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Abstract: The flavor of coffee can be affected by the preparation parameters. In this investigation, the
flavor profiles of three coffee brands under three conditions (bean, powder, and brew) were analyzed
by gas chromatography—ion mobility spectrometry (GC-IMS) and the electronic nose (E-nose). The
flavor results were further studied using multiple factor analysis (MFA). A total of 117 peaks were
identified in all coffee samples by GC-IMS, and the principal component analysis (PCA) showed
these coffee samples could be grouped and separated. A total of 37 volatile organic compounds
(VOCs) were selected as biomarkers to distinguish coffee samples, including 5 aldehydes, 10 ketones,
8 alcohols, 2 acids, 4 esters, 5 furans, and 3 other compounds. The comparison between E-nose and
GC-IMS data using partial least squares regression (PLSR) and MFA showed GC-IMS could present
very close sample spaces. Compared with E-nose, GC–IMS could not only be used to classify coffee
samples in a very short time but also provide VOC bio-markers to discriminate coffee samples.

Keywords: coffee; E-nose; GC-IMS; volatile organic components

1. Introduction

Coffee, originating from Ethiopia, has become one of the most popular drinks in the
world. The typical coffee flavor is mainly caused by volatile organic compounds (VOCs)
generated during the roasting process at a high temperature (above 200 ◦C), when flavor
precursors inside raw coffee beans undergo the Maillard reaction, Strecker degradation,
caramelization, and pyrolysis [1]. The attractive coffee flavors include nutty, caramel,
floral, and chocolate, which might owe to aldehydes, ketones, alcohols, sulfur-containing
compounds, and volatile heterocyclic compounds. The sulfur-containing compounds
originate from the thermal degradation of sulfur-containing amino acids in the presence of
sugars, and heterocyclic compounds, such as pyrazine, pyrrole, and pyridine, are yielded
by the Strecker reaction between amino acids and aldehydes [2,3].

Coffee flavor can be identified by many analytical methods. The most commonly used
techniques, such as solid-phase micro-extraction–gas chromatography–mass spectrometry
(SPME-GC-MS), and gas chromatography–olfactometry (GC-O) can be used to predict
volatile compounds (e.g., aldehydes and pyrazines) in single-roasted coffee beans [4]. In one
study, ultra-performance liquid chromatography–time-of-flight mass spectrometry (UPLC-
TOF-MS) revealed a marker substance for a coffee beverage spiked with acetaldehyde [5].
Flash gas chromatography electronic nose (FGC E-nose) can obtain a more convincing
flavor assessment than a single assessment of aroma or volatile profiles [6].

The electronic nose (E-nose) is a novel instrument that imitates the human olfactory
process to analyze and recognize complex odors efficiently. Previous studies have shown
good discrimination of roasted coffee, instant coffee, and coffee products with different
roasting degrees using E-nose [7]. However, compared to gas chromatography–mass
spectrometry (GC-MS), E-nose can only respond to profiles from sensor arrays, and the
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volatiles contributing to the odors cannot be identified. Originating in the 1970s [8], ion
mobility spectrometry (IMS) coupled with GC can be used to screen and distinguish food
samples in a very short time. It contains a low detection limit at the trace level (ng/L)
without pretreatment. A comparison between the principal component analysis (PCA)
of GC-IMS and two-dimensional gas chromatography–mass spectrometry (GC×GC-MS)
volatiles and multiple factor analysis (MFA) results showed that GC-IMS could be used
as a fast way to discriminate dry-cured ham products in different regions in China [9].
The comparison between GC-IMS and ultra-fast GC E-nose showed they both could be
used to discriminate between raw and cooked fish [10]. GC-IMS was used to identify
the authenticity of Iberian ham samples and reported VOCs such as octan-2-one, trans-2-
octenal, and nonan-2-one as biomarkers [11]. In addition, a total of 26 volatile metabolites
(aldehydes, ketones, alcohols, and esters) were identified to facilitate the characterization
of specific attributes of olive oils [12].

