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Summary
Background Assessment of spine alignment is crucial in the management of scoliosis, but current auto-analysis of
spine alignment suffers from low accuracy. We aim to develop and validate a hybrid model named SpineHRNet+,
which integrates artificial intelligence (AI) and rule-based methods to improve auto-alignment reliability and
interpretability.

Methods From December 2019 to November 2020, 1,542 consecutive patients with scoliosis attending two local
scoliosis clinics (The Duchess of Kent Children’s Hospital at Sandy Bay in Hong Kong; Queen Mary Hospital in Pok
Fu Lam on Hong Kong Island) were recruited. The biplanar radiographs of each patient were collected with our
medical machine EOS™. The collected radiographs were recaptured using smartphones or screenshots, with deiden-
tified images securely stored. Manually labelled landmarks and alignment parameters by a spine surgeon were con-
sidered as ground truth (GT). The data were split 8:2 to train and internally test SpineHRNet+, respectively. This
was followed by a prospective validation on another 337 patients. Quantitative analyses of landmark predictions were
conducted, and reliabilities of auto-alignment were assessed using linear regression and Bland-Altman plots. Defor-
mity severity and sagittal abnormality classifications were evaluated by confusion matrices.

Findings SpineHRNet+ achieved accurate landmark detection with mean Euclidean distance errors of 2¢78 and 5¢52
pixels on posteroanterior and lateral radiographs, respectively. The mean angle errors between predictions and GT
were 3¢18° and 6¢32° coronally and sagittally. All predicted alignments were strongly correlated with GT (p < 0¢001,
R2 > 0¢97), with minimal overall difference visualised via Bland-Altman plots. For curve detections, 95¢7% sensitivity
and 88¢1% specificity was achieved, and for severity classification, 88¢6–90¢8% sensitivity was obtained. For sagittal
abnormalities, greater than 85¢2–88¢9% specificity and sensitivity were achieved.

Interpretation The auto-analysis provided by SpineHRNet+ was reliable and continuous and it might offer the
potential to assist clinical work and facilitate large-scale clinical studies.
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Introduction
Spine malalignment is prevalent and in the paediatric
population, adolescent idiopathic scoliosis (AIS) is most
common.1 AIS can affect up to 2¢2% of boys and 4¢8%
of girls.2 Without prompt intervention, the deformity
may deteriorate and significantly reduce the quality of
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Research in context

Evidence before this study

PubMed was searched on July 20, 2021, for articles pub-
lished in all languages describing the application of
deep learning techniques to scoliosis in images using
the search terms “artificial intelligence” OR “deep learn-
ing” OR “convolutional neural network” AND “scoliosis”
OR “spine malalignment” AND “images” without any
date restrictions. Cited references in the retrieved
articles were further searched. Previous AI studies on
scoliosis have mainly focused on a specific task, such as
scoliosis severity classification, Cobb Angle (CA) predic-
tion, or vertebrae detection on either posteroanterior or
lateral radiographs. Most of these studies suffered from
data scarcity. The literature search revealed that no
study evaluated the effectiveness of Artificial Intelli-
gence (AI) for scoliosis or spine malalignment in any
prospective trial.

Added value of this study

To the best of our knowledge, this study is the first to
establish a platform for automatic spine alignment anal-
ysis with prospective validation. The performance of the
hybrid system was validated via in-house and prospec-
tive clinical data, using cases of varying severity, curve
type, and radiograph quality. The primary significance
of this work compared with previous studies is the pro-
spective data validation and integration into an open
platform for clinicians and researchers to obtain fast
alignment analysis. The prospective results suggested
that our model achieved satisfactory clinical
performance.

Implications of all the available evidence

Our study suggests that medical AI has the capacity to
assist doctors and clinical researchers via fast and con-
sistent analytical results. However, we should note that
the prospective validation of this study was performed
at two scoliosis clinics and not at a multi-centre interna-
tional site. Therefore, caution is required when using
SpineHRNet+ directly in other clinical settings. Fine-tun-
ing of the models may be required to adapt to other
clinical settings. Further studies are necessary to corrob-
orate our results.
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life and mobility.3 Accurate assessment of spine align-
ment is crucial for proper treatment. It is based on
radiographs with multiple alignment parameters,
including but not limited to the coronal Cobb angle
(CA) magnitude, curve type (thoracic curve, thoracolum-
bar and lumbar) as well as the sagittal alignment, i.e.,
thoracic kyphosis (TK), lumbar lordosis (LL), and sacral
slope (SS), which are all measured from specific key-
points (end points of the endplates) of specific vertebrae.
Thus, current diagnoses and follow-up assessments
require extensive clinical experience and expertise to
interpret the alignment parameters manually and
assess the patient physical appearance, making fast and
accurate alignment analyses challenging.4

