LasB dependent immune modulating
function is lysis of the thrombin protein resulting in formation
of the FYT21 peptide that inhibits the activation of transcription
factors NF-κB and AP-1 (58). Remarkably, asthma patients have
about 20% more thrombin concentration compared to healthy
individuals (59).

An additional strategy developed by Pa in chronic infections is
that it is capable of halting the expression of the type III secretion
system (T3SS) (60). T3SS is a needle like secretion machinery
complex in Gram-negative bacteria that injects bacterial effectors
into the host cells (61). This machinery complex has been
implicated in pathogenesis of acute Pa infections by causing
tissue damage and bacterial spreading (62, 63). By inhibiting
T3SS expression, bacteria escape T3SS mediated inflammasome
activation by chronic Pa infection in CF patients (64).

Notably, Pa can form biofilms, a specific bacteria self-
aggregates via their extracellular matrix to form a multicellular
matrix (65). The host response to Pa biofilm is rather intricate
since it can both incite or inhibit the immune response. It has
been shown that during the biofilm stage, Pa down-regulates
flagellin and T3SS resulting in lower complement system
activation (66–68). On the other hand, biofilms can conceal the
surface bacterial factors from the host and helping Pa to evade
the immune system. In contrast, Pa biofilms can stimulate the
neutrophilic response and furthermore cause necrotic killing of
neutrophils leading to a further robust inflammation and tissue
damage (69, 70).

Mucoid Pa, the most common in CF chronic infections,
produces excess amount of extracellular polysaccharide alginate
called mucoidy (71). It has been shown that over-production
of alginate can impair the immune response and allow for
persistence of the bacteria with different strategies. Alginate
interferes with opsonic phagocytosis and compliment system
activation and disrupts ROS production during phagocytosis
(65, 72). Alginate is also responsible for bacterial resistance
to antimicrobial peptides like LL-37 (73). Furthermore, it has
been shown that due to co-regulation of alginate and flagellin,
mucoidy can inhibit synthesis of flagellin and thus reduce TLR5
activation (74, 75).

Another adaptive mechanism in which Pa escapes the host
immune system is synthetic and structural changes to LPS in
chronic infections. LPS structure is recognized by TLR4 and is
composed of three components: lipid A, core oligosaccharide,
and the O antigen. The O antigen is the main component
which shows high variability in immunogenic oligosaccharides
and interacts with extracellular surroundings (76). During
Pa chronic infection, the bacterial LPS undergoes adaptive
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structural and synthetic changes which results in lipid A
modification/acetylation, loss of O antigen polysaccharide, and
downregulation of LPS synthesis (76). These adaptive changes are
considered to be possible mechanisms that Pa exploits to escape
the immune system perhaps through being unrecognizable to
TLR4 (77). Moreover, lipid A undergoes acetylation, which
prevents binding of host antimicrobial peptides to the bacteria
(78). It seems that Pa causing the chronic infection has more
tendency to undergo genetic mutations resulting in significant
lower expression to no expression of the O antigen involved
in lower clearance of the bacteria from the lungs of CF
patients (79–81).

Together, Pa uses various mechanisms to sustain lung chronic
infections, such as reducing the recognition of flagellin by
TLR5 and LPS by TLR4 through cleaving the TLR ligands,
degrading host immune mediators or their transcription factors
via secreting proteases, undergoing structural changes like
forming biofilm, and producing excess amount of mucoid to
evade host defense mechanisms and persist in the lungs.

CRAFTY STAPHYLOCOCCUS AUREUS
MANIPULATES HOST IMMUNE
RESPONSES

Staphylococcus aureus (Sa) is a Gram-positive bacterium
contributing to a range of diseases. Sa is a commensal of the
human nose without showing any symptoms, but it can cause life-
threatening diseases like pneumonia, endocarditis and septicemia
(82). Sa is not an intracellular pathogen, but it can bind the
epithelial and macrophage cell surface type F scavenger receptor
SREC-I through the bacterial glycol-polymer cell wall teichoic
acid (83). Furthermore, clumping factor B (ClfB) and iron-
regulated surface determinant A (IsdA) are also involved in
adherence of Sa to epithelial cells (84).

One of the mechanisms by which Sa can evade the
immune system of the lung is to produce peptides that disturb
accumulation of the complement system on the surface of
the bacteria. Staphylococcal immunoglobulin binding protein
(Sbi) depletes complement factor 3 (C3) (85). Moreover, the
chemotaxis inhibitory protein of Sa (CHIPS) hinders the function
of complement factor C5a. CHIPS also impedes the function of
formylated peptide receptors on neutrophils that are required
for neutrophil chemotaxis and recruitment to the site of
infection (86).

There are multiple Sa proteases that can play a pivotal role in
dampening the innate immune system. One of these proteases is
Staphopain A, a serine protease, cleaves the N terminal domain
of CXCR2, which inhibits the binding of CXCR2 to its ligand
IL-8 and subsequently neutrophil chemotaxis and activation
(87). Meanwhile, Staphopain B can cleave CD31, a member of
immunoglobulin superfamily, expressed on neutrophils, and lead
to reduced functionality of neutrophils (88). Besides, the Zn
dependent metalloprotease, Aureolysin, can cleave and deactivate
LL-37, an antimicrobial peptide (89). Another mechanism
employed by Sa to dampen the immune system is by expressing
a sortase anchored protein to dephosphorylate and activate

adenosine (90). Adenosine is an effective mediator of the immune
response and it binds to different G proteins coupled receptors.
Upon binding adenosine to its receptor, the anti-inflammatory
signaling pathways activate and result in inhibition of neutrophils
degranulation and superoxide burst, platelet aggregation, and
secretion of anti-inflammatory cytokine IL-10 from the innate
immune cells (91).