The flavor of coffee is affected by many parameters, such as natural environmental
factors (light intensity, plant density, and rainfall) and the processing conditions (roasting
temperature, and roasting time) [13]. The varied preparation methods of coffee brews
also result in varied coffee flavors. The extract levels of flavor components depend on the
ground particle size of roasted coffee beans and the temperature of hot water poured over
coffee powder [3,14]. The cations contained inside coffee beans and dissolved inside water
for coffee brew extraction may have an influence on the coffee aroma [15]. Therefore, the
objectives of this study were (1) to distinguish commercial coffee under three conditions
(bean, powder, and brew) using GC-IMS, (2) to identify potential biomarkers to separate
those samples using GC-IMS, and (3) to compare the discrimination ability between GC-
IMS and E-nose. This study could develop a fast method for the discrimination of coffee
with varied flavors.

2. Results and Discussion
2.1. GC-IMS Results

The VOCs isolated from the three commercial coffee samples (S, C, and P) in the bean,
powder, and brew forms are shown in Figure 1. The Figure 1 showed the background is
blue. The red vertical line at the abscissa, 1.0, is the reactive ion peak (RIP). The X-axis
and Y-axis represent the drift time and retention time, respectively [16]. The signals were
mostly located within the retention time range, from 100 to 400 s, and a drift time from 1.0
to 1.5 riprel. Each detected VOC produced a signal that presented as a colored spot. The
concentration variances of each VOC depended on the signal intensity shown in the varied
colors, with red representing higher intensity and blue meaning not present.

A total of 117 signals were detected in all samples (data not shown). To visualize the
vast amount of data by reducing dimensions, PCA was performed based on the identified
signals using GC-IMS. The PCA was a multivariate statistical analysis technique. Through
dimensional reduction analysis, the selected PCs could represent the contribution rates
in different samples [17]. Figure 2 shows the score plots obtained via PCA, and each dot
represents a sample. The dots of the same color represent the replicates of the sample.
The first and second principal components (PC1 and PC2) explained 45.8% (Figure 2A)
variance and the second and third principal components (PC2 and PC3) explained 40.3%
(Figure 2B) variance.

From the results (Figure 2A), it can be seen that three brands of coffee beans scattered
along PC1 and PC2. The powder was located in a similar position along the positive side
of PC1 and grouped into three categories along PC2. The coffee brew was mostly located
on the positive side of PC1, and the coffee bean was located on the negative side of PC1.
In Figure 2B, the coffee brew is located on the upper positive side of PC3, the coffee bean
is located on the negative side of PC3 (−0.5 to 0), and the coffee powder is located on the
negative downside of PC3 (−0.5 to −1.0). The distribution diagram shows that the different
statuses of the coffee samples could be distinguished by PC1 and PC2 (Figure 2A) and PC2
and PC3 (Figure 2B), i.e., bean, powder, and brew.
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Figure 1. Fingerprints of VOCs isolated from three commercial coffee samples (S, C, and P) pre-
sented in bean, powder, and brew, respectively. The ordinate shows the retention time, and the 
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side represents the reactive ion peak (RIP, normalized drift time of 8.27 ms). 
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Figure 1. Fingerprints of VOCs isolated from three commercial coffee samples (S, C, and P) presented
in bean, powder, and brew, respectively. The ordinate shows the retention time, and the abscissa
shows the drift time. The background of the plot is blue, and the red vertical line on the left side
represents the reactive ion peak (RIP, normalized drift time of 8.27 ms).

Figure 2B shows the coffee bean, powder, and brew of three brands (C, P, and S) to
be separated in PC2. In Figure 2B, brand C is located more separately from brand P and
brand S, including its bean, powder, and brew forms, indicating that the flavors of brand P
and brand S are more similar. The results showed coffee samples could be distinguished
by brands and status. This suggested that their flavor profiles were different from each
other and could be distinguished by their brands. Figure 2 indicates that GC-IMS can
differentiate coffee samples of different brands in bean, powder, and brew using PCA.