AI has shown great promise in managing spine dis-
ease, including disease detection 5, classification,6,7 seg-
mentation,8 and progression prediction,9 mainly based
on medical images. Previous studies on automatic spine
alignment analysis10–12 could directly or indirectly
regress CAs from radiographs of the major curve but
could not compute heterogeneous curve patterns13 or
investigate the curve types. It is challenging to interpret
what the AI algorithm has learned, thus reducing the
clinical application. Other AI approaches adopted the
clinical gold standard strategy of first locating the verte-
bral endplates followed by CA calculation,14,15 but these
focused on screened radiographs from retrospective
datasets and lacked prospective validations.16

Given that medical AI has significant advantages in
speed and consistency, an easily accessible platform
using validated AI models can significantly assist clini-
cians. Particularly when face-to-face contact is restricted,
such as under the COVID-19 pandemic, an auto-analy-
sis platform able to tolerate large variations in image
quality will greatly assist spine surgeons in making clin-
ical decisions. Thus, we developed an open platform
termed AlignProCARE, integrating user applications, a
data centre, and a backend AI server powered by deep
learning models. Our platform aimed to provide clini-
cians with faster and reliable spine measures to assist
their clinical practice and facilitate communication with
patients. The significance of this work is multifaceted.
First, the deep learning models were designed and
trained using radiographs from a range of sources with
varying image quality, including smartphone recap-
tured radiographs as well as original high-resolution
radiographs, to increase the generalizability of our mod-
els. Second, AlignProCARE is an open platform that
can be freely used upon registration using research
institute emails to increase the accessibility of auto-anal-
ysis. Third, SpineHRNet+, with the clinical keypoints
displayed, can provide interpretable spine alignment
analysis for spine surgeons, yielding evidence for how
results were generated.
Methods

Participants and datasets
All deformity patients attending two scoliosis clinics
(The Duchess of Kent Children’s Hospital at Sandy Bay
in Hong Kong; Queen Mary Hospital in Pok Fu Lam on
Hong Kong Island) from December 2019 to November
2020 were recruited. The ethics of this study was
approved by the local institutional authority review
board (UW15–596), and all participants were required
to provide written informed consent before they joined
www.thelancet.com Vol xx Month xx, 2021
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the study. Patients with psychological, systematic neural
disorders, congenital deformities, previous spinal opera-
tions, any trauma that could impair posture and mobil-
ity, and any oncological diseases were excluded. The
involved technicians were instructed to recapture the
radiographs using a smartphone or take screenshots of
the displayed image, with the imaging plane parallel to
the screen. No patient identification information was
captured. All collected images were anonymised and
uploaded to our secure internal server via AlignPro-
CARE. All patient alignment landmarks were manually
annotated by spine surgeons using open-source soft-
ware (ImageJ version 1.52r). The spine alignments
recorded as a routine clinical practice were considered
as the ground truth (GT). Senior surgeons with more
than 20 years’ clinical experience manually annotated
the end points of all endplates from the 1st thoracic ver-
tebra to the 1st sacrum as key point landmarks. Those
annotated landmarks were used as GT landmarks to
train our AI model for landmark detection. The sur-
geons measured alignment parameters were considered
as GT angles to evaluate the alignments prediction per-
formance of our model. We tested the inter-rater vari-
ability of alignments measurements between two
surgeons and discovered a small absolute angle differ-
ence of 4°–6° (mean = 4¢5° ± SD 0¢6). The agreements
were satisfactory for clinical practice and thus no third
assessor was involved.

Of the 1542 consecutive patients attending the scolio-
sis clinic during the study period for SpineHRNet+
development, 185 were excluded because of degenera-
tive deformities but not AIS, and another 8 were
excluded due to congenital deformities. A total of 1349
cases with biplanar radiographs (both coronal and sagit-
tal) were included, with 1079 cases (74% female; age
range 10–18) used to train SpineHRNet+ and 270 used
for the in-house validation dataset to evaluate the perfor-
mance. After the model was developed, it was tested on
337 prospective cases, which were not involved in train-
ing and optimising SpineHRNet+. Most of the patients
had two radiographs (i.e., posteroanterior and lateral
radiographs), while a small proportion of the patients
have four biplanar radiographs since they were scanned
twice before and after wearing braces. Therefore, the
number range of radiographs per patient is 2–4. The
average and standard deviation of radiographs per
patient for training the model were 2¢28 and 0¢69,
respectively, while for prospective testing were 2¢30 and
0¢71, respectively. Radiographs of the patients with the
brace were eliminated during the data cleaning.
Definition of alignment parameters, severity, and
types
For measuring the coronal alignment 5, the end verte-
brae must be identified first, which are the most tilted
vertebrae from the curve apex. The CA is formed by the
www.thelancet.com Vol xx Month xx, 2021
angle between the upper endplate of the most cranial
vertebra and the lower endplate of the most caudal ver-
tebra. A threshold of 10° was used according to the clini-
cal gold standard to differentiate the presence of a curve
at a given location of the spine in the coronal plane.17

The severity of the deformity is classified as shown in
Table 1. A CA smaller than 20° is considered as normal-
mild, 20–40° is considered as moderate and greater
than 40° is considered severe. The type of curve is con-
sidered as thoracic (T) if the apex of the curve was
between the 1st to the 11th thoracic vertebrae; as thoraco-
lumbar (TL) if the apex was located between the 12th
thoracic vertebra and the 1st lumbar vertebra; and as
lumbar (L) if the apex of the curve was between the 2nd
and the 5th lumbar vertebrae. Different clinical inter-
ventions and deformity features are associated with vari-
ous severities and curve types (Table 1).

