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Electroencephalography (EEG) source reconstruction estimates spatial information from
the brain’s electrical activity acquired using EEG. This method requires accurate
identification of the EEG electrodes in a three-dimensional (3D) space and involves
spatial localization and labeling of EEG electrodes. Here, we propose a new approach
to tackle this two-step problem based on the simultaneous acquisition of EEG and
magnetic resonance imaging (MRI). For the step of spatial localization of electrodes,
we extract the electrode coordinates from the curvature of the protrusions formed in
the high-resolution T1-weighted brain scans. In the next step, we assign labels to each
electrode based on the distinguishing feature of the electrode’s distance profile in relation
to other electrodes. We then compare the subject’s electrode data with template-
based models of prelabeled distance profiles of correctly labeled subjects. Based on
this approach, we could localize EEG electrodes in 26 head models with over 90%
accuracy in the 3D localization of electrodes. Next, we performed electrode labeling of
the subjects’ data with progressive improvements in accuracy: with ∼58% accuracy
based on a single EEG-template, with ∼71% accuracy based on 3 EEG-templates,
and with ∼76% accuracy using 5 EEG-templates. The proposed semi-automated
method provides a simple alternative for the rapid localization and labeling of electrodes
without the requirement of any additional equipment than what is already used in an
EEG-fMRI setup.

Keywords: electroencephalography, magnetic resonance imaging, EEG/fMRI, source localization, electrode
positioning, electrode labeling

INTRODUCTION

Despite the usefulness of electroencephalography (EEG) to study the dynamic changes in brain
signal, one of its historical weaknesses has been its restricted spatial resolution. An approach to
tackle this issue has been to analyze EEG signals with an inverse mathematical model and trace
brain activity through a method called EEG source reconstruction (Michel et al., 2004). By using
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models of the brain’s structure, the inverse model allows us to
locate regions that are activated over time from the information
given by the voltage measurements of the electrodes. EEG
source reconstruction serves many clinical and neuroscientific
purposes such as epileptic seizure mapping and understanding
neurovascular coupling (Gavaret et al., 2004; Vulliemoz et al.,
2010; Yuan et al., 2010; Hanslmayr et al., 2011; De Ciantis and
Lemieux, 2013; Lei et al., 2015). On the other hand, another way
to deal with EEG drawbacks has been relying on multimodal
approaches. The development of EEG-fMRI has resulted in an
interesting symbiosis of two techniques that allow a richer and
more comprehensive understanding of brain dynamics in a non-
invasive way (Goebel and Esposito, 2009; Huster et al., 2012).

For a successful source reconstruction analysis of EEG
signals, it is necessary to precisely obtain three-dimensional
(3D) coordinates of the location of each electrode for each
individual subject (Dalal et al., 2014). Although some previous
approaches have relied on a standard positioning of electrodes
in the EEG cap, the personalization of electrode mapping for
each experimental subject improves the accuracy of the observed
results by taking into consideration the differences in head shape
and size across subjects. Although some external devices and
methods have been proposed to obtain electrode locations (see
below), in the present work we propose one method to use
the standard EEG-fMRI experimental setup, i.e., MR-compatible
EEG system with and electrode cap using conductive gel plus
a magnetic resonance imaging (MRI) scanner, without further
additions or extra MR-sequences to obtain EEG positions and
labeling, facilitating a more accurate analysis of EEG in a
multimodal environment.

The process of spatial localization of EEG electrodes involves
two major steps: (1) correctly localizing and obtaining the
3D coordinates of each electrode, and (2) distinguishing each
electrode by finding its proper label. There have been attempts
to solve these two steps of the problem (De Munck et al.,
1991; Steddin and Botzel, 1995; Yoo et al., 1997; Le et al.,
1998; Koessler et al., 2007; Péchaud et al., 2007); however, there
are only a few approaches that have automated this process of
mapping electrodes. In the following paragraphs, we summarize
the existing manual, semi-automated, and automated methods of
EEG localization and labeling.

