

www.bioinformation.net Volume 16(6)

Research Article

Molecular docking analysis of Bcl-2 with phytocompounds

Chandrasekaran Kirubhanand¹, Jayaraman Selvaraj², Umapathy Vidhya Rekha³, Veeraraghavan Vishnupriya², Venkatachalam Sivabalan⁴, Mathayan Manikannan⁵, Devarajan Nalini⁶, Periyasamy Vijayalakshmi⁷, Manikkam Rajalakshmi⁷, Rajagopal Ponnulakshmi^{8,*}

¹Department of Anatomy, All India Institute of Medical Sciences, Nagpur, India; ²Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India; ³Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India; ⁴Department of Biochemistry, KSR Institute of Dental Science and Research, Tiruchengode-637215. Tamil Nadu, India; ⁵Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai-600 119, India; ⁶Central Research Laboratory, Meenakshmi Ammal Dental College, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 095, India; ⁷DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Trichy, Tamil Nadu, India; ⁸Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), West K. K. Nagar, Chennai-600 078, India Dr. Rajagopal Ponnulakshmi - E-mail: ramgslaks@gmail.com; Corresponding author*

Author contacts: Chandrasekaran Kirubhanand: kirubhanand.c@gmail.com, Jayaraman Selvaraj: jselvaendo@gmail.com, Umapathy Vidhya Rekha: drvidhyarekha@gmail.com, Venkatachalam Sivabalan: biosivabalan@gmail.com, Mathayan Manikannan: maniibms@gmail.com, Devaraj Nalini: nalinikrishu@gmail.com, Periyasamy Vijayalakshmi: pvijivi@gmail.com, Manikkam Rajalakshmi: mdraji@gmail.com, Rajagopal Ponnulakshmi: ramgslaks@gmail.com

Received March 3, 2020; Revised April 30, 2020; Accepted May 9, 2020; Published June 30, 2020

Declaration on official E-mail:

The corresponding author declares that official e-mail from their institution is not available for all authors

Declaration on Publication Ethics:

The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Abstract:

The Bcl-2 protein is liked in several cancers and drug resistance to therapy is also known in this context. There are many Bcl-2 inhibitors under clinical trials. It is of further interest to design new Bcl2 inhibitors from phyto compounds such as artesunate, bruceantin, maytansin, Salvicine, indicine N-oxide, kamebanin and oxyacanthine. We report the optimal binding features of these compounds with Bcl-2 for further consideration towards *in vitro* and *in vivo* validation.

Keywords: Breast cancer, bioactive compounds, Bcl-2, molecular docking

DOI: 10.6026/97320630016468

Background:

Cancer related issues **[1-6]** are linked to the BCL-2 family of proteins **[7-12]**. BCL-2 is a known cancer target with several potential inhibitors under validation. Therefore, it is of interest to design and develop new compounds from plant source with improved binding features with the BCL-2 protein. Hence, we report the molecular docking analysis of Bcl-2 with phytocompounds.

Methodology:

BCL-2 structure:

The structure data of Bcl-2 protein (PDB ID: 2W3L) was downloaded from the protein databank (PDB) **[13]** and processed for further analysis.

Ligand data:

2

3

4

5

6

7

The structures of phytocompounds such as artesunate, bruceantin, maytansin, Salvicine, indicine N-oxide, kamebanin, and oxyacanthine were downloaded from the pubchem database in SDF format and converted to PDB format using the Online Smiles Translator.

Active site prediction:

Bruceantin

Maytansin

Kamebanin

Oxvacanthine

Indicine N-oxide

Salvicine

Binding site prediction of Bcl-2 was completed using MetaPocket 2.0 server [14].

Molecular docking:

PatchDock **[15, 16]** was used for the molecular docking analysis of BCL-2 with phytocompounds such as artesunate, bruceantin, maytansin, Salvicine, indicine N-oxide, kamebanin and oxyacanthine.

Results and Discussion:

BCL2 is a known cancer target. Therefore, it is of interest to design new Bcl2 inhibitors from phyto compounds such as artesunate, bruceantin, maytansin, Salvicine, indicine N-oxide, kamebanin and oxyacanthine. The predicted active site residues in BCL-2 are LYS 22, GLN 25, ARG 26, THR 55, ASP 62, SER 64, ARG 66, TYR 67, ARG 68, PHE 71, LEU 80, ARG 86, ASN 102, GLY 104, VAL 107 and GLU 111. The molecular docking analysis data of Bcl-2 with the phyto-compounds are given in **Table 1**. Detailed interaction between BCL-2 and the compounds are shown in **Figure 1**. The residues ARG 26, ARG 68, ARG 66, SER 64, ARG 86, ARG 68, GLY 104, LYS 22, SER 20, ASN 34, LYS 22, LYS 270, SER 351, ARG 469, and LYS 345 are found to be interacting with the phyto compounds (**Figure 1**). Thus, we report the optimal binding features of these compounds with Bcl-2 for further consideration towards *in vitro* and *in vivo* validation.

