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Abstract
Background Endometriosis and breast cancer are significant global health burdens 
affecting women worldwide. Both conditions share notable characteristics including 
estrogen dependence, progressive growth patterns, recurrence tendencies, and 
metastatic potential. Despite these biological parallels, the molecular mechanisms 
connecting these conditions remain incompletely characterized. This study aimed to 
identify shared gene signatures and underlying molecular processes in breast cancer 
and endometriosis.

Methods Expression matrices for both conditions were obtained from the Gene 
Expression Omnibus (GEO), UCSC Xena, and the Molecular Taxonomy of Breast 
Cancer International Consortium. Common differentially expressed genes (DEGs) 
were identified using the limma package. Comprehensive analyses included Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment, machine learning-based diagnostic and prognostic model development, 
potential therapeutic compound screening, tumor immune microenvironment (TIME) 
characterization, and hub gene identification with subsequent validation.

Results The analysis identified 47 common DEGs between breast cancer and 
endometriosis. Functional assessment of these genes revealed their involvement 
in critical biological processes including cell cycle regulation, oxidative stress 
response, and secretory granule and recycling endosome dynamics. Integration of 
comprehensive genomic and clinical data led to the development of a prognostic 
model for breast cancer and a diagnostic model for endometriosis.

Conclusion This study provides molecular insights into shared pathogenic 
mechanisms underlying breast cancer and endometriosis, highlighting common 
physiological pathways and key regulatory genes. These findings offer novel 
perspectives for understanding disease pathogenesis and potential therapeutic 
interventions for both conditions.
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1 Introduction
Endometriosis and breast cancer are major global health challenges for women. Endo-
metriosis affects 5–10% of reproductive-age women, with over 176 million cases world-
wide [1, 2]. Characterized by ectopic endometrial tissue growth, this condition manifests 
as pelvic pain, dysmenorrhea, and infertility [3]. These symptoms occur in 50–80% of 
women with pelvic pain and up to 50% of those experiencing fertility difficulties [2, 4]. 
The pathogenesis primarily involves retrograde menstruation, wherein endometrial 
fragments flow into the peritoneal cavity, where they implant and infiltrate pelvic struc-
tures [5, 6]. Additional contributing factors include obstructed menstrual flow, extended 
estrogen exposure (from early menarche or late menopause), genetic predisposition, 
immune dysfunction, and lifestyle factors. As an estrogen-dependent chronic inflam-
matory disorder, molecular alterations in estrogen signaling and inflammatory pathways 
facilitate both implantation and proliferation of abnormal endometrial tissue [7].

Diagnosis of endometriosis typically involves pelvic examination and ultrasound imag-
ing, though laparoscopy with histopathological confirmation remains the gold standard 
despite risks including trauma, adhesion formation, and potential impacts on fertility 
[8]. The biomarker CA125, while elevated in advanced disease, lacks sensitivity for early 
detection. The absence of reliable peripheral blood or endometrial tissue biomarkers, 
coupled with the requirement for invasive surgical procedures, often delays diagnosis 
by 7–11 years, hampering timely intervention [9]. Addressing these limitations is essen-
tial for developing non-invasive diagnostic approaches and elucidating the fundamental 
mechanisms of endometriosis.

Breast cancer accounted for 11.7% of all global cancer cases in 2020, with approxi-
mately 2.3 million new diagnoses, representing a leading cause of mortality among 
women [10]. Risk factors include advancing age, genetic predisposition, history of 
benign breast disease, endogenous hormone exposure, fertility issues, obesity, and radia-
tion exposure [11]. Diagnostic evaluation comprises comprehensive clinical assessment 
and detailed imaging (mammography, breast ultrasound), typically confirmed by core 
biopsy before treatment planning [12]. Research has classified breast cancer into four 
major molecular subtypes through gene clustering analysis [13]: luminal, human epider-
mal growth factor receptor 2 (HER2)-enriched, basal-like, and normal breast-like. At the 
RNA level, subtype differentiation primarily depends on estrogen receptor (ER) activ-
ity, ER-associated genes, proliferation drivers, and to a lesser extent, HER2 and genes 
within the HER2 amplicon on chromosome 17 [14]. Treatment strategies based on diag-
nostic findings typically include surgery, radiotherapy, chemotherapy, targeted therapy, 
and endocrine treatment [12, 15]. The heterogeneity of breast cancer is reflected in its 
multiple clinically relevant mutations, with molecular characterization of metastatic dis-
ease and subsequent targeted therapy assessed through next-generation sequencing and 
mutation analysis, potentially improving prognosis and survival.