Coagulation is the conversion of the fibrinogen to fibrin
by activated thrombin and forming fibrin clots. Coagulation
is one of the innate immunity defense mechanisms involved
in immobilization of the bacteria and recruiting/activating
the immune cells to the lungs to clear the bacteria by
phagocytosis. Sa secretes coagulase (Coa) and von Willebrand
Factor-binding protein (vWbp) which activate a prothrombin
named staphylothrombin that only cleaves fibrinogen A and
B peptides and creates fibrils of fibrin (92). Staphylothrombin
avoids clotting activation and inflammation by only cleaving
fibrinogen A and B but not other thrombin substrates (93, 94).

In summary, Sa utilizes a variety of elaborated mechanisms to
evade the immune response including adhering to the epithelial
cells and other airway innate immune cells, disrupting and
depleting the complement system and neutrophil macrophages,
cleaving and deactivating antimicrobial peptides, and activating
adenosine mediated anti-inflammatory signaling pathways.
These mechanisms may contribute to antibiotic resistance of
Sa, and thus need to be further investigated for developing
alternative therapies.

NON-TUBERCULOUS MYCOBACTERIA
VEIL FROM THE HOST IMMUNE
SYSTEM

Non-tuberculous mycobacterium (NTM) has emerged
as a significant cause of infection in the lungs of
immunocompromized patients or patients with CF, COPD,
and bronchiectasis. Different from Mycobacterium tuberculosis,
NTMs are opportunistic bacteria that can cause airways
infection in altered lung environment specifically in chronic
inflammatory lung diseases (95, 96). Interestingly, patients under
corticosteroid therapies are more susceptible to NTM infections.
The underlying mechanism of this susceptibility is unknown.

Non-tuberculous mycobacterium bacteria are composed of
more than 170 species with various virulence potencies.
Among these species, Mycobacterium avium and Mycobacterium
abscessus are the most frequent causes of NTM related pulmonary
diseases (95–100).

Wide spectrum antibiotic resistances of NTMs are well studied
but these bacteria also benefit from a variety of mechanisms that
they can exploit and evade the immune system.

Non-tuberculous mycobacterium can grow inside and outside
of cells. M. avium and M. abscessus can reside within
macrophages and hide from the immune system and anti-
microbial mediators. M. avium can be discharged from
macrophages and infect other macrophages and spread (101). In
contrast, M. abscessus is able to deter phagocytosis by restricting
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intra-phagosomal acidification and as a result persist within
macrophages (102, 103).

Defective cilia functionality and excess mucus in the lungs
of patients with chronic inflammatory lung diseases allow
persistence of the bacteria. It has been shown that M. abscessus
can enter a slow growth phase and persist better in the mucus of
CF patients (104, 105).

Another mechanism in which M. avium and M. abscessus
escape the immune response is to form biofilms. NTMs can
develop biofilms within thickened alveolar airways in CF patients
or within the lung cavities of COPD patients (106, 107). The
biofilm can create a shield to prevent antimicrobial mediators
penetration and allow persistence of the bacteria in the
lungs (108–111).

Interestingly, the smooth variant of M. abscessus expresses
glycopeptidolipid (GPL), which has been shown to mask the
bioactive, immunostimulatory cell wall lipids of the bacteria.
This coverage results in becoming unrecognizable from the TLRs
and inhibition of production of inflammatory mediators and
antimicrobial peptides and the innate immune response (112).

Therefore, NTMs continue to pose a huge health concern
especially in patients with compromised immunity as they
undergo physiological adaptations and mechanisms in the lung,
such as persisting within macrophages or deterring phagocytosis,
entering a slow growth phase, and masking immunostimulatory
cell wall components via GPL expression or biofilm formation.

CONCLUSION AND PERSPECTIVES

One of the pivotal responsibilities of the immune system is
to induce an appropriate inflammatory response to colonizing
pathogens. However, many of these pathogens exploit diseased
environments and impaired defense mechanisms in the host to
develop various strategies and genetic polymorphisms to either
stimulate tolerance, escape the immune response, or manipulate
the immune system to survive in the body. As mentioned above,
in allergic airways, pathogenic bacteria either inactivate the TLRs
to modulate the immune system to their benefit or become
unrecognizable to the TLRs. One example is Pa in CF airways
reducing its flagellin expression and evades the consequences
of being recognized by TLR5 to induce inflammation. Reducing
anti-microbial peptides and inflammatory mediators, increasing

anti-inflammatory mediators, secreting proteases, hiding within
the host cells, and structural changes are other mechanisms
employed by bacteria in chronic inflammatory airway diseases
resulting in reduced clearance of the pathogens and persistence
of the bacterial infection in the lungs of these patients. Current
studies are exploring the immune response evasion mechanisms
of pathogenic bacteria in disease environments. Under the
circumstances that host diseased environment can affect the
pathogenicity and persistence of the bacteria in the lungs is a
significant area of ongoing research.

In the future, the mechanisms behind differential regulation
and functions of TLRs in healthy individuals vs. patients in
various host environments should be considered for further
investigation aimed to unravel this complex system. Moreover,
the host and pathogen factors that help pathogens evolve
very sophisticated strategies to evade the immune system
and inflammation should be further determined. For example,
how therapies like corticosteroids commonly used in chronic
inflammatory diseases such as COPD and asthma affect
bacterial evading mechanisms remain unclear, and could be
carefully evaluated. Given significant growth of antibiotic
resistant bacterial strains, new therapies targeting the host
rather than the bacteria can be developed to allow the host to
outsmart the pathogens.
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