Manual Localization and Labeling
The most rudimentary methods are based on direct manual
measurements (e.g., calipers or compass) of the distances between
each electrode and particular landmarks to later calculate the
Cartesian coordinates using a system of equations (De Munck
et al., 1991). Recent methods through the use of digitizers,
cameras, or external devices allow for manual localization
of electrodes on the standard cap (Koessler et al., 2007).
Electromagnetic digitization utilizes an electromagnetic field
transmitter and multiple receivers across the subject’s head in
order to create a model. Another stylus receiver is then used as
a way to manually localize electrodes on the head (Le et al., 1998).
An ultrasound digitizer uses a similar method for digitizing
the subject’s head and for localizing EEG electrodes by using
sound impulses (Steddin and Botzel, 1995). A photogrammetry

system, also known as geodesic photogrammetry system (GPS),
uses a system of multiple cameras placed in a polyhedron-
based structure around the subject’s head and allows for
3D reconstruction of a head model and localization of the
electrodes through method of triangulation (Russel et al.,
2005; Clausner et al., 2017). The photogrammetry method still
involves manual selection of points on each of the pictures
taken. While these methods are useful in visually generating
a head model, the process of localizing and labeling each
of the electrodes is still manual and time-consuming. Some
methods have taken advantage of the manual digitization
and they have co-registered it with MRI volumes, using
fiducial points and surface matching (Brinkmann et al., 1998;
Lamm et al., 2001).

Semi-Automated Localization and
Labeling
Initial attempts to make visible electrodes in MR have considered
the inclusion of additional tags e.g., inclusion of gadolinium
capsules, and manual segmentation of the electrodes from
the images (Yoo et al., 1997). However, other methods have
relied on the fact that electrodes are visible thanks to the
conductive gel in some structural brain images acquired using
MRI (see Figure 1). Using this feature, a semi-automated
method of localizing electrodes, the Pancake View Method, has
been implemented (De Munck et al., 2011). In this method,
a flat pancake view of the head can be derived from T1-
weighted (T1W) structural images. Each electrode artifact can be
visualized in a single two-dimensional (2D) view. Later, locations
and labels have to be selected manually for each electrode,
generating a grid with known vertices. Using the template grid,
the electrodes can be labeled automatically on other subjects
using the same cap. Finally, the 2D coordinates of the pancake
view are transformed to obtain the 3D coordinates of each
one of the electrodes in the MRI coordinate frame. Another
method based on MR, allows the localization of electrodes
without relying on the presence of conductive gel, but using
additional MR-sequences ultra-short echo time sequences (UTE)
exclusively sensitive to the polymer material of the electrodes
(Butler et al., 2017).

The combinatorial optimization and self-calibration is a
different semi-automated approach to localizing electrode
positions (Péchaud et al., 2007). In this method, the 3D
coordinates of each electrode are reconstructed with a
photogrammetry-based method of ten different pictures of
the subject’s head from various angles. The 3D coordinates
are used to generate a template head with labels. To label
the electrodes on a test subject, a minimization algorithm is
then applied on the coordinates of the subject’s head and the
previously prepared template head in order to automatically
provide labels for each of the electrodes.

These methods are closer to fully automatic approaches to
solving the two-step problem; however, a limitation to these
techniques is that they both require manual selection of points
to localize the electrodes which can be quite time-consuming.
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FIGURE 1 | T1-weighted (T1W) structural image with electrode protrusions appearing over the scalp.

Fully-Automated Localization and
Labeling
A method for automated localization and labeling of electrodes
also exploits the protrusions pertaining to EEG electrodes that
appear in MR structural images (Koessler et al., 2008). In this
method, structural MR images are pre-processed to enhance the
clarity of the electrode protrusions so that they are more clearly
visible as high-intensity voxels. With this approach, electrodes
can be localized more effectively by segmenting the different
layers of the head and identifying the voxels with the highest
intensity across the scalp of the subject. After the electrodes are
localized, a point drift method is used to register and label each
electrode (Koessler et al., 2008). Although this approach results
in automated localization and labeling, it requires specific sensors
for detection of EEG electrodes in MR anatomical images. These
sensors are not commonly used on a standard 64 channel EEG
cap and must be externally glued on the subject’s scalp.

Marino et al. (2016) reported an automatic method devised
for high-density electrode caps, which extracts the electrode
position through image processing and labels the electrodes
using a transformation of the candidate position to MNI space
to be matched with a template of the desired EEG positions.
Another method (Fleury et al., 2019) allows the localization
of electrodes without relying on the presence of conductive

gel (although it uses additional UTE sequences, mentioned
above) and implements automatic labeling using the iterative
Closest Point algorithm, over a template of the electrode cap.
These approaches again rely on the use of specialized electrodes
for localization.

In another recent study, the same high-density electrode caps
used in Marino’s study were localized with the use of 3D scanners
(Taberna et al., 2019). The approach used in Taberna’s study
was accurate in localization and used Closest Point algorithm
to label the electrodes. Another study shows how 3D scanners
have improved EEG source modeling due to a more reliable
electrode localization (Homölle and Oostenveld, 2019). Yet, these
approaches require the additional hardware (i.e., 3D scanner) in
order to localize electrodes.