Endometriosis and breast cancer share several significant characteristics and risk 
factors, including estrogen dependence, progressive growth patterns, invasiveness, 
recurrence, and metastatic potential [16]. Elevated estrogen levels in ectopic lesions 
of endometriosis patients [17] and endogenous hormone exposure both contribute to 
increased breast cancer risk. The infertility associated with endometriosis often results in 
nulliparity or delayed childbearing, established risk factors for breast cancer [18]. More-
over, common treatments for endometriosis, such as progestins and oral contraceptives, 
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may influence breast health [19]. While research has established a significant association 
between endometriosis and increased risk of epithelial ovarian cancer [5], evidence link-
ing endometriosis to breast cancer progression remains inconclusive. Further investiga-
tion is needed to elucidate the underlying pathological connections and identify shared 
genetic markers between these conditions, potentially revealing common drug targets 
and improving treatment strategies for both diseases.

The development of biomarkers for endometriosis and breast cancer that combine 
high sensitivity with precise specificity remains inadequate. Understanding the biolog-
ical pathways and molecular networks underlying these diseases is essential for effec-
tive screening, prevention, diagnosis, and treatment. In this study, we analyzed datasets 
from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and 
the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) to 
investigate the relationship between shared differentially expressed genes in both dis-
eases and their impact on endometriosis diagnosis and breast cancer prognosis. Using 
machine learning algorithms, we identified 11 signature genes predictive of endometri-
osis and constructed a three-gene model for breast cancer prognosis. This model was 
validated with both internal and external datasets, confirming its stability and reliability 
in predicting outcomes for breast cancer patients. Our findings suggest potential novel 
biomarkers for endometriosis diagnosis and breast cancer prognostication, while also 
highlighting possible therapeutic targets.

2 Materials and methods
2.1 Data acquisition

Datasets for endometriosis and breast cancer were obtained from multiple platforms. 
Two endometriosis datasets, GSE51981 [20] and GSE35287 [21], were acquired from the 
NCBI GEO. The GSE51981 dataset, generated using the Affymetrix Human Genome 
U133 Plus 2.0 array (GPL570), contained 77 samples from endometriosis patients and 71 
samples from healthy controls. The GSE35287 dataset, used for external validation, was 
produced with the Affymetrix Human Gene 1.0 ST Array (GPL6244) and included 40 
endometriosis and 40 normal samples.

Breast cancer datasets from TCGA and METABRIC were obtained from cBioPortal 
[22] and UCSC Xena [23]. These datasets were generated using the Illumina platform, 
with TCGA comprising 1050 tumor and 98 normal samples, and METABRIC containing 
1980 tumor samples, which served as external validation cohorts.

2.2 Data preprocessing

Data from GEO were processed according to previously described methods using the 
“GEOquery” R package [24]. Gene probes were annotated with gene symbols, and 
probes lacking symbols or matching multiple symbols were excluded. For duplicate gene 
symbols, the maximum expression value was retained.

2.3 DEGs screening and Functional Analysis

DEGs were identified using the “limma” package [25] from the TCGA-breast cancer and 
GSE51981 datasets. Genes with an absolute Log Fold Change (LogFC) greater than 1 and 
adjusted P-value below 0.05 were considered statistically significant. Common DEGs 
were visualized with a Venn diagram, and their expression patterns were displayed in a 
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heatmap generated using R. Functional enrichment of these genes was analyzed through 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways using Metascape [26], with a minimum overlap of 3 and enrichment factor of 1.5. 
Enrichment results with a P-value below 0.01 were considered statistically significant.

