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Mycobacterium tuberculosis is primarily a respiratory pathogen. However, 15% of

infections worldwide occur at extrapulmonary sites causing additional complications for

diagnosis and treatment of the disease. In addition, dissemination of M. tuberculosis

out of the lungs is thought to be more than just a rare event leading to extrapulmonary

tuberculosis, but rather a prerequisite step that occurs during all infections, producing

secondary lesions that can become latent or productive. In this review we will cover the

clinical range of extrapulmonary infections and the process of dissemination including

evidence from both historical medical literature and animal experiments for dissemination

and subsequent reseeding of the lungs through the lymphatic and circulatory systems.

While the mechanisms of M. tuberculosis dissemination are not fully understood,

we will discuss the various models that have been proposed to address how this

process may occur and summarize the bacterial virulence factors that facilitate M.

tuberculosis dissemination.
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INTRODUCTION

Tuberculosis is one of the oldest known human pathogens. The disease can be traced back
through historical references and evidence of infections in human remains from some of the
most ancient civilizations. Evidence of tuberculosis infections has been found in the necropoli
of Ancient Egypt, Neolithic skeletons from burial sites in Europe, and mummies excavated from
the Andes Mountains in South America (Formicola et al., 1987; Zink et al., 2001). The oldest
confirmed human tuberculosis patient dates back an estimated 9,000 years ago, from submerged
site in the Mediterranean near modern day Israel, but statistical models have estimated that the
Mycobacterium tuberculosis complex may have evolved 40,000 years ago around the same time that
human populations are thought to have begun to expand and migrate out of Africa (Hershkovitz
et al., 2008; Wirth et al., 2008).

This bacterial pathogen has followed and affected humans throughout history, and has become
an infection so familiar that it has taken root in our collective understanding of health and
disease. References to a disease thought to be tuberculosis can be found in the Torah and the Old
Testament of the Bible, and in written documents from China and India that are over 200 years old.
Descriptions made by Hippocrates in Ancient Greece indicate that physicians and scientists have
been attempting to study tuberculosis for as long as the practice of medicine has existed (Barberis
et al., 2017). Inmore recent times the extremely high incidence of tuberculosis, or “consumption,” in
Europe and the Americas led to an extended campaign against what was termed the “White Plague,”
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resulting in establishment of sanatoriums that were so ubiquitous
that they are still commonly referenced in the literature and other
media today (Martini et al., 2018).

Despite the long history of attempts to understand and
cure tuberculosis, M. tuberculosis infections remain the leading
cause of death by an infectious agent. Improvements in
socioeconomic conditions and public health interventions led
to a decline in tuberculosis cases in industrialized nations
the early twentieth century, and the discovery of antibiotics
provided therapeutic interventions that vastly improved clinical
outcomes for tuberculosis patients. However, the emergence of
antibiotic resistant MDR and XDR strains of tuberculosis and
the resurgence of tuberculosis cases due to the HIV epidemic
in the 1980s returned the disease to the spotlight (Porter and
McAdam, 1994). At least a quarter of the world’s population
is currently infected with active or latent tuberculosis, with
over 10 million new infections and 1.2 million deaths from
tuberculosis occurring every year. Over 15% of tuberculosis
cases occur in the form of extrapulmonary infections that can
affect any tissue in the body and are particularly difficult to
diagnose and treat (Behr et al., 2018, 2019; WHO, 2019). The
challenges facing patients with extrapulmonary infections are
indicative of how little we understand this deadly disease, in
spite of the long history of research that has been undertaken
on the subject. In this review, we will discuss the incidence and
diversity of extrapulmonary infections, the role ofM. tuberculosis
dissemination in pathogenesis of by M. tuberculosis, and the
potential mechanisms of dissemination that M. tuberculosis
employs to cross the alveolar epithelium and disseminate to
secondary sites of infection.