The Proposed Approach
Our MR-based method provides a direct way of solving this two-
step problem of localization and labeling of the electrodes in
a simultaneous EEG/MRI setup. With our approach, the user
does not have the need for additional equipment (e.g., digitizers
and cameras) or the need for specialized MR sequences (e.g.,
UTE sequences) to solve this two-step problem (Steddin and
Botzel, 1995; Yoo et al., 1997; Le et al., 1998; Russel et al., 2005;
Koessler et al., 2007; Péchaud et al., 2007; Marino et al., 2016;
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Butler et al., 2017; Clausner et al., 2017; Fleury et al., 2019;
Homölle and Oostenveld, 2019; Taberna et al., 2019). We take
advantage of the fact that standard EEG electrodes can be
seen in the standard high-resolution MRI structural images.
A surface model of the head is first generated from the T1
images and electrodes are localized in the Cartesian coordinate
system by considering the fact that each electrode protrusion in
the MRI images possesses relatively higher curvature than the
surrounding scalp in the generated head mesh (see Figure 2). In
order to isolate the specific 3D coordinate value of a particular
electrode, we consider the centroid of groups of points with
maximal curvature to obtain the electrode location. The locations
of all electrodes are determined in this manner first. In the
next step, electrodes are labeled based on the idea that each
electrode has a particular set of distances to all of the other
electrodes. The set of all distances from each electrode to all
other electrodes is called the Distance Profile (see Figure 4).
The approach is based on the assumption that for a given EEG
cap configuration, distance profiles should be constant despite
changes in the point of reference of the coordinates system or in
the shape of experimental subject heads. In this way we present
an approach that provides a simple solution to the problem of
localizing and labeling electrodes.

MATERIALS AND METHODS

Our method involves pre-processing of the T1W structural
images in order to create a head model that can be used
to extract the electrode positions. Next, the localization of
electrodes is performed by finding vertices in the head mesh
which have maximal curvature. The final step involves utilizing
the distance profile criterion in order to assign labels to each
of the electrode positions. An approximate duration of applying
our method to localize and label electrodes is around 10 min
per electrode set (participant), mostly giving time required
for human intervention (i.e., indicating fiducial points in MR,
pruning any extraneous electrodes located, etc.). Our study

considers 26 T1W structural scans (subjects’ ages: 22.86 ± 1.54)
acquired during real-time fMRI neurofeedback study during
simultaneous acquisition of EEG signals fMRI results from that
study can be found in Sepulveda et al. (2016). The experimental
protocol was approved by the ethics committee of Pontificia
Universidad Católica de Chile. Each participant signed a written
informed consent during the study. More details on the approach
are available in the Supplementary Methods.

MR and EEG Acquisition
MR acquisition was done using a Philips Achieva 1.5T
MR scanner (Philips Healthcare, Best, Netherlands) at the
Pontificia Universidad Católica de Chile. A standard 8-channel
head coil was used. Structural T1W brain volumes were
acquired using T1W-3D Turbo Field Echo (TFE, magnetization
prepared gradient echo also known as MPRAGE) sequence
with TR/TE = 7.4/3.4 ms, matrix size = 208 × 227, α = 8◦,
317 partitions, voxels size = 1.1 mm × 1.1 mm × 0.6 mm,
TI = 868.7 ms. To prevent discomfort during MRI sessions, pads
and air cushions were used to fix subject heads.

MR-compatible EEG caps with 64 electrodes (Compumedics
Neuroscan Quik-Cap) were used for the entire experiment. In
particular, the MR structural scan was acquired at the end of
the neurofeedback experiment. Therefore, it should be noted that
participants were inside the scanner (wearing the EEG cap) for
around 1 h before extracting the MR volumes.

Generating the Head Model
From T1W structural images each electrode can be seen directly
as small bumps or protrusions over the scalp of the subject (see
Figure 1). These protrusions are generated by the material of
the EEG electrode and gel. Therefore, generating a head model
which will include these protrusions is fundamental to localize
the position of the electrodes. FreeSurfer (version 3.19; Dale
et al., 1999)1 and Brainstorm software (version 5.30; Tadel et al.,
2011) can be used to generate a head model directly from the