2.4 Characteristic genes in endometriosis

To identify distinctive genes associated with endometriosis, three complementary 
machine learning techniques were employed: Random Forests (RF), Least Absolute 
Shrinkage and Selection Operator (LASSO) logistic regression, and Support Vector 
Machine-Recursive Feature Elimination (SVM-RFE). These methods were selected for 
their distinctive strengths: LASSO for feature selection and regularization to prevent 
overfitting, SVM-RFE for effective ranking of gene features, and RF for robust handling 
of complex interactions. The RF technique was implemented using the “randomForest” 
package [27]. LASSO logistic regression was conducted with the “glmnet” package [28], 
selecting the minimal lambda as optimal. Optimization parameters were cross-verified 
with a tenfold factor, ensuring minimal criteria for partial likelihood deviation. Genes 
commonly identified across all models were selected for further analysis. A diagnos-
tic column line graph predicting endometriosis occurrence was generated using the 
“rms” package. The GSE35287 dataset served as the validation set, with model effective-
ness evaluated through receiver operating characteristic (ROC) curves and area under 
the curve (AUC). The predictive power and clinical utility of the model were further 
assessed using the consistency index (C-index) and decision curve analysis (DCA) based 
on the calibration curve.

2.5 Establishing prognostic markers in breast cancer

The prognostic relevance of common DEGs was initially assessed through univariate 
Cox regression analysis, with significance defined at p < 0.05. The prognostic gene set 
was refined using the stepwise Akaike information criterion (stepAIC) method imple-
mented in the “MASS” package. Individual patient risk scores were derived using the 
following equation:

Risk score =
∑ N

i=1
(Expi× Coei)

where Expi and Coei are the normalized expression levels and corresponding regres-
sion coefficients of the candidate genes, respectively. Patients were stratified into high- 
and low-risk categories based on the median risk score as the cutoff value. The efficacy 
of the gene signature was evaluated through Kaplan–Meier survival plots and ROC 
curve analyses using the ‘survminer’, ‘survival’, and ‘survivalROC’ packages. The prognos-
tic independence of the risk score from other clinical variables in breast cancer patients 
was determined through both univariate and multivariate Cox regression analyses.

2.6 Prognostic characteristics of the tumor microenvironment

This study compared genomic alterations, gene expression patterns, immune microenvi-
ronment composition, hypoxia status, tumor stemness scores, and biological functions 
between risk groups. We used “maftools” and cBioPortal to analyze gene mutations. The 
abundance of immune cells in each patient sample was determined by single-sample 
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gene set enrichment analysis (ssGSEA), using marker genes for 28 distinct immune cell 
types as reference [29]. Hypoxia scores were obtained from cBioPortal, and drug sensi-
tivities were predicted using “oncoPredict” [30].

Tumor stemness was evaluated using 26 gene sets from StemChecker [31], employ-
ing ssGSEA via the GSVA method to derive stemness enrichment scores. Differential 
gene expression analysis was performed to compare high- and low-risk groups. Gene set 
variation analysis (GSVA) was performed using hallmark gene sets from MSigDB v7.5. 
The resulting enrichment scores, reflecting pathway activity in individual samples, were 
compared between risk groups using the Wilcoxon rank-sum test. DEGs were identi-
fied using thresholds of |logFC| > 1 and FDR < 0.05. These genes underwent GO/KEGG 
pathway analysis using Metascape.

2.7 Statistical evaluation methods

All statistical analyses were performed using R (version 4.3.1). Prognostic outcomes 
and survival rates across patient subgroups were analyzed using Kaplan-Meier survival 
plots and the log-rank test. Normality of data distribution was evaluated using the Sha-
piro-Wilk test. Due to significant deviation from normal distribution in most variables, 
non-parametric statistical methods were selected for between-group comparisons. The 
Wilcoxon rank-sum test was used for two-group comparisons, while the Kruskal-Wallis 
test was applied for analyses involving multiple groups. The prognostic significance of 
clinical characteristics within high- and low-risk groups was determined using both uni-
variate and multivariate Cox regression analyses, conducted via the “survival” package in 
R.