EXTRAPULMONARY TUBERCULOSIS:
UNFAMILIAR PRESENTATIONS OF A
FAMILIAR DISEASE

The clinical presentations of tuberculosis are well-known both in
the medical literature and in popular culture. Active tuberculosis
usually presents as a pulmonary infection consisting of a cough
lasting longer than a few weeks, often associated with the
production of bloody sputum and a myriad of other classic
symptoms including chills, fever, weakness, unintentional weight
loss, and night sweats. Latent tuberculosis generally does not
produce any clinical symptoms, and patients may never know
that they have been infected unless reactivation occurs (Esmail
et al., 2014). What is less widely known is that in addition to
these two extremes, tuberculosis is capable of causing infections
in an extremely wide range of tissues and organs. In fact,
∼15% of tuberculosis infections worldwide are extrapulmonary
infections, that may or may not be accompanied by pulmonary
symptoms (WHO, 2019). Extrapulmonary infections pose
additional clinical challenges as they do not necessarily mean
a patient will test positive for tuberculosis using a sputum
smear, the gold standard TB diagnostic (Zurcher et al., 2019).
In addition, the presence of M. tuberculosis in extrapulmonary
locations can result in a wide range of additional symptoms and
can pose complications for treatment regimens which already

face ongoing challenges in terms of efficacy, compliance, and
problematic side effects.

The most common form of extrapulmonary infection in
tuberculosis patients is lymphadenitis, most typically infection
of the cervical lymph nodes (Peto et al., 2009). In extreme
cases, these infections can lead to severe swelling resembling
a growth or tumor on the neck. Mycobacterial lymphadenitis
was historically referred to as scrofula or the “King’s Evil,” as
it was widely believed in medieval England and France to be
curable through the touch of royalty. This superstition was
widespread enough to be referenced by Shakespeare in the play
Macbeth (Grzybowski and Allen, 1995). Over time, superstition
was gradually replaced by the theory that scrofula was caused
by an infectious disease, but it was not until Robert Koch was
able to demonstrate the presence of mycobacteria in infected
lymph nodes in 1882 that scrofula was understood to be a form
of extrapulmonary tuberculosis (Barberis et al., 2017).

Another presentation of extrapulmonary tuberculosis that
was once considered to be a separate disease is Pott’s Disease,
first described by Dr. Percival Pott in 1779. Pott described a
palsy of the lower limbs associated with a distinctive curvature
of the spine, and an abscess between one or more vertebrae
(Dobson, 1972). This condition could be progressive and spread
to secondary sites, potentially resulting in paralysis. Today Pott’s
disease is considered to be synonymous with spinal tuberculosis,
a condition so ancient that it has been identified in human
mummies in Egypt dating back to 3,400 BC (Taylor et al.,
2007). While spinal tuberculosis is the most common form of
musculoskeletal tuberculosis, M. tuberculosis can also infect any
of the bones or joints in the body, commonly described either as
articular tuberculosis in which the hips or knee joints are affected,
or extraspinal tuberculous osteomyelitis when other localized
bone infections occur (Golden and Vikram, 2005).

Similar to infections of the cervical lymph nodes, the second
most common form of extrapulmonary tuberculosis is also
located in close proximity to the primary site of infection in
the lungs. Pleural tuberculosis is an infection of the membranes
lining the lungs, often in the form of pleural effusions, or
buildup of fluid between the membranes and lung. It was
previously thought that pleural effusions were the results of a
hypersensitive immune response against pulmonary tuberculosis
infections as the pleural fluid was not thought to contain bacteria,
but improvements in diagnostic techniques have shown that
despite a low bacterial load the pleura is indeed often an
active site of extrapulmonary infection (Diacon et al., 2003).
Pleural tuberculosis often responds well to treatment and can
even resolve spontaneously, but is often associated with later
reactivation (Shaw et al., 2018).

Historically, another common presentation of
extrapulmonary tuberculosis was infection of the gastrointestinal
tract. Interestingly, these infections are more commonly
associated with the closely related species Mycobacterium bovis,
rather than M. tuberculosis, most likely due to the consumption
of contaminated milk products (de la Rua-Domenech, 2006).M.
bovis, also known as bovine tuberculosis, is 99.5% genetically
identical to M. tuberculosis and can be difficult to distinguish
from the human pathogen both clinically and immunologically
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despite the fact that they can be identified as distinct species
using PCR and DNA sequencing techniques (Garnier et al.,
2003). Despite the genetic and pathogenetic similarity, there
is strong species tropism between the two organisms with M.
tuberculosis being primarily a human pathogen while M. bovis
naturally infects cattle, buffalo, deer, and even badger populations
(Corner et al., 2012). Following the advent of pasteurization of
milk products and improved screening methods, the number of
gastrointestinal tuberculosis infections decreased dramatically, as
this process is generally sufficient to kill mycobacteria (Chalmers,
1945).