1http://surfer.nmr.mgh.harvard.edu/

FIGURE 2 | Head Models. (A) Head model generated from the T1W structural scan of a subject using Free Surfer. Each protrusion on the scalp is an EEG electrode.
(B) Clusters of vertices with high curvature are used to generate the position of the potential electrodes. Different clusters are depicted using different colors.
(C) Using the curvature information of the head model, we can identify electrodes using the proposed method.
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FIGURE 3 | Distance Profile. (A) Distances from one electrode to other
electrodes form a particular pattern that could be utilized in identifying and
labeling electrodes. (B) The distance profiles for six of the 64 electrodes of a
subject (frontal: FP1 and FPZ, occipital: O1 and OZ, and central: CZ and M1).
To construct the distance profile, we set the Euclidean distances between the
electrode of interest and the rest of the 63 electrodes in a descending order.
Comparing the distance profiles of FPZ and OZ the total distance of FPZ from
all other electrodes would decrease slower than in the case of OZ. This profile
is used to individualize the electrode for the assignment of labels to each
electrode by comparison with electrodes with known position and label (Note:
Distance values were extracted from the units available through Brainstorm
from the MRI volumes).

anatomical MRI volume (Figure 2A). More importantly, when
using Brainstorm this process is fast (less than 1 min to generate
the head surface mesh using 10,000 vertices, erode factor = 0, and
fill holes factor = 2). However, this step requires manual selection
of fiducial points on the anatomical MRI volume to align the head
model. This selection was done by an experienced user through
the Brainstorm graphical interface.

Electrode Positioning
The head model, available in Brainstorm, contains information
about the curvature for each vertex in the 3D mesh. The position
of the electrodes was found by isolating vertices with high
curvature on the surface mesh of the head model. Using the
coordinate system assigned by Brainstorm, we restricted a search
space z > 0 in the axial plane. Since the coordinate system is

based on fiducial points from the MRI image, by limiting our
search to z > 0 we were able to exclude the vertices located on
the nose, cheeks or lips of the head model. Next, we identified
the 2,000 highest curvature vertices across the remaining mesh.
This value considers the number of electrodes and characteristics
of the EEG cap used in Sepulveda et al. (2016) experiment and
may need to be changed to work in other systems (e.g., using
more vertices to cover a higher number of electrodes). Due to the
resolution of the mesh, there were groups of vertices with high
curvature contained within the area corresponding to one single
electrode. Therefore, from the group of 2,000 vertices selected
above, we clustered the vertices whose distances from each other
were within 1 cm (estimated diameter for the used electrode).
Assuming that clusters containing the greatest number of vertices
represent an electrode, we selected all the clusters that contained
at least 10 vertices (Figure 2B). The centroid of each cluster was
calculated to represent the position of the potential electrode
(Figure 2C). A matrix containing the position of the potential
electrodes was generated. Given that this step was not completely
accurate (see section “Results”), a manual check of the potential
electrodes were required. In most cases, an excess of points on the
scalp was generated in the matrix; therefore, a manual removal
of these extra points was performed by an experienced human
analyzer on our team. Before moving onto the next step, a matrix
of precisely 64 (unlabeled) electrodes was required. Please see
the section “Localization” in the Supplementary Methods for
more details on this stage. Custom MATLAB scripts were used
for electrode positioning.

Electrode Labeling Using the Distance
Profile Method
The next step was to correctly identify the labels of each of the
64 points that we located in the 3D head space. We hypothesized
that each of the electrodes can be distinguished from one another
based on their relative distances. For example, frontal electrodes
like FPZ, FP1, or FP2 might have a greater number of electrodes
far away from them than the number of electrodes close to them.
In contrast, an electrode like CZ may have more electrodes closer
to it than farther from it (Figure 3). This is mainly due to the
general shape of the head and how the electrodes are arranged on
the cap. For this reason, each electrode has a unique collection of
Euclidean distances to all the other electrodes, otherwise referred
to in this paper as their distance profile.

For each electrode, a distance profile was determined. To
do this, we calculated the distances from an electrode to all
the others, and we sorted these distances in a vector from the
highest to the lowest (Figure 3). A crucial requirement for this
step is having at least one template (i.e., a set of localized and
labeled electrodes) with extracted reference distance profiles.
Using this template, a Pearson correlation was calculated between
the distance profiles of the unlabeled and template electrodes.
The label of the template electrode was given to the unlabeled
electrode with the highest correlated distance profile.