2.8 qRT-PCR methodology

Total mRNA was isolated from cellular samples using TRIpure reagent (ELK Biotechnol-
ogy). Reverse transcription was performed using EntiLink™ 1 st Strand cDNA Synthesis 
Super Mix with the following temperature profile: 5 min at 25 °C, 30 min at 42 °C, and 
5 min at 85 °C. Quantitative real-time PCR (qRT-PCR) was conducted using a real-time 
PCR system (Applied Life Technologies, USA), with relative expression levels calculated 
using the 2^-ΔΔCT method. Specific primers were used for targeted gene amplification:

H-ACTIN

Forward: GTCCACCGCAAATGCTTCTA
Reverse: TGCTGTCACCTTCACCGTTC

H-SHCBP1

Forward: GGTGCTGGTATAGAAATCTACCCT
Reverse: GTTTCACCAAGACAACACCATAAC

H-PMAIP1

Forward: GTGCTACTCAACTCAGGAGATTTG
Reverse: TCTTTCTTCAAATTGATGAAACGT

H-LTF

Forward: TGCAAATTTGATGAATATTTCAGTC
Reverse: CATTGTTATTTCCATCAGTGTTCTG
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2.9 Western blotting

Cells were lysed using Aspen buffer for total protein extraction. Proteins were separated 
by SDS-PAGE and transferred to PVDF membranes. Membranes were blocked with 5% 
skim milk and incubated with primary antibodies: SHCBP-1 (No:12672-1-AP, 1:1000, 
Proteintech), PAMIP (No: PA5-19977, 1:500, Thermofisher), LTF (No:10933-1-AP, 
1:1000, Proteintech), and GAPDH (Cat No. ab181602, 1:10000, Abcam). After washing, 
the membranes were incubated with secondary antibodies (1:10000, Aspen). Protein 
bands were visualized, scanned, and documented. For both PCR and western blotting 
(WB) experiments, each gene was analyzed in duplicate and all experiments were per-
formed in triplicate. Neither PCR nor WB procedures were conducted under blind con-
ditions. Statistical analysis was performed using SPSS. Differences between groups were 
assessed using one-way ANOVA and Student’s T-test, with P < 0.05 considered statisti-
cally significant.

3 Results
3.1 Identification of common genes associated with endometriosis and breast cancer

Differential expression analysis identified 1,600 DEGs between breast cancer and normal 
tissue samples in the TCGA-breast cancer cohort, and 179 DEGs between endometrio-
sis and normal tissues in the GSE51981 cohort (Fig. 1A, B). Further analysis revealed 47 
common genes associated with both endometriosis and breast cancer in these cohorts. 
(Fig.  1C). Expression profiles of these 47 genes were characterized for both cohorts 
(Fig.  1D, E). GO/KEGG pathway analysis demonstrated enrichment in biological pro-
cesses including chromosome segregation, cell cycle regulation, positive regulation 
of cell cycle phase transition, oxidative stress response, muscle cell development, and 
secretory granule and recycling endosome dynamics (Fig. 1F, G).

3.2 Selection of endometriosis’s signature genes using machine learning algorithm

Endometriosis biomarkers were identified using three machine learning algorithms: RF, 
SVM-RFE, and LASSO regression. The RF model identified 22 genes (Fig.  2A), SVM-
RFE identified 43 genes (Fig.  2B), and LASSO analysis yielded 18 genes (Fig.  2C, D). 
Intersection of these results revealed 11 robust core biomarkers (OLFM4, APOBEC3B, 
BPIFB1, CPM, MSRB3, EZH2, SCGB3A1, F13A1, PTGER3, FOS, and RCAN1) (Fig. 2E). 
Using the ‘rms’ package, we constructed a diagnostic column line graph for endome-
triosis (Fig. 2F). A calibration curve showed minimal deviation between predicted and 
actual risk, confirming the model’s accuracy (Fig. 3A, B). DCA demonstrated that this 
model provided significant net benefit compared to alternative strategies (Fig.  3C, D). 
The model exhibited high AUC values in both the training (GSE51981) and external vali-
dation (GSE35287) sets, with scores of 0.896 and 0.988, respectively (Fig. 3E, F). These 
findings corroborated the superior predictive performance of the diagnostic model.