2.2. Biomarkers Identified Using GC-IMS

A total of 37 compounds were tentatively identified as important markers for dis-
crimination, including 5 aldehydes, 10 ketones, 8 alcohols, 2 acids, 4 esters, 5 furans, and
3 other compounds (Table 1). The dimer eluted after the monomer, included butanal,
butanone, 2-pentanone, ethanol, 2-ethylfuran, and furfural (Table 1), because the molecular
mass of the dimer was higher than that of the monomer counterparts [18]. We found that
butanal dimer, pentanal, 2-propanone, 2,3-butanedione, butanone monomer, butanone
dimer, methyl isobutyl, 2-propanol, furfural dimer, and ethyl pyrazine had higher signal
intensities (>60) in each sample. These compounds commonly existed in all three brands
of coffee in the bean, powder, and brew forms and developed the typical coffee flavor.
The 2,3-butanedione contributed a buttery, fruity, and caramel-like aroma [19,20]. Furfural
was most likely generated by Amadori rearrangement through the 3-deoxyosone pathway
or, alternatively, via the oxidation of furfuryl alcohol with the almond aroma [21]. Ethyl
pyrazine contributed a roasted and nutty odor [22].
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Figure 2. Principal component analysis of the flavor profiles of three commercial coffee samples (S,
C, and P) in three conditions (bean, powder, and brew) obtained by GC−IMS on PC1−PC2 (A) and
PC2−PC3 (B).
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Table 1. Compounds in three brands (P, S, C) in coffee bean, powder, and brew identified by GC-IMS.

No. Compounds CAS RI Dt/
Riprel C-Bean P-Bean S-Bean C-Powder P-Powder S-Powder C-Brew P-Brew S-Brew

Aldehydes (5)
1 butanal monomer 123-72-8 546 1.3 21 ± 2 a 23 ± 3 a 96 ± 6 d 27 ± 3 ab 23 ± 2 ab 94 ± 6 d 46 ± 4 c 30 ± 3 b 98 ± 3 d

2 butanal dimer 123-72-8 615 1.1 86 ± 5 b 80 ± 7 ab 93 ± 9 c 98 ± 2 c 83 ± 0 b 75 ± 1 a 99 ± 1 c 96 ± 1 c 94 ± 1 c

3 pentanal 110-62-3 660 1.2 85 ± 7 bc 95 ± 7 c 84 ± 21 bc 43 ± 5 a 63 ± 3 ab 90 ± 8 c 81 ± 19 bc 87 ± 16 c 85 ± 12 bc

4 propanal 123-38-6 805 1.1 11 ± 2 a 56 ± 5 c 91 ± 15 e 35 ± 3 b 79 ± 2 d 96 ± 6 e 15 ± 3 a 62 ± 4 c 97 ± 5 e

5 methional 3268-49-3 916 1.1 52 ± 6 b 91 ± 11 de 77 ± 1 cd 71 ± 1 c 94 ± 3 de 99 ± 2 e 33 ± 10 a 44 ± 21 ab 50 ± 13 ab

Ketones (10)
6 2-propanone 67-64-1 500 1.1 85 ± 1 a 92 ± 7 bc 88 ± 3 ab 99 ± 0 d 99 ± 1 d 98 ± 0 cd 95 ± 1 cd 98 ± 0 cd 99 ± 1 d

7 2,3-butanedione 431-03-8 571 1.2 91 ± 4 bc 94 ± 6 bc 80 ± 15 b 97 ± 3 c 86 ± 2 bc 60 ± 5 a 94 ± 6 bc 85 ± 9 bc 80 ± 11 b

8 butanone monomer 78-93-3 590 1.1 62 ± 5 a 83 ± 15 bc 83 ± 14 bc 95 ± 7 c 85 ± 9 c 65 ± 8 ab 78 ± 12 abc 89 ± 9 c 93 ± 8 c

9 butanone dimer 78-93-3 587 1.1 80 ± 5 a 80 ± 9 a 92 ± 7 bcd 94 ± 2 cd 97 ± 3 d 89 ± 1 bc 86 ± 1 ab 95 ± 0 cd 99 ± 1 d

10 2,3-pentanedione 600-14-6 671 1.3 90 ± 10 de 66 ± 5 c 25 ± 5 a 99 ± 1 e 89 ± 2 de 77 ± 4 cd 41 ± 11 b 33 ± 11 ab 28 ± 9 a

11 2-pentanone
monomer 107-87-9 686 1.1 23 ± 6 a 66 ± 7 cd 86 ± 19 e 40 ± 5 b 72 ± 3 d 92 ± 7 e 55 ± 1 c 87 ± 1 e 98 ± 2 e

12 2-pentanone dimer 107-87-9 685 1.4 40 ± 1 a 74 ± 2 bc 90 ± 14 cd 75 ± 3 bc 97 ± 4 d 78 ± 2 bcd 60 ± 16 b 83 ± 16 cd 86 ± 15 cd