For the sagittal alignment, the 5th thoracic vertebra,
the 12th thoracic vertebra (T5 and T12), the 1st lumbar
vertebra (L1) and the 1st sacrum (S1) are landmarks for
calculating the TK, LL, and SS. We adopted the previ-
ously reported normal ranges for TK (20–40°) 18, LL
(20–45°) 19, and SS (32–49°).20
Image pre-processing
To minimise input image variance, image sizes were
automatically unified by cropping each image to an
896 × 448 pixels patch, containing the entire spine.
Subsequently, we adopted data-augmentation to
enhance model robustness, including random flipping
(probability = 0¢5), scaling [0¢8, 1¢2], rotation [−5°, 5°],
horizontal/vertical translation [−10 pixels, 10 pixels],
and contrast augmentation [0¢8, 1¢2]. The generated
heatmaps and GT landmarks were scaled accordingly.
Procedures
The AlignProCARE open platform has been deployed to
a website (https://aimed.hku.hk/alignprocare). It con-
sists mainly of three parts: the user end, a data centre,
and an AI server (Figure 1). Users can utilise the auto-
mated alignment analysis function after registration
using research institutional emails. They can access the
platform and upload new images through both the PC
user interface and smartphone application (App Store
and Google Play). Analytic results from SpineHRNet+
can be received and parsed directly on the user end with
key landmarks visualised on the user interface or smart-
phone. Alignment degrees and deformity severity can
be automatically computed based on the landmarks.
Users can modify the landmark positions, and the align-
ment results are simultaneously re-calculated.
SpineHRNet+
The backend hybrid model is an improved version of
our previous framework SpineHRNet 5, thus known as
3
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Model development Prospective test Clinical implications

Age (10–18) No. of patients No. of X-rays No. of patients No. of X-rays

Curve magnitudes

Normal-mild

(CA≤20°)

502 1138 118 264 No intervention required. For the skele-

tally immature, regular follow-up is

required every 4–6 months to identify

curve progression early in which brac-

ing may be recommended.

Moderate

(20°<CA≤40°)

670 1532 184 426 These patients may require bracing to

prevent curve progression. No inter-

vention may be required at the end of

growth. Scoliosis-specific exercises may

also be prescribed.

Severe

(CA>40°)

177 402 35 86 These severe curves have risk of adult-

hood progression. Surgical intervention

may be required in the form of verte-

bral body tethering (skeletally imma-

ture only) or curve correction and

spinal fusion.

Curve types

Thoracic curve 1067 2422 256 589 Curves that develop rib humps and are

more likely to develop chest wall defor-

mities and unlevelled shoulders.

Thoracolumbar/Lumbar curve 969 2198 236 548 Curves more likely to develop pelvic

obliquity and waistline deformities.

Table 1: Standards of severity level and corresponding clinical interventions for different curve types.
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SpineHRNet+. SpineHRNet+ “mimics’’ diagnostic pro-
cedures of clinicians for AIS via incorporation of both
deep learning networks and a rule-based algorithm
(Figure 2). It can process and analyse biplanar radio-
graphs of the spine with deformities. The processing
pipeline essentially consists of two stages. In stage 1, the
algorithm utilises two deep learning models as back-
bones. HRNet 21 is adopted to detect endplate land-
marks of each vertebra and identify the location of the
end vertebrae. The detailed architecture of the adopted
HRNet is presented in Figure 1.1 in the supplementary
materials. The landmarks are visualised to increase
result interpretability for users. In parallel, UNet 22 is
adopted to segment the spine region, followed by a rule-
based algorithm to obtain a spine segmentation map.
The detailed architecture of the adopted UNet is pre-
sented in Figure 1.2 in the supplementary materials.
Details of all the networks are provided in the supple-
mentary materials. In stage 2, SpineHRNet+ integrates
the outputs of the previous two stages to perform bad
point detection and correction (Figure 2). The corrected
landmarks are further used for CA prediction.