It should be noted that the distance profiles of electrodes
located in symmetrical positions in the left and right hemispheres
with respect to the central electrode axis (e.g., FP1 and FP2, C1
and C2, etc.,) might be identical. This created confounds for
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FIGURE 4 | Processing Pipeline. Summary of processing pipeline for electrode localizations and labeling. Top: During EEG-fMRI acquisition, we extrapolate the
location of each electrode by looking for protrusions across the subject’s scalp. Bottom: Through the use of labeled templates, we can classify the electrode by
comparing the distance profiles for each unlabeled electrode (white dashed line) to the distance profiles of labeled electrodes of each template. The template analysis
successfully votes to give the correct label of FPZ by 3 out of the 5 template votes.
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accurate labeling. To avoid this problem, we picked the electrodes
labeled as FPZ and OZ to define a central plane. All electrodes that
were located in symmetrical positions were compared against this
central plane. A list with the pair of electrodes that are located
in symmetrical positions with respect to the central plane was
defined to run this comparison (e.g., FP1–FP2, F1–F2, and C1–
C2, etc.). Once the unlabeled electrodes were each assigned a label
using distance profile comparison, we checked if the hemisphere
(right or left) was correctly assigned. For example, an electrode
labeled as C1 could be C1 or C2. Since both C1 and C2 electrodes
are in symmetrical positions, they should ideally have identical
distance profile. If we found that this electrode was actually to the
left side of the central plane, we kept its label as C1; however, if we
found that it was actually to the right side of the central plane, we
labeled it C2, the other symmetrical label. If pairs of electrodes
are given the same label, the relative position of the electrodes
are compared to determine which ones are located at the right
and left hemisphere. In cases when more than three unlabeled
electrodes receive the same name, a label was not assigned.

In order to properly automate the process of labeling the
electrodes, it is critical to use templates that are robust in defining
the distance profiles for all the electrodes. However, given the
wide variability between participants’ head shape, the use of
a unique template may be inappropriate to arrive at correct
electrode labeling. In our method, we used multiple templates
for the labeling of individual electrodes to account for this
variability. To estimate the improvement that the inclusion of
additional templates provides to the labeling performance, we
tested using 1, 3, and 5 templates. When multiple templates were
used, we implemented a voting system for the definition of the
final electrode label: Every template “proposes” a label for the
unlabeled electrode and the label with most votes is assigned (see
Figure 4). If there is no majority in the voting, the label that
comes first in the sequential order of electrodes is assigned (e.g.,
the sequence for a 64-electrode Neuroscan Quik-Cap is presented
in Supplementary Material). If none of the templates was able to
identify a label for the electrode, the electrode remains unlabeled.
For more details about this stage, please check “Labeling” section
in the Supplementary Methods. Custom MATLAB scripts were
used for electrode labeling.

Detection Rate of Electrode Localization
To estimate the detection rate of our electrode localization
method, we compared the results of our curvature positing
algorithm with the true electrode positions. In our case, since
we did not have access to digitizers or any other mechanism to
extract the location of the electrodes, we determined the true
position of electrodes by visual inspection of the locations in
the MRI volume. In this way, points that did not correspond to
electrodes [e.g., around eyes or ears, and electrooculogram (EOG)
electrodes] were taken out. We used 26 structural T1W brain
volumes for the purpose of testing the proposed method. We
computed the detection rate of the method (i.e., true electrodes
identified / 64) for each volume. A heat map was generated
using EEGLAB, containing the information about the mean
detection rate for the localization of electrodes across participants
(Delorme and Makeig, 2004).

Accuracy Analysis of Electrode Labeling
In order to check the accuracy of the distance profile method, we
compare the labels assigned to the 64 electrodes by the algorithm
with the true labels. To assess the performance of the method, we
determined the value for true positives (TP, electrodes correctly
labeled), false positives (FP, electrodes mislabeled), and false
negatives (FN, electrodes for which no label was assigned).

We used the same 26 sets of 64 electrodes again as either
templates or unlabeled electrode sets in order to test the
accuracy of the labeling step. To test the accuracy and robustness
of the multiple template approach, we considered different
combinations of each of the 26 sets to generate variations of
template groups. In other words, we ran multiple simulations in
which we defined one of the electrodes sets as unlabeled, and
picked 1, 3, or 5 of the remaining sets as templates. The vote
system described above was used in each of the simulations for
3 and 5 templates. In the 5-template approach, due to the high
number of possible combinations we selected only a subset to
test (i.e., 30% of the total number of combinations was randomly
selected). We calculated the TP, FP, and FN for every electrode set
that was labeled using 1, 3, or 5 templates.

RESULTS

Detection Rate of Electrode Localization
Method
From the structural MRI volume, we extracted the positioning of
electrodes using curvature information from the vertices in the
head model mesh. The centroid of the clusters of high curvature
vertices were used to obtain the location of potential electrodes.
Overall, the analysis of 26 different head models showed that our
method was able to detect 93.99% of the electrodes [standard
deviation (SD) = 0.0882] (Figure 5). From further inspection, we
observed that the frontal and central electrodes were accurately
identified by the algorithm (electrode detection over 90%).
However, the localization of some occipital (e.g., OZ, I1, and I2)
and lateral electrodes (e.g., T7 and T8) appeared to have a lower
detection rate (electrode detection <80% accuracy).