3.3 Development and evaluation of breast cancer prognostic models

We developed a prognostic model for breast cancer using univariate Cox regression 
analysis, which initially identified five genes with significant prognostic impact (p < 0.05). 
Further refinement through stepAIC analysis yielded three key prognostic genes. The 
risk score was calculated as: Risk score = (0.2857) × SHCBP1 + (−0.1610) × PMAIP1 
+ (−0.0534) × LTF (Supplementary Fig. 1). The median risk score served as the cutoff 
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point to stratify patients into high- and low-risk groups, and was applied consistently in 
the external validation cohort (METABRIC) to assess model generalizability. Based on 
median signature values, 525 patients were categorized into high- or low-risk groups. 
In the TCGA cohort, the low-risk (LR) group demonstrated significantly longer overall 
survival (OS) than the high-risk (HR) group (median duration 215.0 months vs. 115.0 
months, p < 0.0001, Fig.  4A). Lower risk scores consistently correlated with improved 
survival (Fig.  4C). The model’s robustness was confirmed in the independent META-
BRIC cohort, where LR patients also exhibited superior OS (median time = 167.0 months 
vs. 145.0 months, P = 0.02, Fig. 4B). These validation findings confirmed the efficacy of 
the model across multiple datasets. The distribution of risk scores and survival status in 

Fig. 1 Differential expression analysis. A Volcano graph of the normal group and breast cancer group in differ-
ential analysis. B Volcano diagram for difference analysis of normal group and endometriosis. C Venn Figure for 
intersected genes in differentially expressed genes of breast cancer and endometriosis. D Heat map of differential 
analysis between breast cancer and normal group. E Heat map of differential analysis between endometriosis and 
normal group. F, G The GO terms and KEGG pathway enrichment analysis of common DEGs. GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes
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the METABRIC cohort is shown in Fig. 4D. Both univariate and multivariate Cox regres-
sion analyses confirmed that the prognostic risk score was independent of other clini-
cal characteristics including age, stage, TNM classification, and radiation therapy in the 
TCGA-breast cancer cohort (Fig. 4E, F).

3.4 Association between cancer hallmarks and risk groups

We examined correlations between risk scores and immune responses by measuring 
enrichment scores for immune cell subsets and their associated activities through ssG-
SEA. The LR group showed greater infiltration by eosinophils, mast cells, natural killer 
(NK) cells, neutrophils, and plasmacytoid dendritic cells (Fig. 5A). In contrast, the HR 
group displayed elevated levels of activated CD4 and CD8 T cells, effector memory CD4 

Fig. 2 Detection of diagnostic markers using machine-learning algorithms in endometriosis. A Based on RF algo-
rithm to screen biomarkers. B Based on SVM-RFE to screen biomarkers. C, D LASSO logistic regression algorithm to 
screen diagnostic markers. E Venn diagram showed the intersection of diagnostic markers obtained by the three 
algorithms. F Nomogram is used to predict the occurrence of Endometriosis
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T cells, γδ T cells, and regulatory T cells (Fig. 5A). Expression of immune checkpoint 
inhibitors varied significantly with risk scores. Patients in the LR category exhibited 
increased expression of NRP1, CD200, and CD44, while those in the HR group showed 
elevated levels of CD276, IDO1, PDCD1LG2, and TNFRSF9 (Fig.  5B). Cancer stem 
cell assessment using 26 stemness gene sets revealed higher enrichment scores in the 
HR group (Fig.  5C). Additionally, HR patients demonstrated elevated hypoxia scores 
(Fig. 5D) and higher non-synonymous tumor mutation burden (TMB) (Fig. 5E). Analysis 
of the 15 most frequently mutated genes revealed distinct mutation patterns between 
risk groups (Fig. 5F), with significant differences observed for PIK3CA (22% in HR vs. 
44% in LR) and TP53 (50% in HR vs. 17% in LR) (Fig.  5G). Further genomic analyses 

Fig. 3 Verification of nomogram model for endometriosis. A, B Construction of the calibration curve for assessing 
the predictive efficiency of the nomogram model in both A GSE51981 and B GSE35287. C, D Decision curve analy-
sis of risk prediction nomogram for endometriosis in both C GSE51981 and D GSE35287. E, F ROC curve validation 
of risk prediction nomogram for endometriosis in both E GSE51981 and F GSE35287
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showed that the HR group had significantly higher fraction genome altered (FGA) and 
distinctive copy number variation (CNV) patterns compared to the LR group (Fig. 5H, 
I).