For model development, we used a computer with an
Intel(R) Xeon(R) Silver 4114 CPU 2.20 GHz central
processing unit, 128GB of RAM and an NVIDIA
GeForce RTX 2080Ti core. The network was imple-
mented using PyTorch (version 1.6.1) 23 accelerated by
Cuda 10.2. The detailed structure of deep learning net-
works adopted in SpineHRNet+ is provided in the sup-
plementary materials (Section 1.1). Landmark detection
and spine segmentation were trained using the training
data. HRNet was optimised by minimising a pixel-wise
binary cross-entropy loss between the model outputs
and GT labels, while UNet was optimised by minimis-
ing the cross-entropy loss. During model training, the
Adam optimiser was adopted, and a decay factor d was
used to control the learning rate at each epoch. The
decayed learning rate update follows the equation

lri ¼ lr ¢ 1

1þ d ¢ i ; ð1Þ

where lr was the initial learning rate and lri was the
learning rate at the ith epoch. In our experiments, the
Adam optimiser with an initial learning rate of 0¢0001,
a decay of 0¢05, a batch size of 4, and an epoch of 200
was used for landmark detection training. For segmen-
tation training, the Adam optimiser with an initial
learning rate of 0¢00,005, a decay of 0¢03, a batch size
of 4, and an epoch of 100 was used, with hyper-parame-
ters decided empirically.
Performance evaluation
To comprehensively assess our method, we tested the
performance of the model on multiple tasks, including
www.thelancet.com Vol xx Month xx, 2021



Figure 1. Workflow diagram of our medical AI platform — AlignProCARE. The platform consists of mainly three parts, i.e., the client
end, data centre, and server. The workflow is: (1) On the client end, users upload the spine radiographs via PC or smartphone appli-
cations. (2) The data centre receives the captures from different users and assigns each one with a specific identity number, and
then sends ammonized images to the server with end-to-end encryption. (3) On the server side, a hybrid AI-powered model contin-
uously receives the images, analyses the images using SpineHRNet+, and sends back the results to the data centre. (4) The data cen-
tre forwards the results to different devices according to the identity number. (5) The PC or smartphone applications parse the
results and visualise them on client devices.
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landmark detection, CA detection, and severity predic-
tion (only for coronal images).

For landmark detection, we used two quantitative
measurements to examine the difference between pre-
dicted results and landmark labels (ground truth). The
two measurements are mean Euclidean distance (MED)
and mean Manhattan distance (MMD), which are
defined as:

MED ¼ 1

N

XN
n¼1

1

M

XM
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � bxi� �2 þ yi � byi� �2q !

; ð2Þ

MMD ¼ 1

N

XN
n¼1

1

M

XM
i¼1

����xi � bxi ����þ ����yi � byi ����� � !
; ð3Þ

where ðxi; yiÞ and ðbxi;byiÞ denote the ith predicted land-
mark coordinates and corresponding label coordinates,
respectively. M is the number of landmark coordinates
in a single radiograph capture, and N is the number of
image samples in the dataset. These two measurements
can provide a comprehensive evaluation of the perfor-
mance of SpineHRNet+ on a landmark detection task.
MED measures the 2D Euclidean distance between the
predicted landmark coordinates and their GT counter-
parts, which is a straightforward criterion that can
assess the predicted results of each landmark. MMD
www.thelancet.com Vol xx Month xx, 2021
can measure the distance as well. However, it empha-
sises the distance on each coordinate dimension. There-
fore, by combining these two measurements, the
performance of the model can be more accurately evalu-
ated.
Statistical analysis
To demonstrate if the performance of SpineHRNet+
has improved significantly, we conducted a hypothesis
test on the two measurements MED and MMD. First,
we used the Shapiro-Wilk test, a commonly used nor-
mality test, to evaluate the normality of the quantitative
error of SpineHRNet and SpineHRNet+ in terms of
MED and MMD. Such an evaluation was tested with the
stats.shapiro() function of SciPy 1.7.0 in the Python 3.6
environment. A threshold of p < 0¢05 was set as the
standard for the input data not following the normal dis-
tribution, and the results showed that the error values,
regardless of either MED or MMDmeasurements using
either coronal or sagittal captures, did not follow a nor-
mal distribution. Therefore, the Wilcoxon signed-rank
test 24, the nonparametric equivalent to the paired t-test,
was performed using the stats.wilcoxon() function in
SciPy. Mean value and standard deviation (SD) were cal-
culated, and p < 0¢0001 was considered statistically sig-
nificant.
5



Figure 2. Overview processing pipeline of the SpineHRNet+. The model consists of two stages. The stage 1 (denoted with the green
panel) adopts deep learning models for endplate and vertebral landmark detection and spine segmentation map (segmap) genera-
tion. The stage 2 (yellow panel) uses rule-based techniques for bad point detection and correction. The corrected landmarks are
used for alignment prediction. In each panel, we visualize the outputs in the corresponding stage and use digits (a–e) to concate-
nate each output with the corresponding processing step. Compared with end-to-end models, the designed staged pipeline
increases our model interpretability. For coronal X-ray captures, stage 1 predicts the end vertebra (a) and endplate landmarks (b)
indicated by the heatmaps. The heatmap suggests the probability of the appearance of end vertebrae or landmarks within the
image. High probability regions are indicated with warm colour while low probability regions are indicated with cold colour.
Another output is a binary map indicating the spine region with white pixels (c). Such binary map is useful for bad point detection
subsequently.
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CA presence detection is a binary classification task
to distinguish a curve on the spine radiograph, and we
evaluated the model performance on posteroanterior
radiographs. Coronal CA location (3 types: T, TL and L)
detection at different regions of the spine and the sever-
ity (3 types: normal-moderate, moderate, and severe)
were assessed. To assess classification performance,
true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values were counted. Five
descriptive quantitative assessments were calculated,
namely, sensitivity (Sn), specificity (Sp), precision (Pe),
negative prediction value (NPV), and accuracy (Acc), as
follows:

Sn ¼ TP

TPþ FN
; ð4Þ

Sp ¼ TN

TNþ FP
; ð5Þ

Pe ¼ TP

TPþ FN
; ð6Þ
www.thelancet.com Vol xx Month xx, 2021



Figure 3. Confusion matrices for the severity classification and sagittal CA detection on the prospective test data. The first Figure (a)
presents the confusion matrix for severity classification. “N/M” denotes the class Normal-mild. Figure (b–d) present the confusion
matrix for three sagittal CAs (TK, LL, and SS), respectively.
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NPV ¼ TP

TPþ FN
; ð7Þ

Acc ¼ TPþ TN

TPþ FPþ TNþ FN
: ð8Þ

A confusion matrix analysis was conducted for the
severity and type prediction on coronal alignments. For
sagittal alignment assessment, we distinguish the
patients from healthy controls according to the normal
range of different parameters. Confusion matrices were
generated for these sagittal parameters to visualise the
agreement between GT and predicted results.

To quantitatively assess the validity of our medical AI
system, linear regression and Bland-Altman analysis 25

were conducted on several clinically relevant parameters
defined in Section 2.2. That is, for coronal cases, tho-
racic CA, thoracolumbar CA, and lumbar CA were con-
sidered, and for sagittal cases, TK, LL, and SS were
considered. For each clinical parameter, linear regres-
sion was conducted between the predicted value and
GT. The regression line (blue line), the 95% confidence
interval of the predictions (green dashed line) and the
perfect correspondence (red line) between the predic-
tions and GT are shown in Figure 3 as well. The Bland-
www.thelancet.com Vol xx Month xx, 2021
Altman analysis was performed between the mean of
the predicted and GT values ((prediction+GT)/2) and
their residual ((prediction-GT)/2) to examine the agree-
ment of CAs between the predictions of SpineHRNet+
and the GTs. All statistical analyses in this study were
performed using SciPy (version 1.7.0) 26 and scikit-learn
(version 0.23.2) 27 python packages.
Role of the funding source
Our study was funded by the RGC Research Impact
Fund (R5017–18F), Innovation and Technology Fund
(ITS/404/18), and the AOSpine East Asia Fund
(AOSEA(R) 2019–06). The funders of the study had no
role in study design, data collection, data analysis, data
interpretation, or writing of the report. The correspond-
ing authors had full access to all the data in the study
and had final responsibility for the decision to submit
for publication.
Results
The 1349 cases for model development consisted of 502
normal-mild deformity curves, 670 moderate curves,
7



Figure 4. Linear regression analysis of three coronal (T, TL, and L CAs) and three sagittal (TK, LL, and SS) clinical parameters on the
prospective test data. The x-axis denotes the values predicted by SpineHRNet+, while the y-axis refers to the GT alignments. The first
row presents the regression results for coronal parameters: Figure (a) counts all the coronal parameters while Figure (b–d) present
linear regression results for T, TL, and L CAs, respectively. The second row presents the regression results for sagittal parameters:
Figure (e) counts all the sagittal parameters while Figure (f–h) present linear regression results for TK, LL, and SS, respectively. The
95% confidence interval of the predictions (green dashed lines), the regression line (blue line) and the perfect alignment line (red
line) between GT and predictions are shown. The coefficients for the regression line are presented in the legend of each figure. All
units in the figure are in degrees.
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177 severe curves, 1067 thoracic curves, 582 thoracolum-
bar curves, and 387 lumbar curves. The prospective
cohort consisted of 118 normal-mild deformity curves,
184 moderate curves, 35 severe curves, 256 thoracic
curves, 158 thoracolumbar curves, and 82 lumbar curves
(Table 1). The detailed demographics of each studied
cohort were presented in Table 2.

For vertebral endplate landmark predictions, we
compared the performance of SpineHRNet+ with its
previous version (SpineHRNet).5 By combining both
the rule-based techniques and deep learning methods,
SpineHRNet+ achieved increased accuracy in terms of
two quantitative measurements for landmark predic-
tions. Table 3 compared the quantitative performance of
the two models on the prospective test data (quantitative
results on the in-house validation data were presented
in Table 2.1 in the supplementary materials). As shown,
SpineHRNet+ reduced both MED and MMD loss by at
least 26¢3% and 25¢3%, respectively. Results of the Wil-
coxon signed-rank test suggested that the performance
of SpineHRNet+ was significantly improved (all p
< 0¢0001) compared with our previous version. In addi-
tion, several nonparametric statistical descriptors of two
quantitative measurements, such as the median and
interquartile range (IQR) were calculated to comprehen-
sively evaluate the performance. The quantitative results
were presented in Table 4, where SpineHRNet+ outper-
formed SpineHRNet with lower median value and
smaller IQR value.