A less common but potentially serious form of
extrapulmonary tuberculosis is infection of the central nervous
system (CNS). This can take the form of tuberculosis meningitis,
encephalitis, or as an abscess or tuberculoma (Rock et al.,
2008). The origin of infections within the meninges has been
hypothesized to be a single focal caseous lesion known as the
Rich focus that appears to pre-date the meningitis and is likely
to be the source of bacteria that infiltrate the sub-arachnid space
(Rich and McCordock, 1933). Tuberculosis infections of the
CNS can mimic a number of other serious conditions including
meningitis caused by more acute viral, bacterial, or even fungal
pathogens or even brain cancer. Taken together with the fact
that CNS tuberculosis often presents as non-specific symptoms
such as headache, low grade fever, neck stiffness, vomiting, and
occasionally cognitive changes, M. tuberculosis infections of the
CNS can be a diagnostic challenge (Schaller et al., 2019). The
prognosis of CNS tuberculosis is particularly poor compared to
other forms of tuberculosis, with extremely high mortality rates
that are dependent on the stage at whichM. tuberculosis infection
is diagnosed and ensuing complications such as infarctions and
hydrocephaly (El Sahly et al., 2007).

The most severe form of extrapulmonary tuberculosis is a
systemic infection caused by widespread hematogenous spread
of the bacteria. Dissemination throughout the entire body
through the bloodstream results in numerous small lesions
that can occur on any type. Early physicians considered these
ubiquitous lesions to resemble millet seeds, resulting in the term
miliary tuberculosis. These lesions can and do occur in every
tissue within the body, but are most predominant in organs
that are highly vascularized including the lungs, liver, spleen,
bone marrow and kidneys (Sharma et al., 2005). In the pre-
antibiotic era, miliary tuberculosis was considered to be an
infallibly fatal progression of tuberculosis, and as with most
forms of extrapulmonary tuberculosis was most commonly seen
in young children (Munro, 1889). However, miliary tuberculosis
often responds well to modern treatment regimes, and current
mortality rates range around 20%, dependent on the age of the
patient and other complicating factors (Kim et al., 1990; Lee et al.,
2018).

A defining feature of extrapulmonary tuberculosis in every
clinical form is the overrepresentation of these infections in
vulnerable populations such as children and individuals suffering
from malnourishment (Cegielski and McMurray, 2004). In a
recent study of pulmonary and extrapulmonary infections in
patients in the US between 1988 and 2014, children under
14 years of age were found to be more than twice as

likely to have extrapulmonary tuberculosis than pulmonary
tuberculosis, despite extrapulmonary infections making up
such a small percentage of total cases (Banta et al., 2019).
Other risk factors that have been shown to increase the
likelihood of extrapulmonary tuberculosis are homelessness,
incarceration, and excessive alcohol consumption (Peto et al.,
2009). However, the single largest factor influencing the
prevalence of extrapulmonary tuberculosis in modern medicine
has been the HIV epidemic. As the number of people infected
with the HIV virus increased in the 1980’s, a concurrent increase
in extrapulmonary mycobacterial infections was also observed,
often from species of mycobacteria such as Mycobacterium
avium that rarely cause disease in immunocompetent individuals
(ATS CDC, 1987). Although much of this increase is likely
due to the overall increase in tuberculosis infections due to
HIV co-infection, there is a positive correlation between HIV
and extrapulmonary sites of disease (Naing et al., 2013). In
a humanized mouse model, HIV infection has been shown
to cause a decrease in lung interstitial CD4+ T cells during
tuberculosis infections and significant increase in disseminated
disease, suggesting a possible mechanism for this association
(Corleis et al., 2019).

M. TUBERCULOSIS DISSEMINATION:
RARE EVENT, OR MANDATORY PHASE OF
INFECTION?

The vast majority of M. tuberculosis infections are transmitted
through inhaled aerosols, making the lungs the primary site of
infection. Therefore, it is widely accepted that dissemination
out of the lung is a prerequisite step for most extrapulmonary
infections. However, there is also a great deal of evidence that
mycobacterial dissemination may be more than just a rare
event leading to extrapulmonary tuberculosis. Case studies and
pathology of human patients throughoutmedical history indicate
that dissemination may in fact be an essential first step in
establishing all active tuberculosis infections, even when these
infections present as prototypical pulmonary infections. As early
as 1935, Dr. Elizabeth Lincoln noted a trend in the literature away
from the previous thinking that disseminated tuberculosis was a
rare event inevitably leading to catastrophic outcomes such as
miliary tuberculosis, but rather a potential intermediate step of
infection (Lincoln, 1935).