On average, the algorithm identified 20.307 extra electrodes
(SD = 3.8447), i.e., points indicated as electrode positions but
without correspondence to real labeled electrodes. Considering
that the caps had 64 labeled electrodes in total, this means the
algorithm detects around 30% of excess points. This may be due
to either artifacts in the MR-structural image, empty electrode
holders in the EEG cap (dummy electrodes) or additional
(e.g., REF, GND, and oculomotor electrodes). Importantly,
the caps used in the experiment (Compumedics Quik-Cap)
contained around 15 dummy or additional electrodes. Extra
electrodes were removed manually to leave only 64 electrodes for
the labeling step.

Accuracy Analysis of Electrode Labeling
After locating the electrodes in the 3D head space, the Distance
Profile method was employed to assign the labels. We used
various templates (1, 3, and 5) to compare the electrodes’ distance
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FIGURE 5 | Detection Rate of Electrode Localization Method. Heat map of the mean accuracy for the localization of electrodes across 26 structural MRI scans.
Areas indicated in red reflect high detection rate, while areas in blue reflect low detection rate for identifying electrodes.

profiles, as a way of generating more accurate and robust labeling.
In the cases of 3 and 5 templates, a voting system determined
the label to be assigned to each electrode. Due to a problem in
determining the middle plane in the cap (missed labeling of FPZ
and OZ), we were unable to run the algorithm in 2.314% of all the
simulated unlabeled-labeled combinations set for one template
approach (15 pairs out of 650 possible pairs). These pairs were
excluded and TP, FP, and FN were calculated for the remaining
combinations in the cases for 1, 3, and 5 templates. From the
results of our simulations, we obtained the mean value for TP, FP,
and FN for each one of the 26 electrode sets available (Figure 6
and Table 1).

The results in Table 1 show that as the number of templates
increases there is a corresponding increase in the number of true
positive electrodes and decrease in FN. Adding more templates
increases the accuracy of labeling by enabling the cross-checking
of labels and filling in of missing labels. Another trend that must
be noted is that the number of FP remains at a constant value of
about 20% despite increasing the number of templates.

Additionally, we evaluated the accuracy of our distance profile
algorithm by analyzing each electrode, pointing to identify the
ones that are more difficult to label through this method. We
generated spatial maps to display the accuracy of the method
using 1, 3, and 5 templates (Figure 7). In this case, it appears
that occipital electrodes are labeled with higher accuracy (>80%
accuracy) while some fronto-lateral electrodes present more
difficulties for identification (e.g., FP1 labeling accuracy <50%).

DISCUSSION

Localization and labeling of EEG electrodes are critical for
the analysis of EEG data, especially for source reconstruction.
Functional imaging in clinical applications (e.g., epileptic foci
detection), neurofeedback and brain-computer interfaces (BCI)

can greatly benefit from an accurate representation of the spatial
location of the electrodes. Many methods have been proposed
so far (Steddin and Botzel, 1995; Yoo et al., 1997; Le et al.,
1998; Russel et al., 2005; Koessler et al., 2007; Péchaud et al.,
2007; Marino et al., 2016; Butler et al., 2017; Clausner et al.,
2017; Fleury et al., 2019; Homölle and Oostenveld, 2019; Taberna
et al., 2019). However, most approaches require laborious manual
intervention to prepare for the experiment or the use of special
digitization devices.

The proposed approach enables the direct localization and
labeling of EEG electrodes without the requirement of external
devices (e.g., digitizers) in a context of simultaneous EEG-
MRI experiments. Simultaneous EEG-fMRI experiments are
already time-consuming and tedious for participants. The use
of additional equipment (Steddin and Botzel, 1995; Brinkmann
et al., 1998; Le et al., 1998; Lamm et al., 2001; Russel et al.,
2005; Koessler et al., 2007; Clausner et al., 2017) and special
protocols (Yoo et al., 1997; De Munck et al., 2011; Marino
et al., 2016; Butler et al., 2017; Homölle and Oostenveld,
2019; Taberna et al., 2019) may increase setup time and
cost, and cause fatigue and extra burden on the participants.
Additionally, misplacement problems may arise between the
electrode digitization (using external devices) outside the scanner
and the later positioning of the participant inside the scanner.
Also, our method does not rely on special MR acquisition
sequences (Butler et al., 2017; Fleury et al., 2019), which
may not be available in standard research or clinical setups.
By using the spatial data provided from the individual MR
structural volumes, it is possible to identify the electrodes
on the head of a subject wearing a standard EEG cap. The
MR structural volumes are required in any fMRI study for
pre-processing. In this way, we were able to preserve the
position in which the fMRI experiment was performed without
incurring any extra time and cost than required for the standard
fMRI procedure.
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FIGURE 6 | Electrode Labeling Accuracy. Box plots of the TP values for the
different number of template(s): one template (left), 3 templates (middle), and 5
templates (right). The red line represents the mean value. Dots correspond to
the accuracy obtained for each electrode set (26 in total). As the number of
templates increases the mean accuracy also increases.