To assess the predictive accuracy of the coronal CAs,
we calculated the statistics of the errors between the pre-
dicted CAs and GT CAs (Table 5). The mean (±SD)
errors of the predicted T, TL, and L CAs from Spine-
HRNet+ were 1¢2° (± 2¢3°), 3¢2° (± 2¢9°), and 2¢6°
(± 2¢7°), respectively. For sagittal parameters TK, LL,
and SS, the errors were 6¢3° (± 6¢1°), 5¢9° (± 6¢9°), and
www.thelancet.com Vol xx Month xx, 2021



Figure 5. Bland-Altman plots assessing the agreement of alignments between the SpineHRNet+ predictions and the GT (The order
of the subfigures corresponds to those in Figure 5) on the prospective test data. The Y-axis indicates the angle difference (in degree)
between predicted results and the GT (i.e., predictions-GT). The X-axis represents the average degree of them (i.e., (predictions+GT)/
2). Both the mean and standard deviation values are reported in the legend of each subfigure. Figure (a) presents the Bland-Altman
plot for all the coronal parameters while Figure (b–d) count on T, TL, and L CA, respectively. Figure (e) presents the Bland-Altman
plot for all the sagittal parameters while Figure (f–h) count on TK, LL, and SS, respectively.
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4¢1° (± 5¢4°), respectively. Table 5 compared the perfor-
mance of SpineHRNet and SpineHRNet+ on the pro-
spective test data (the comparison results on the in-
house validation data were presented in Table 2.2 in the
supplementary materials). SpineHRNet+ outperformed
SpineHRNet on all the coronal and sagittal parameters.
The overall prediction of coronal CAs was more accurate
than the prediction of sagittal measurements with
smaller mean degree error and smaller SD.

For coronal CA detection at different regions of the
spine, Table 6 displayed the results of statistics (results
of statistics on the in-house validation data were pre-
sented in Table 2.3 in the supplementary materials). The
Sn (95¢7–97¢4%), Sp (88¢1–98¢4%), NPV (87¢1–98¢8%),
and Acc (93¢8–97¢9%) exhibited high scores in L curve
detection and low scores in T curve detection, however
Pe (95¢4–96¢0%) had the highest score for T curve detec-
tion. For AIS severity classification (Figure 3(a)), our
model achieved a specificity of no less than 88¢6% on all
three groups, with the highest performance in the mod-
erate cases but lowest performance in the severe cases.
For sagittal alignment, confusion matrices (Figure 3 (b–
www.thelancet.com Vol xx Month xx, 2021
d)) demonstrated high performance (>85¢2%) for all sag-
ittal parameters. The severity classification results on the
in-house validation data were presented in Figure 2.1 in
the supplementary materials.

The prospective reliability of the SpineHRNet+
assessed by linear regression analysis between the pre-
dicted and GT (Figure 4), indicated a strong correlation
with the GT (Table 7: p < 0¢001) in predicting all align-
ment parameters, with an overall R2 of 0¢970 for coro-
nal parameters and 0¢982 for sagittal parameters. The
slope of the regression line was 45¢73° for all coronal
parameters and 44¢13° for the sagittal parameters. Both
were close to the ideal value of 45°, which indicates the
perfect agreement between predicted CA and GT. Table
2.4 and Figure 2.2 in the supplementary materials
showed the regression results on the in-house validation
data. Bland-Altman plots (Figure 5 in the main text and
Figure 2.3 in the supplementary materials) visualised
the difference versus average degree values between the
predicted and GT CAs. The overall mean difference
between the GT and the predicted CAs was minimal at
−0¢5° for coronal and −0¢05° for sagittal parameters.
9



Severity Total number
of subjects

Male Female Average CA (degree) Average age
(years old)

Curve type
N T TL/L Mixed

Training cohort

Normal-mild

(CA≤20°)

381 125 256 14¢1 14¢3 68 119 82 112

Moderate

(20°<CA≤40°)

551 111 440 27¢9 14¢2 – 100 71 380

Severe

(CA>40°)

147 29 118 54¢3 14¢8 – 20 3 124

Validation cohort

Normal-mild

(CA≤20°)

123 33 90 14¢1 14¢2 17 32 37 37

Moderate

(20°<CA≤40°)

115 22 93 28¢5 14¢1 – 20 3 92

Severe

(CA>40°)

32 6 26 52¢2 15¢3 – 4 1 27

Prospective cohort

Normal-mild

(CA≤20°)

115 43 72 13¢7 14¢2 23 30 36 26

Moderate

(20°<CA≤40°)

190 45 145 29¢1 14¢3 – 41 21 128

Severe

(CA>40°)

32 3 29 52¢2 15¢6 – 7 1 24

Table 2: Demographics of different cohorts.
CA: Cobb angle; N: normal; T: thoracic; TL: thoracolumbar; L: lumbar; Mixed: both appear T and TL/L.