3.5 Efficacy of prognostic signature in predicting drug sensitivity

We evaluated associations between our prognostic model and drug responsiveness by 
measuring IC50 values for various therapeutic agents in breast cancer samples. Differ-
ences in IC50 values indicated varying drug sensitivities correlated with risk groups 
(Fig.  6A). Higher IC50 values for Lapatinib, Temsirolimus, and Vinorelbine in the HR 
group indicated resistance to these agents, whereas lower IC50 values for Cisplatin, 

Fig. 4 Construction and validation of a prognosis signature for breast cancer. A, B Overall survival in the low- and 
high-risk score group patients in A TCGA- breast cancer and B METABRIC. C, D Distribution of risk score according 
to the survival status and time in C TCGA- breast cancer and D METABRIC. E Univariate analysis for the clinico-
pathologic characteristics and risk score in TCGA- breast cancer. F Multivariate analysis for the clinicopathologic 
characteristics and risk score in TCGA- breast cancer. StepAIC: stepwise Akaike information criterion
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Paclitaxel, and Rapamycin suggested sensitivity (Fig. 6B-G). These findings highlighted 
the potential utility of Cisplatin, Paclitaxel, and Rapamycin in treating chemotherapy-
resistant breast cancer.

3.6 Biological characteristics between risk groups

Analysis of the prognostic gene model revealed distinct biological characteristics 
between risk groups. Differential expression analysis identified 91 genes, visualized in 
a volcano plot (Fig. 7A). A protein-protein interaction (PPI) network constructed using 
the Metascape database with the MCODE plug-in (minimum interaction score of 0.7) 
identified two critical functional modules (Fig. 7B). GO/KEGG pathway analysis linked 
these genes to diverse biological processes including cell cycle phase transition, mitotic 
cell cycle regulation, immune response, epithelial cell differentiation, inflammatory 
response, neuronal apoptotic regulation, supramolecular fiber organization, and cortical 

Fig. 5 Dissection of tumor microenvironment based on prognosis signature. A The box plot of 28 infiltrated 
immune cell types was calculated by ssGSEA. B Box plot of expression levels of immune checkpoint-associated 
genes. C Box plot displaying the differences of 26 ssGSEA stemness scores between low risk and high-risk group. D 
Violin plot of significantly increased hypoxic score in high-risk patients. E Comparison of tumor mutation burden 
(TMB). F Oncoplot of mutation, deletion, insertion, and frameshift. G Comparison of different mutation sites of 
TP53 and PIK3CA. H The score of fraction of genome altered (FGA) in different risk groups. I Copy number variation 
(CNV) patterns in different risk cohorts. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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actin cytoskeleton dynamics (Fig.  7C-D). GSVA demonstrated significant associations 
between the HR group and DNA damage repair and cell cycle-related functions (Fig. 7E).

3.7 Validation of breast cancer prognostic gene expression through qRT-PCR and WB

Expression levels of key prognostic genes were validated using both qRT-PCR and WB 
in breast cancer and control samples. Results confirmed significantly higher expression 
of SHCBP1 and PMAIP1 in breast cancer samples, while LTF expression was markedly 
decreased (Fig.  8A-E). These findings reinforced the potential utility of these genes as 
biomarkers for predicting breast cancer outcomes.