13 3-pentanone 96-22-0 693 1.4 36 ± 9 a 78 ± 6 b 86 ± 20 bc 88 ± 3 bc 97 ± 4 c 74 ± 2 b 74 ± 1 b 96 ± 1 c 98 ± 2 c

14 3-hydroxy-2-
butanone 513-86-0 701 1.3 93 ± 6 cd 91 ± 8 cd 60 ± 1 b 98 ± 2 d 91 ± 1 cd 84 ± 2 c 15 ± 7 a 14 ± 7 a 15 ± 7 a

15 methyl isobutyl 108-10-1 723 1.2 63 ± 2 a 97 ± 2 d 95 ± 4 d 71 ± 9 abc 93 ± 3 d 94 ± 6 d 69 ± 13 ab 86 ± 14 cd 81 ± 13 bcd

Alcohols (8)
16 ethanol monomer 64-17-5 482 1.0 99 ± 1 ef 95 ± 3 def 92 ± 6 d 99 ± 1 f 93 ± 2 de 84 ± 1 c 94 ± 6 def 48 ± 3 a 54 ± 3 b

17 ethanol dimer 64-17-5 482 1.1 81 ± 4 c 51 ± 4 b 44 ± 3 a 90 ± 2 d 92 ± 3 d 97 ± 3 e 99 ± 1 e 80 ± 3 c 87 ± 2 d

18 isopropyl alcohol 67-63-0 506 1.2 52 ± 6 bc 77 ± 26 cd 68 ± 16 c 97 ± 4 e 40 ± 16 ab 28 ± 11 a 95 ± 5 de 60 ± 5 bc 65 ± 1 c

19 2-propanol 123-38-6 546 1.3 58 ± 2 a 80 ± 18 bc 74 ± 9 b 92 ± 1 cd 98 ± 2 d 93 ± 1 d 87 ± 0 cd 97 ± 1 d 99 ± 1 d

20 butanol 71-36-3 660 1.2 25 ± 1 a 28 ± 5 a 49 ± 1 b 82 ± 15 cd 71 ± 4 c 53 ± 2 b 92 ± 9 d 82 ± 5 cd 94 ± 3 d

21 2-methyl-1-propanol 78-83-1 673 1.2 77 ± 6 b 83 ± 10 b 91 ± 9 b 96 ± 3 b 73 ± 5 b 40 ± 9 a 86 ± 9 b 77 ± 28 b 80 ± 21 b

22 3-methyl-2-butanol 598-75-4 692 1.2 98 ± 3 e 82 ± 3 bc 68 ± 2 a 98 ± 2 e 93 ± 2 de 89 ± 1 cd 94 ± 8 de 76 ± 7 b 64 ± 6 a

23 2-methyl-1-butanol 137-32-6 776 1.5 21 ± 7 a 67 ± 12 b 97 ± 5 c 84 ± 14 c 95 ± 2 c 64 ± 10 b 50 ± 6 b 92 ± 9 c 86 ± 10 c
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Table 1. Cont.

No. Compounds CAS RI Dt/
Riprel C-Bean P-Bean S-Bean C-Powder P-Powder S-Powder C-Brew P-Brew S-Brew

Acids (2)
24 acetic acid 64-19-7 635 1.2 40 ± 5 a 74 ± 4 b 90 ± 9 c 72 ± 8 b 92 ± 6 c 93 ± 8 c 65 ± 8 b 87 ± 8 c 95 ± 8 c

25 propanoic acid 79-09-4 694 1.1 48 ± 3 a 77 ± 2 c 91 ± 10 d 45 ± 3 a 73 ± 3 bc 94 ± 6 d 61 ± 10 b 90 ± 11 d 91 ± 9 d

Esters (4)
26 methyl acrylate 96-33-3 575 1.3 25 ± 3 a 61 ± 23 bc 98 ± 3 e 36 ± 3 a 72 ± 12 cd 87 ± 11 de 42 ± 12 ab 63 ± 10 bc 92 ± 10 de

27 ethyl acetate
monomer 141-78-6 641 1.1 39 ± 4 a 79 ± 15 cd 88 ± 15 de 53 ± 6 ab 89 ± 8 de 95 ± 5 de 65 ± 6 bc 89 ± 8 de 96 ± 5 e

28 isoamyl acetate 123-92-2 854 1.3 38 ± 14 abc 77 ± 25 de 54 ± 3 bcd 92 ± 6 e 98 ± 2 e 74 ± 4 de 13 ± 6 a 22 ± 8 ab 37 ± 13 cd