Conclusion:

No of

67

102

131

37

40

31

3.24

3.3

3.34

2.04

2.17

2.47

1.75

1.95

3.08

2 7 9

non-bonded interaction 148

We report compounds with improved binding features with Bcl-2 for further consideration towards *in vitro* and *in vivo* analysis.

S. No	Compound Name	Score (kcal/mol)	ACE	Hydrogen bonds	Bond length
1	Artesunate	4814	-211.33	ARG 26- NH-O	2.46

-104.71

-110.4

-126.9

-130.62

-140.03

-102

ARG 68-NE-O

SER 64 OG-O

ARG 86 NE-O

ARG 68 NE-O

GLY 104 N-O

LYS 22 NZ-O

SER 64 OG-O

ARG 66 NE-O

ARG 26 NH2-O

ARG 66- NH2-O

Table 1: Molecular docking analysis of Bcl-2 with phyto-compounds

5714

773.1

4946

4226

4002

6368

ISSN 0973-2063 (online) 0973-8894 (print)	
Bioinformation 16(6): 468-473 (2020)	

BIOINFORMATION Discovery at the interface of physical and biological sciences

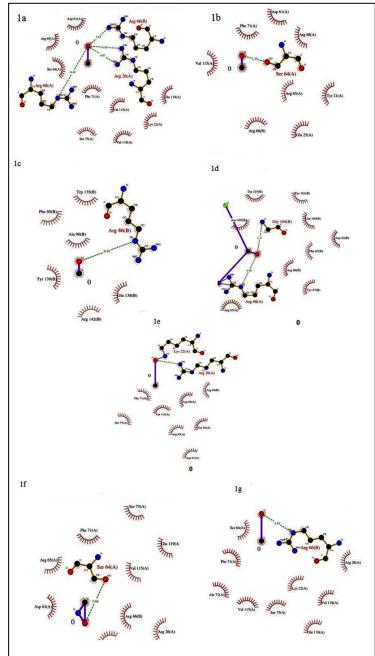


Figure 1: Interaction of BcI-2 and (a) artesunate; (b) bruceantin; (c) maytansin; (d) salvicine; (e) indicine N-oxide; (f) kamebanin and (g) oxyacanthine is shown using ligplot.

ISSN 0973-2063 (online) 0973-8894 (print)

BIOINFORMATION Discovery at the interface of physical and biological sciences

References:

- [1] O'Shaughnessy J, Oncologist. 2005 10:20. [PMID: 16368868].
- [2] Housman G, Cancers (Basel). 2014 6:1769. [PMID: 25198391].
- [3] Rivera E et al. Breast Cancer Res. 2010 12:S2. [PMID:
- 21050423].
- [4] Balunas MJ, *Life Sci.* 2005 78:431. [PMID: 16198377]
- [5] Cragg GM J Ethnopharmacol. 2005 100:72. [PMID: 16009521]
- [6] Newman DJ & Cragg GM, J Nat Prod. 2016 79:629. [PMID: 26852623].
- [7] Roberts AW & Huang DCS, Clin Pharmacol Ther. 2017 101:89. [PMID: 27806433].
- [8] Buolamwini JK Curr Opin Chem Biol. 1999 4:500. [PMID: 10419854]
- [9] Lebedeva I et al. Cancer Res. 2000 60:6052. [PMID: 11085527]

- [10] Kirkin V, Biochim Biophys Acta 2004 1644:229. [PMID:
- 14996506] [11] Fernández Y *et al. Int J Cancer* 2002 101:317. [PMID: 12209955]
- [12] Wang D et al. Angew Chem Int Ed Engl 2005 44:6525. [PMID: 16172999]
- [13] Bernstein FC *et al. Arch Biochem Biophys* 1978 185:584. [PMID: 626512].
- [14] Huang B, OMICS 2009 4:325. [PMID: 19645590].
- [15] Schneidman-Duhovny D *et al. Proteins.* 2003 52:107. [PMID: 12784375]
- [16] Schneidman-Duhovny D et al. Nucleic Acids Res. 2005 33:W363. [PMID: 15980490]

Edited by P Kangueane

Citation: Kirubhaanad et al. Bioinformation 16(6): 468-473 (2020)

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

BIOINFORMATION Discovery at the interface of physical and biological sciences