Fig. 6 Efficacy of prognosis signature in predicting drug sensitivity. A Bubble plot of the relationship between 
drugs and model genes. Boxplots of the comparison of IC50 of drugs between high- and low-risk groups, and cor-
relation between the IC50 and riskscore in TCGA- breast cancer cohort: B Lapatinib; C Temsirolimus; D Vinorelbine; 
E Cisplatin; F Paclitaxel; G Rapamycin
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4 Discussion
Endometriosis, a chronic gynecological disorder dependent on estrogen, exhibits traits simi-
lar to malignant cells despite its benign classification, including local and distant metastasis 
with resultant tissue damage [2]. This condition shares several risk factors with breast cancer, 
including endogenous estrogen exposure, reproductive characteristics, obesity, and hormone 
replacement therapy. Our study explored these associations, suggesting that identification 
of common differential genes and construction of prognostic risk models for breast cancer 
could elucidate shared underlying mechanisms and potentially reveal novel biomarkers for 
breast cancer prognosis.

Fig. 7 Biologic functions underlying the breast cancer prognostic model. A Volcano plot showed DEGs (FDR < 0.05 
and |log2FC|> 1) between high risk and low-risk group. B PPI network of differentially expressed genes between 
high risk and low-risk group based on the Metascape website. C, D The GO terms and KEGG pathway enrichment 
analysis of differentially expressed genes. E Heatmap of GSVA analysis shows different biological functions be-
tween high risk and low-risk group. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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Accurate diagnosis of endometriosis remains challenging, often resulting in delays and 
misdiagnoses [32], highlighting the need for precise clinical diagnostic tools to initiate timely 
treatment. This investigation employed three machine learning algorithms—RF, LASSO 
logistic regression, and SVM-RFE—to identify eleven robust core biomarkers: OLFM4, 
APOBEC3B, BPIFB1, CPM, MSRB3, EZH2, SCGB3A1, F13A1, PTGER3, FOS, and RCAN1. 
These biomarkers demonstrated high diagnostic accuracy for endometriosis in a diagnostic 
column line graph, outperforming other strategies and indicating significant clinical utility.

OLFM-4, an extracellular matrix protein highly expressed in human endometrium [33], 
is downregulated in endometriosis compared to controls [9]. This protein may stabilize the 
endometrium and modulate inflammation through negative regulation of M2 macrophages 
[34]. APOBEC3B, a member of the cytidine deaminases superfamily [35], contributes to 
DNA mutation by converting cytosine to uracil, potentially increasing the mutational burden 
in endometriosis [36, 37] and is associated with poorer outcomes in ER-positive breast can-
cer due to its elevated expression [38–40]. EZH2, a component of the polycomb repressive 
complex 2 (PRC2), mediates transcriptional silencing through histone H3 methylation [41, 
42]. Hypoxic conditions enhance EZH2 expression, amplifying activity in pathways such as 
Wnt/β-catenin that are critical in the epithelial-to-mesenchymal transition observed in both 
breast cancer [43] and endometriosis [44].

BPIFB1 expression is stimulated by estrogen, and elevated levels correlate with negative 
prognosis in luminal A breast cancer [45, 46]. MSRB3, a protein repair enzyme, is associated 
with apoptotic cell death in various cancers, including breast cancer [47]. FOS, an immediate 
response gene, plays a crucial role in estrogen-driven proliferation of endometrial cells [48]. 
PTGER3, a receptor with high affinity for prostaglandin E2 (PGE2), is upregulated in endo-
metriosis and implicated in tumor-associated angiogenesis, influencing clinical outcomes in 
various cancers [8, 49]. RCAN1 functions as a tumor suppressor, inhibiting cellular growth 
and angiogenesis in breast cancer [50]. Secretoglobin family 3  A member 1 (SCGB3A1) 
enhances stem cell characteristics and aggressiveness in breast cancer cells [51]. Carboxy-
peptidase M (CPM), found on tumor-associated macrophages, may serve as a cancer bio-
marker [52]. Factor XIII A chain (F13A1) participates in fibrin network stabilization and 

Fig. 8 The expression of genes was verified by qRT-PCR and West-blotting. A The expression of SCHBP1 between 
breast cancer group and control group. B The expression of PMAIP1 between breast cancer group and control 
group. C The expression of LTF between breast cancer group and control group. D Protein expression levels of 
SCHBP1, PMAIP1 and LTF in breast cancer group 1 and control group. E Protein expression levels of SCHBP1, 
PMAIP1 and LTF in breast cancer group 2 and control group. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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potentially facilitates tumor matrix formation and progression [53]. These genes may play 
key roles in the development of both diseases and could serve as targets for future therapies.