29 ethyl acetate dimer 141-78-6 868 1.1 68 ± 9 c 92 ± 9 ef 74 ± 6 cd 94 ± 2 ef 98 ± 2 f 85 ± 2 de 21 ± 4 a 28 ± 5 ab 38 ± 10 b

Furans (5)

30 2-ethylfuran
monomer 3208-16-0 681 1.1 44 ± 6 b 62 ± 10 c 88 ± 12 de 98 ± 3 e 22 ± 3 a 31 ± 2 a 92 ± 9 de 85 ± 3 de 84 ± 4 d

31 2-ethylfuran dimer 3208-16-0 681 1.1 77 ± 3 bc 73 ± 10 b 84 ± 15 bc 70 ± 1 b 90 ± 4 bc 95 ± 5 c 14 ± 0 a 26 ± 11 a 80 ± 23 bc

32 furfural monomer 98-01-1 823 1.3 93 ± 8 f 41 ± 8 d 13 ± 1 a 98 ± 2 f 50 ± 3 e 31 ± 1 c 99 ± 1 f 31 ± 2 c 22 ± 1 b

33 furfural dimer 98-01-1 825 1.1 92 ± 8 de 85 ± 5 cd 59 ± 4 a 64 ± 3 a 87 ± 4 cd 96 ± 4 e 97 ± 3 e 83 ± 2 c 72 ± 2 b

34 5-methylfurfural 620-02-0 967 1.1 90 ± 10 c 71 ± 7 b 39 ± 2 a 99 ± 1 c 73 ± 2 b 45 ± 1 a 94 ± 6 c 64 ± 10 b 51 ± 9 a

Others (3)
35 dimethyl sulfide 75-18-3 517 1.0 50 ± 3 c 23 ± 7 a 29 ± 7 ab 92 ± 7 e 34 ± 1 b 21 ± 1 a 98 ± 2 e 64 ± 1 d 47 ± 1 c

36 propane
2-methoxy-2-methyl 96-33-3 575 1.3 50 ± 3 a 76 ± 9 bc 99 ± 1 d 84 ± 4 cd 94 ± 6 cd 51 ± 6 a 58 ± 16 ab 79 ± 15 c 89 ± 13 cd

37 ethyl pyrazine 13925-00-3 911 1.1 92 ± 9 d 91 ± 1 d 74 ± 6 bc 98 ± 2 d 67 ± 1 ab 61 ± 3 a 99 ± 1 d 79 ± 3 c 74 ± 4 bc

Rt, retention time. Dt, drift time. Different letters in the same row indicate statistical differences between samples at a p = 0.05 level.
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In addition, the signal intensities of butanal, 2-pentanone, and methyl acylate were
higher in coffee S; the 3-pentanone and isoamyl acetate levels in coffee P were higher
than in other samples; and the concentrations of furfural and 5-methylfurfural in C were
higher than in S and P. The signal intensities of butanal monomer, butanal dimer, propanal,
butanone monomer, 2-pentanone monomer, 2-pentanone dimer, 3-pentanone, butanol,
2-ethyl-1-propanol, 2-methyl-1-butanol, acetic acid, propanoic acid, methyl acrylate, athyl
acetate monomer, 2-pentanone, 3-pentanone acetic acid, 2-ethylfuran, 2-methyl-1-butanol,
methyl acrylate, propanal, and propane 2-methoxy-2-methyl- in S were higher than in P
and C for the bean, powder, and brew statuses. The majority of hydrocarbon compounds
were reported to have high odor thresholds, so they rarely contributed to coffee flavor.
Acid compounds usually produce an unpleasant odor. Acetic acid is the volatile compound
in coffee, having a sharp pungent odor like vinegar [19,23]. The concentration of acids
will reduce in the process of roasting. 2-methyl-1-butanol was detected in all samples,
which had a malt flavor. 2-methylpropanol was also found in all samples with almost the
same number of concentrations. Furan could be generated by the thermal treatment of
Maillard reaction precursors or lipids [24,25]. The formation of furan may also depend on
the content of sugar [24]. 2-ethylfuran contributes a pungent and fruity flavor to coffee.
Methyl pyrazine has a nutty, roasted, and chocolate aroma [26].