The early events following M. tuberculosis infection are
difficult to follow due to lack of clinical symptoms for most
patients at this stage of the disease. Most of our understanding
has come from case studies following a recent outbreak, literature
from the pre-antibiotic era, and animal studies. Despite the
paucity of information, it has long been noted that following
initial aerosol infection with M. tuberculosis the majority of
productive infections occur in a single infection site within one
lobe of the lung (Ghon, 1916; Blacklock, 1932). The initial sites of
infection are often described as a localized patch of pneumonia,
and can occur in any part of the lung (Marais et al., 2004a).
Anton Ghon, an Australian pathologist, was one of the first to
describe a focus of infection that can occur during this initial
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infection, lending his name to what is known commonly known
as the Ghon’s focus. He further described how these initial lesions
could progress to include involvement of nearby lymph nodes,
creating a cluster of infection known as the Ghon’s complex.
These primary lesions often calcify during the course of disease,
resulting in a distinct pathology. This pattern of infection was
once thought to be a hallmark of childhood tuberculosis, but in
the modern era where adults in countries with low incidence of
tuberculosis are less likely to have been exposed toM. tuberculosis
it has become evident that this is instead the progression of M.
tuberculosis infections in immune naive individuals who have not
previously developed an immune response against mycobacteria
(Loddenkemper et al., 2015).

In contrast to primary tuberculosis infections, secondary or
“post-primary” infections that occur either following reactivation
or in previously exposed patients often present as numerous
foci of infection in the apical and subapical lobes of the lungs
(Balasubramanian et al., 1994). This tropism for the apical
regions of the lungs has long been noted in patient autopsies and
has been a matter of speculation for much of modern medical
science. In 1949, Smith and Abernathy reviewed the myriad
of theories that could explain the apical localization of post-
primary tuberculosis lesions, and added their own hypothesis
that M. tuberculosis spreads from infected lymph nodes into the
lymphatic system, eventually entering the bloodstream through
the thoracic duct which empties into the left subclavian vein,
entering the heart through the superior vena cava. Assuming
minimal mixing of blood from the superior and inferior vena
cava, bacilli entering through this route would seed the apical
lobes of the lungs by transiting through the bloodstream via
the pulmonary artery (Smith and Abernathy, 1949). The idea
that M. tuberculosis spreads from an initial single lesion to the
surrounding lymph nodes, and transits through the lymphatic
and circulatory systems to reseed the lungs is supported
by earlier observations from pediatric physicians, including
Dr. A. Margaret C. Macpherson, who noted that pediatric
patients with enlarged lymph nodes near the primary site of
infection were more likely to progress to disseminated infections
including miliary tuberculosis. Dr. Macpherson hypothesized
that this progression was likely due to spread of the bacteria
through the lymphatic system and into the bloodstream via
the thoracic duct, resulting in hematogenous dissemination
(Margaret and Macpherson, 1942). Wallgren made similar
observations, hypothesizing that dissemination occurs early, and
can result in excretion of bacilli in the urine, though it is seldom
possible to culture bacteria from the blood (Wallgren, 1948).
Overall, observations in humans, particularly those in children,
suggests that hematogenous spread of bacteria occurs co-incident
to primary disease (Marais et al., 2004a,b). Since it is reasonable to
speculate that hematogenous spread is responsible for secondary
lesions in the lung found in most if not all infections (Sweany
et al., 1931; Medlar, 1948; Stead, 1989; Balasubramanian et al.,
1994), it is likely that bacterial factors also play an important
role in this process. This conclusion is supported by the fact
that different M. tuberculosis strains vary in their ability to
cause extrapulmonary infections (Garcia de Viedma et al., 2005).
Lymphohematogenous spread remains the most likely path of

FIGURE 1 | Progression of human M. tuberculosis infections (1) Human

tuberculosis infections are transmitted through the inhalation of contaminated

aerosols. (2) Primary infections are established in the lungs, at a single site that

develops into a primary granuloma. These initial sites of infection include

involvement of the surrounding lymph nodes, forming a Ghon’s complex. (3)

Bacteria disseminate out of the lungs and into the lymphatic system, most

likely entering the circulatory system through the entry of the thoracic duct into

the subclavian vein. (4) Hematogenous reseeding of the lungs results in

secondary granulomas located in the apical regions of the lungs and/or the

extrapulmonary organs (5).

disease progression for both pulmonary and extrapulmonary
infections acquired through the respiratory route (Figure 1).