TABLE 1 | Summary of accuracy analysis with the distance profile method.

Number of templates True positives
(%)

False positives
(%)

False negatives
(%)

1 Mean value 58.23 20.05 21.72

Standard deviation 10.27 9.05 3.96

3 Mean value 71.79 20.81 7.40

Standard deviation 12.56 11.60 2.70

5 Mean value 76.55 20.83 2.62

Standard deviation 13.65 13.21 2.12

In the initial step of localization of the electrodes, we utilized
the curvature data given by the head model to find the Cartesian
coordinates of the electrodes. Protrusions with high curvature are
formed in the surface of 3D reconstruction of structural scans,
due to the volume of gel contained between the electrode and
the scalp. Using this method over 90% of the electrodes were
accurately localized in our simulations. Our results found that the
occipital and temporal electrodes were more difficult to localize
than electrodes in other regions. This outcome could be due
to a decrease in the MR signal resulting from the gels in those
electrodes. It should be noted that the structural MR volumes
were acquired at the end of the experiment; thus, the subjects had
been inside the scanner in a supine position for around 1 h. Since
the EEG electrodes were prepared by gelling at the earliest time
in the preparation for the experiment, it is possible that the gel
would have dried considerably by the time of the MR acquisition.
The regions with poorer localization are the ones in the posterior
electrodes, which coincidentally are the electrodes over the which
the participant’s head rests during the experiment. One cause for

this might be that these regions are drying faster because they may
experience higher temperatures during the experiment. Another
potential cause is that the gravitational force can displace the
gel away from the scalp in these posterior electrodes when the
subject is in the supine position. Additionally, hair presence may
increase the space between the electrodes and the scalp, causing
the gel to spread out from the electrode capsule. By detaching
part of the volume off of the scalp surface, these complications
decrease the signal observed in those particular electrodes. These
changes in the electrode gel throughout the course of the scan can
lead to variation in the localization across subjects. Such errors
may lead to mislabeling problems, as a result of variability in
the distance profiles of the electrodes. To overcome the above
problems, we propose that the MR structural images are acquired
at the beginning of the experiment when the gel is fresh and is
contained in all electrodes to an equal extent.

During automated labeling, our method distinguishes each
electrode based on its particular distance profile: The descending
ordering of the distances between each electrode and the other
63 electrodes in the cap. Given that each electrode has a distinct
location, the distance profile of each will be different from other
electrodes in the same hemisphere to allow for proper labeling. To
carry out the labeling, we used the distance profiles of previously
labeled electrodes as templates for comparison. As observed
above, the use of multiple templates results in higher accuracy
of the labeling: From an average of 58% of electrodes correctly
labeled for 1 template to a 76% for 5 templates. Through the
use of multiple templates, many of the false negative electrodes
were reduced. Interestingly, although the number of FN reduces
with the use of multiple templates, the number of FP (i.e.,
electrodes that were mislabeled) did not reduce significantly.
Since this number seems to be independent of the number of
templates we are using, it may be related to a particular weakness
of our distance profile comparison. A higher similarity of the
distance profile in a particular subgroup of electrodes might make
it difficult to distinguish electrode identity using correlations;
thus, hindering successful classification. Therefore, the same
label would be assigned indistinctly to different electrodes,
generating mismatches. We think this is the case for the lateral
frontal electrodes.

Despite the increase in the accuracy of labeling with templates,
it is observed that lateral frontal electrodes are the most difficult
to identify using this method. As mentioned above, similar
distance profiles between the electrodes in this region may
generate FP (e.g., FC1 has a very similar profile to C1, making
them prone to labeling mismatch). Additionally, we think this
problem may arise from the way our method deals with symmetry
of electrode locations on left and right hemispheres (e.g., F1
and F2 electrodes). In our method, to identify electrodes that
are located at symmetrical positions on the cap we define the
midplane using frontal and occipital electrodes located in the
center. In the case that two electrodes are assigned the same label
we assumed that they may correspond to a symmetrical pair (e.g.,
two electrodes labeled as C1 when they actually should be C1
and C2). To distinguish them, we considered the location of each
one of them relative to the midplane. However, if we have three
electrodes assigned with the same label, we decided to keep them
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FIGURE 7 | Electrode Labeling. Heat maps of the mean value of TP in the labeling of individual electrodes using the distance profile algorithm with 1, 3, and 5
templates. Red corresponds to a high accuracy of labeling while blue corresponds to a low accuracy. There is a positive relationship between the number of
templates to the accuracy of labeling.

unlabeled. The reason for this was to avoid having electrodes
with the same name in the cap since it would cause confusion as
to which of the three electrodes belong to the symmetrical pair.
Therefore, it is possible that if the frontal electrodes have similar
distance profiles, they might be given the same label (more than
twice). This would cause those electrodes to remain unlabeled.