Through univariate Cox regression analysis combined with stepAIC, we constructed a 
prognostic model incorporating three key genes: SHCBP1, PMAIP1, and LTF. This model 
effectively stratified breast cancer patients into high- and low-risk groups. The HR group 
demonstrated significantly reduced OS compared to the LR group in both the TCGA-breast 
cancer and METABRIC cohorts. The model’s reliability was further validated in the META-
BRIC study. Within the TCGA-breast cancer cohort, model-derived risk scores emerged as 
independent prognostic factors, remaining significant regardless of age, stage, TNM classifi-
cation, or radiation treatment status.

SHCBP1, a member of the SHC protein family, plays vital roles in cell proliferation, migra-
tion, adhesion, and cell cycle regulation, contributing significantly to carcinogenesis [54, 55]. 
In breast cancer, elevated SHCBP1 expression correlates with advanced clinical stages and 
shorter survival times [54, 56–58]. PMAIP1, a pro-apoptotic member of the BCL-2 protein 
family, interacts with the p53 pathway to enhance apoptosis [59–62]. It functions as a tumor 
suppressor and shows elevated expression in breast cancer samples [63], with critical impor-
tance in paclitaxel response in triple-negative breast cancer [64]. High PMAIP1 mRNA 
expression represents a positive prognostic marker for relapse-free and OS across diverse 
breast cancer molecular subtypes [64]. LTF, a multifunctional glycoprotein belonging to the 
transferrin family, exhibits significant anti-tumor properties through mechanisms including 
inhibition of tumor cell proliferation and promotion of apoptosis or necrosis [65–68]. Pan-
cancer analysis confirms that low LTF expression in tumors supports its classification as a 
tumor suppressor gene [69].

Further analysis revealed distinct patterns in immune cell infiltration and immune check-
point expression between risk groups. The LR group exhibited increased infiltration by 
eosinophils, mast cells, and NK cells. Conversely, the HR group showed greater presence of 
activated CD4 and CD8 T cells, alongside elevated stemness enrichment scores and hypoxia 
scores, suggesting more aggressive tumor characteristics. Despite this activation pattern, the 
LR group maintained higher total CD8 + T cell levels with reduced immunosuppressive M2 
macrophage presence—potentially explaining enhanced immunotherapy responsiveness. 
Pharmacogenomic analyses revealed higher predicted Lapatinib IC50 values in the HR group, 
indicating potential HER2-targeted therapy resistance. The HR group also demonstrated 
increased non-synonymous mutation burden and aneuploidy, reflecting underlying genomic 
instability.

Several limitations exist regarding sample size and clinical annotation depth. Future inves-
tigations require larger cohorts with comprehensive clinical and longitudinal data to enhance 
model generalizability and better account for clinical heterogeneity. Collaborations are being 
established to access well-annotated prospective datasets. Subsequent studies will imple-
ment network-based analyses with experimental validation to elucidate shared gene func-
tions between pathologies. Advanced statistical approaches, including causal inference and 
propensity score matching, will address potential confounders. While METABRIC provided 
valuable validation, cohort heterogeneity, processing variations, and treatment history differ-
ences necessitate further validation through prospective multi-center studies.

This study identified common genes between endometriosis and breast cancer, facilitating 
the development of diagnostic and prognostic models. Our diagnostic model, based on 11 
core biomarkers, accurately predicted endometriosis onset. The prognostic model, utilizing 
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three genes, effectively stratified breast cancer patients into distinct risk categories that cor-
related with specific clinical outcomes and biological behaviors. These risk groups exhib-
ited unique immune cell profiles and genomic features, enhancing our understanding of the 
molecular dynamics underlying both conditions. These insights are essential for advancing 
personalized diagnostic and treatment approaches.
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