MED (Pixels) MMD (Pixels)
Coronal Sagittal Coronal Sagittal

SpineHRNet 3¢8 7¢6 4¢2 8¢7
SpineHRNet+ 2¢8 5¢5 3¢1 6¢5
Loss reduction (%) 26¢3% 27¢6% 26¢2% 25¢3%
p-value* < 0¢0001 < 0¢0001 < 0¢0001 < 0¢0001

Table 3: Quantitative error results in terms of two distance measurements between predicted landmarks and GT landmarks on the
prospective test data.
* Significant improvement (p < 0¢0001).
MED: mean Euclidean distance; MMD: mean Manhattan distance.
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The visualisation of landmark detection and CA pre-
diction (Figure 6) provides interpretable alignment
analysis for users, while our platform allows users to
modify the landmarks with the alignment re-computed
concurrently. The difference between predicted land-
marks and GTs was minimal (MED: 1¢88–3¢69 pixels;
MMD: 2¢06–3¢97 pixels). The performance of landmark
detection and CA prediction were both satisfactory and
clinically interpretable.
Discussion
In this study, we developed a hybrid AI-powered model
(SpineHRNet+) linking with our open platform Align-
ProCARE for easily accessible auto-alignment analysis.
We prospectively tested its validity on multiple analytic
tasks, including endplate landmark detection with the
prospective evaluation of CA prediction, end vertebrae
localisation, and severity classification in real-world tri-
als. With this open platform, users can upload their
radiographs by taking photos with a smartphone and
instantly access the analysis results with the flexibility
of further modification. Both the images and analytic
results are encrypted during the uploading and down-
loading, with all processing and analysis performed on
our server with SpineHRNet+.

Considering that spine alignment analysis is critical
in the diagnosis and further management planning of
scoliosis, assessment reliability and speed are impor-
tant. Previously published studies have reported the use
of machine learning models for measuring CAs 28–30.
Although these studies have shown the potential value
www.thelancet.com Vol xx Month xx, 2021



Euclidean distance Manhattan distance

Coronal Sagittal Coronal Sagittal
Median IQR Median IQR Median IQR Median IQR

SpineHRNet 3¢2 1¢8 5¢7 5¢1 3¢5 1¢9 6¢3 5¢7
SpineHRNet+ 2¢5 0¢7 3¢4 2¢7 2¢8 0¢8 3¢9 3¢3

Table 4: Median and IQR results in terms of two distance measurements between predicted landmarks and GT landmarks on the
prospective test data.
IQR: interquartile range.

Alignment parameters Mean (degree) Standard deviation

SpineHRNet SpineHRNet+ SpineHRNet SpineHRNet+

Coronal T curve 1¢3 1¢2 2¢6 2¢3
TL curve 3¢3 3¢2 3¢2 2¢9
L curve 2¢7 2¢6 3¢2 2¢7

Sagittal Thoracic kyphosis 6¢8 6¢3 6¢6 6¢1
Lumbar lordosis 6¢7 5¢9 8¢3 6¢9
Sacral slope 5¢1 4¢1 7¢5 5¢4

Table 5: Angle difference between predicted alignments using SpineHRNet+ and GT alignments on the prospective test data.
T: thoracic; TL: thoracolumbar; L: lumbar.

Performance metrics CA location
T TL L

Sensitivity 0¢965 0¢957 0¢974
Specificity 0¢984 0¢881 0¢903
Precision 0¢954 0¢960 0¢958
NPV 0¢988 0¢871 0¢939
Accuracy 0¢979 0¢938 0¢953

Table 6: Performance metrics of SpineHRNet+ on coronal
alignment detection on the prospective test data.
NPV: negative predictive value; T: thoracic; TL: thoracolumbar; L: lumbar.

Parameter R [2] p-value Regression line Sl

Thoracic CA 0¢964 < 0¢001 45¢02°
Thoracolumbar CA 0¢972 < 0¢001 45¢89°
Lumbar CA 0¢970 < 0¢001 45¢46°
Total 0¢970 < 0¢001 45¢73°
Thoracic kyphosis 0¢929 < 0¢001 41¢98°
Lumbar lordosis 0¢987 < 0¢001 44¢33°
Sacral slope 0¢988 < 0¢001 44¢05°
Total 0¢982 < 0¢001 44¢13°

Table 7: Regression analysis of correlation between GT alignments and
GT: ground truth; CA: Cobb angle.
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of AI techniques in determining spine shape, the data-
sets used to build the models were relatively small with
debatable reliability. Instead of directly predicting CAs,
some recent studies promoted the use of convolutional
architectures to detect vertebral landmarks, followed by
the calculation of CAs 12,14,31]. Most of these approaches
were trained in an end-to-end manner, directly output-
ting the landmark coordinates. In this regard, the AI
model was used as a “blackbox” in these studies, making
it hard to interpret how the predictions were made.