We can compare our values on detection rate and labeling
accuracy to the most recent methods that use EEG-fMRI system-
based approaches. When looking at Fleury et al. (2019) and Butler
et al. (2017), who present an approach that does not require
any additional devices, we see that they report a detection rate
around 94%. Our detection rate is similar to their results. One
disadvantage of their approach is that they did not contribute to
solving the problem of labeling and relied on using De Munck’s
Pancake model (2011). For this reason, these papers did not
present any values on localization accuracy; thus, we could not
compare our results with those. We also compared our results
with Marino et al. (2016) and De Munck et al. (2011), whose
papers present a semi-automated method to solve the two-step
problem. When comparing our results to De Munck et al. (2011),
we saw that their approach had a manual selection process
for localization of electrodes. This is decidedly a big limitation
since it requires relatively more time and an experienced user
to manually select each electrode. In our study, the localization
step is automated, although in practical terms minor human
intervention is required to correct detection errors. Marino et al.
(2016) presents an automated approach that has a very good
detection rate and labeling accuracy. While their approach had
very few FN detected in the localization step (<0.5%), they
also had FP detected (∼16% of 256 electrode set, which is even
further reduced using additional filtering). Our false positive rate
was higher than theirs (∼30% of 64 electrode set). However,
please note that our false positive rate for detection does not
take into account the fact that some of these FP are caused
by DUMMY or REF electrodes (i.e., extra electrodes physically
present in the cap). Their labeling step notably yielded no
FP or FN. We found that our labeling accuracy was ∼77%
when using 5 templates. While Marino et al. (2016) present

a more accurate approach for solving this two-step problem,
it is based on the use of high-density electrodes (HydroCel
Geodesic Sensor Net, Electrical Geodesics) for proper localization
and labeling, which is not a standard EEG system in EEG-
fMRI studies.

The labeling accuracy of our method relies on the following
assumptions: (1) head shapes and distance profiles are similar
across the subject population and (2) the localization of the
electrodes is performed using the standard 10–20 system.
However, it is known that head morphology is variable across
humans, e.g., relationship between head circumference and
height (Bushby et al., 1992). Additionally, the use of the
same EEG caps in heads of variable shapes unavoidably will
lead to discrepancies in electrode positions. We must also
consider that our method uses individual head models as
templates, making the identification even more idiosyncratic. To
ameliorate these variabilities, one might consider using average
head models or probabilistic head models. Furthermore, the
method might be improved by generating a more sophisticated
voting system when multiple templates are used. Statistical
measures such as t-maps can be used. Also, to avoid assigning
the same label to different electrodes, it might be useful to
utilize the information of nearby electrodes to help characterize
an electrode’s identity more precisely (e.g., include in the
comparison of distance profiles not only the electrode to label but
also neighboring electrodes).

In our method, the localization and labeling steps are designed
as automated procedures. However, between localization and
labeling user supervision is required to remove (or add) localized
positions from the electrode matrix when more (or less) than
64 points are reported. As mentioned earlier, the identification
of high curvature areas around the ears or additional electrodes
(e.g., REF electrodes) are some of the reasons for these FP. In
our experiments, empty electrode holders were located mostly
in the occipital region to distribute head weight. The inclusion
of these electrodes as part of the labeling step (e.g., as DUMMY
or REF) may be a solution to reduce the human intervention
required at this stage.
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In conclusion, here we have presented a semi-automated
and direct method for localizing and labeling electrodes
on a standard EEG cap, from MR structural images,
acquired during simultaneous fMRI-EEG experiments. We
used elements required for standard EEG-fMRI studies (i.e.,
T1W structural scans and standard MRI-compatible EEG
caps using conductive electrode gel), presenting a more
economical approach to the two-step problem of labeling and
localizing electrodes. The method exploits data that is already
available (MR structural scans); thus, avoiding the extra time
and cost that is otherwise involved in the use of external
digitization devices and cumbersome manual processes or extra
modifications to the standard EEG-fMRI procedure. Our future
work will conduct comparisons of this method with other
existing approaches.
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