Isoamyl acetate, methional, and ethyl pyrazine in P had higher concentrations than in
S and C. The methional in the bean and powder forms were significantly higher than in the
brews. Methional is the key coffee odorant [5], which is generated by a Strecker reaction be-
tween α-dicarbonyl and the amino acid methionine. In addition, furfural, 5-methylfurfural,
3-methyl-2-butanol, 2,3-pentanedione, and 2-ethylfuran levels in C were higher than in S
and P. 5-methylfurfural presents with a caramel, spicy, and maple flavor in coffee [19,27].
2,3-pentanedione is considered one source of the buttery aroma in coffee [6,19], with an
odor threshold of 30 ppb.

2.3. Comparison between GC-IMS and E-Nose

The flavor responses from the E-nose were based on signal responses from 14 sensors
(Table S1). In order to further investigate the correlation between the E-nose and GC-IMS
data, the PLSR was used for correlation analysis, where the GC-IMS data was used as the
independent variable (X), and the E-nose data was used as the dependent variable (Y).
The circle represents 100% of the explained variance. Among the variables explained by
F1, most of the E-nose data (except E-1, E-3, and E-14) are located on the right side of the
relevant load diagram, while the GC-IMS data are also located in the relevant location. As
shown in Figure 3, the reference substance for the E-nose gas sensor array, E3 response to
hydrogen, which had a strong positive correlation with the VOCs, such as C4, C115, and
C108, measured by GC-IMS. The reference substances of sensors E1 and E14 were ammonia,
amines, methane, and fuel gas and had a positive correlation with the VOCs, such as C2
and C75, measured by GC-IMS. Other sensing substances were mainly positively correlated
with C28, C34, C81, and C32, located on the right side along the X-axis (Figure 3).
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Figure 3. PLSR analysis to study the correlation between GC-IMS signals and E-nose sensor arrays. The VOCs identified by GC-IMS showed as C1 to C117 (blue
dots). Data measured by E-nose showed as E1 to E 14 (red dots).
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The correlation between the sample statuses, E-nose, and GC-IMS was then analyzed
using multiple factor analysis (MFA) (Figure 4), where F1 and F2 accounted for 63.7%
of variances. MFA is useful in studying relationships by simultaneously analyzing ob-
servations, variables, and tables [28]. In Figure 4, the centroid represents the resulting
coordinates of the MFA. The points connected to the centroid represent the coordinates of
the projections formed by the variations. The closer these projections are to the centroid,
the greater the similarity between the descriptions. In Figure 4, S1, S2, and S3 represent the
flavor characteristics of three commercial coffee samples (S, C, and P) in bean conditions; S4,
S5, and S6 represent the flavor characteristics in powder conditions; S7, S8, and S9 represent
the flavor characteristics in brewing conditions. Taking the average value of the E-nose and
GC-IMS data as the sample value, from each sample value, it can be concluded that the
same coffee sample dispersed further under different conditions, indicating that different
conditions have a greater impact on coffee flavor characteristics. However, under the same
conditions, different coffees are more closely distributed, indicating that even if the coffee
samples are different, their flavor characteristics are similar under the same conditions. As
can be seen in Figure 4, sample status and GC-IMS variables had a close distance to the
centroid, indicating that GC-IMS is a good choice to discriminate coffee samples under
different statuses. Our investigation showed GC-IMS could be a fast way to distinguish
different coffee samples just like the E-noses do. Since E-noses only collect responses from
14 sensor arrays, GC-IMS could provide more VOCs, which could be served as biomarkers
to indicate flavor differences in detail. The traditional GC-MS identified more VOCs, but a
GC-IMS could show biomarkers in a time-saving and intuitive way.
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Figure 4. Comparison of the flavor profiles of three commercial coffee samples (S, C, and P) in three
conditions (bean, powder, and brew) using multiple factor analysis (MFA). S1, S2, and S3 represent
the flavor characteristics of three commercial coffee samples (S, C, and P) under bean conditions; S4,
S5, and S6 represent the flavor characteristics under powder conditions; S7, S8, and S9 represent the
flavor characteristics under brewing conditions.
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3. Materials and Methods
3.1. Coffee Samples

Three brands of medium roasted coffee beans (S, C, and P) were purchased from
local retailers and stored in a vacuum seal. They were Arabica beans from Colombia with
moderately baking. The coffee powder was prepared by grinding the coffee with a manual
grinder then passing it through a 700 µm sieve. Beverage was prepared as follows: 5.5 g of
coffee powder was weighted into a coffee press beaker, added to 100 mL 92 ◦C hot water
for brewing, immediately divided into a 20 mL headspace bottle, and sealed.