SpineHRNet+ can visualise the heatmap of land-
marks as outputs, indicating the location of each end-
plate landmark, and the landmark coordinates are
determined by the region with the highest probability
value (Figure 2). The design of the image processing
ope in Degree Standard error of the prediction difference

2¢55°
4¢22°
3¢67°
3¢57°
5¢66°
5¢29°
4¢02°
4¢99°

those predicted by SpineHRNet+ on the prospective test data.
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Figure 6. Visual results of landmark detection and CA prediction using our SpineHRNet+ model on the prospective test data. Three
coronal and three sagittal radiograph captures were randomly selected as input and the results obtained from our model were dis-
played on these images. The first row exhibits the landmark detection results: Figure (a–c) present the landmark detection results
on coronal radiographs; Figure (d–f) present the landmark detection results on sagittal radiographs. Red points denote the GT land-
marks while the blue crosses represent the predicted position of vertebral landmarks. Both MED and MMD are reported on the bot-
tom of each image. The second row presents the CA prediction results: Figure (g–i) present the CA prediction results on coronal
radiographs; Figure (j–l) present the CA prediction results on sagittal radiographs. For coronal radiographs (first three), CAs with dif-
ferent types are visualized using different colours. Some have two curves while the second one has three curves. For sagittal radio-
graphs (last three), we calculate the three CAs, i.e., TK, LL, and SS. The predicted degrees of CAs are printed beside the endplate of
the top end vertebra, and on the bottom, we count the angle difference (degree) of each CA between the predicted results and
ground truth.
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pipeline adopted in SpineHRNet+ was inspired by the
AIS clinical diagnosis procedure. We designed the pipe-
line into two stages, and in each stage, the model fulfils
a sub-task, outputting the intermediate results. Using
this approach, model interpretability is increased, also
facilitating the supervision of model operation.

Our AI-powered model was trained and evaluated on
captured biplanar radiographs with variable image qual-
ity to improve both the usefulness and generalisability
of different user scenarios. Considering the resolution
of a smartphone camera, environmental disturbances,
and user handshake, the quality of user-uploaded
images is usually much worse than the original high-
resolution radiographs. However, even with low-quality
images, our model can still achieve competitive and
even better results compared with other AI models
trained directly on the actual radiographs. In this
regard, this work suggested that smartphone-captured
radiographs are informative enough for the AI model to
learn the spine alignment features.

Alignment prediction performed better for the coro-
nal alignment and L curve detection since the radio-
graphs demonstrate clearer individual vertebrae with
the best intensity contrast in the L region (Figure 6).
For the severity classifications, the moderate curves
were predicted most accurately due to the larger num-
ber of such samples in the training dataset (Table 1).
Moderate cases are the most prevalent in scoliosis clin-
ics. Furthermore, the severe cases were significantly
fewer compared to moderate cases, and thus the perfor-
mance was slightly decreased. The imbalance in curve
severities is a feature of this population. We attempted
to balance the training data using re-sampling during
the model development stage, but this did not improve
the performance during the in-house training. Thus, we
kept the original dataset distribution.
www.thelancet.com Vol xx Month xx, 2021
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We prospectively validated SpineHRNet+ for auto-
spine analysis and deployed the first automatic AI-pow-
ered platform. Exiting open platforms for this purpose
require clinicians to manually annotate the radiographs,
which is laborious, time-consuming, and suffers from
inter-rater variation. Our model and open platform can
facilitate clinicians and researchers in handling large
volumes of alignment assessment requests. However,
femoral head detections in lateral radiographs were not
included, thus pelvic incidence and pelvic tilt cannot be
provided. It is because in our training dataset, a collec-
tion of the radiographs had the femoral head not
included in the imaging field. We are in the process of
collection recaptured radiographs with femoral heads
and improve the sagittal alignments auto-analyses fur-
ther. It must be noted the system was tested in two
centres followed the same procedure to collect radio-
graphs with the same clinical assessment standard to
evaluate the spine alignments. The performance of the
auto-alignment may reduce when directly apply in
another centre. We are planning an international multi-
centre trial to further assess the reliability of Spine-
HRNet+. Another limitation is no post-operative data
were collected thus the auto-alignments cannot be per-
formed on radiographs with instrumentation.

In summary, we deployed the first prospectively vali-
dated auto-alignment analysis model for spine curve
classification using an open platform. The AI-powered
hybrid system, SpineHRNet+ was trained and assessed
with radiographs with variable qualities and sources,
but still exhibited improved performance on multiple
spine disease scenarios compared with our previous ver-
sion. On further multi-centre validation in future, our
platform can better assist clinicians and clinical
research in large volumes.
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