3.2. Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)

Analyses of different coffee samples were performed on a commercial GC-IMS in-
strument (FlavourSpec®, Gesellschaft für Analytische Sensorsysteme, Dortmund, Ger-
many) at Zhejiang University. The GC was connected to an Rtx-wax capillary column
(30 m × 0.32 mm, 0.25 µm) and equipped with an auto-sampler unit (CTC Analytics AG,
Zwingen, Switzerland), which used a 1 mL, air-tight, heated syringe to directly inject
sample into the headspace.

The sample analysis method can be found in our previous report [16]. Samples (solid:
0.3 g, liquid: 1 mL) were transferred into a 20 mL vial and incubated at 40 ◦C for 20 min.
Then, 100 µL headspace was automatically injected into the heated injector (80 ◦C, splitless
mode) using a heated syringe (65 ◦C) at a speed of 500 µL/s. The carrier gas (Nitrogen,
purity 99.99%) transferred the headspace of samples into GC column initially at a rate of
2 mL/min for 4 min, increased to 80 mL/min in 6 min, and, lastly, increased to 150 mL/min
in 10 min. The analytes were eluted and separated at 45 ◦C then driven into an ionization
chamber and ionized by a 3H ionization source with 300 MBq activity in positive ion mode.
The resulting ions were driven to a drift tube (9.8 cm in length), which was operated at a
constant temperature (45 ◦C) and voltage (5 kV). The flow rate of the drift gas (nitrogen
gas) was set at 150 mL/min. Each spectrum was reported as the average of 12 scans.

The retention index (RI) of each compound was calculated by using C4–C9 n-ketone
mixture standards (Sinopharm Chemical Reagent Co., Ltd., Beijing, China) as external
references. Volatile compounds were identified based on RI and drift time compared with
the GC-IMS library supplied by G.A.S. (Gesellschaft für analytische Sensor system mbH).
The volatile compounds identified from IMS data were realized by the coupled software
Laboratory Analytical Viewer (LAV, version 2.0.0), including three plug-ins and a GC-IMS
library search to analyze samples from different perspectives.

3.3. E-Nose

The E-nose (Super Nose, Isenso Group Cooperation, Shanghai, China) used in this
study was equipped with an array of 14 sensors. Each sensor was sensitive to hydrogen
sulfide, sulfide, alcohols, ketones, aldehydes, and aromatic compounds.

The detection method can be found in our previous report [29]. Samples (solid: 3 g,
liquid: 10 mL) were measured in a 100 mL beaker, covered tightly with a sealing film,
and left at room temperature (25 ◦C) for 45 min until they reached equilibrium. Then,
20 mL of the headspace was extracted using a plastic, odorless free needle and injected
into the sensor array chamber via sampling tubing. The sampling gas flowed at a constant
speed rate of 600 mL/min and lasted for 160 s. The cleaning phase proceeded by pumping
clean air for 100 s to normalize sensor signals between samples. Each sample replicated
12 parallels.

3.4. Statistical Analysis

The significant differences between coffee samples were found using SPSS statistical
23.0 software (IBM Watson Analytics, Beijing, China) at a p = 0.05 level with Duncan’s
multiple comparison method. PCA was analyzed using OriginPro 2016 (Northampton,
MA, USA). Multiple factor analysis (MFA) was analyzed using XLSTAT 2016 (New York,
NY, USA).
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4. Conclusions

In this study, 117 peaks were identified in three coffee brands under three conditions
(bean, powder, and brew) by GC-IMS. The PCA results clearly showed that three different
brands of coffee under the same treatment could be divided into three parts and could
be distinguished well using GC-IMS. In addition, 37 signal peaks from topographic plots
were selected as biomarkers for the identification and classification of coffee samples. The
comparison between E-nose and GC-IMS data using PLSR and MFA showed GC-IMS
could present very close sample spaces. Compared with E-nose, GC–IMS could not only be
used to classify coffee samples in a very short time but also provide VOC biomarkers to
discriminate coffee samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196262/s1, Table S1: The flavor responses from the
E-nose based on signal responses from 14 sensors.
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