M. TUBERCULOSIS DISSEMINATION IN
ANIMAL MODELS

A more detailed understanding of the course of M. tuberculosis
dissemination must come from animal models. While mice are
an obvious model for pathogenesis studies due to their ease
of use, low cost, and the availability of tools, reagents and
genetic knockouts, it is unclear how closely dissemination in
this model mimics what occurs in humans. The morphology
of the mycobacterial granulomas differs significantly between
mice and humans, suggesting underlying differences in M,
tuberculosis pathogenesis during mouse infections as compared
to human patients (Flynn, 2006). Granulomas are a prototypical
characteristic of tuberculosis infections. They are the lesions
observed in the lungs and other organs where organized layers
of host immune cells surround foci of bacteria, and have long
been debated to be either a reservoir of bacteria or a quarantine
site regulated by the host (Guirado and Schlesinger, 2013).
Whereas, as previously described, the granulomas observed
in human infections can be varied in composition including
inert calcified lesions and necrotic, caseous granulomas, no
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necrosis is observable in traditional mousemodels (Medlar, 1948;
Flynn, 2006). In contrast, the guinea pig model of infection
displays two physiologically and immunologically distinct types
of granulomas, more closely replicating what is observed in
human infections (Ly et al., 2008).

Interestingly, the morphology and cytokine profiles of
granulomas observed in the guinea pig model can be traced back
to whether they are initial sites of bacterial seeding (primary
granulomas), or subsequent secondary granulomas following
reseeding of the lungs through lymphohematogenous spread
(McMurray, 2003). Infecting animals with very low doses of
M. tuberculosis results in the formation of a small number of
granulomas that eventually become large and necrotic. Similar
to what is observed in humans, the primary lesions resulting
from the initial infection often become necrotic and calcify.
Bacteria disseminate from the primary lesions very early during
the course of infection, and within 2 weeks post-infection,
bacteria can be found first in the lymph nodes adjacent to the
lungs, and then later in the extrapulmonary organs including
the spleen (Smith et al., 1970). Approximately 3–5 weeks
post-infection, hematogenous dissemination re-seeds the lung,
creating secondary lesions that develop primarily in the apical
and subapical regions of the lung (Stead, 1989; Balasubramanian
et al., 1994; McMurray, 2003). These secondary granulomas
are smaller and do not become necrotic or calcify (Ho et al.,
1978). Animals that have been vaccinated with BCG develop
granulomas that are more similar to secondary granulomas
from the onset, suggesting that the differences between these
phenotypes is most likely due to the host immune response
(Smith et al., 1975). Interestingly, dissemination in guinea pigs
occurs in a temporal fashion that is very similar to that observed
in mice (Kong et al., 2009). Overall, these observations suggest
that the guinea pig model offers the opportunity to examine
dissemination in more detail using a highly relevant system to
human infections.

Rabbit models of tuberculosis have been useful for studying
tuberculosis due to the characterization of both resistant
and sensitive rabbit models. Lurie’s sensitive rabbit model
showed disease similar to that demonstrated in guinea pigs
including extrapulmonary dissemination and distinct primary
and secondary granulomas (Lurie, 1941). However, the majority
of rabbit experiments were performed with M. bovis as rabbits
do not develop severe disease or extrapulmonary infections
from M. tuberculosis (Nedeltchev et al., 2009). Perhaps the
ultimate model for studying M. tuberculosis dissemination and
extrapulmonary spread is non-human primates who closely
resemble human patients in terms of their susceptibility and
immune response toM. tuberculosis. Similar to human infections,
M. tuberculosis infections of cynomolgus macaques results
in extrapulmonary infections in only a subset of animals.
This allows more accurate modeling, but also makes studying
extrapulmonary infections more complicated as they do not
occur in every experimental animal. Interestingly, treating
macaques with TNF neutralizing agents resulted in drastically
increased extrapulmonary dissemination and the development of
disseminated disease within 8 weeks post-infection (Lin et al.,
2010). Moreover, similar to patterns of human infections in the

pre-antibiotic era, macaques that do not show extrapulmonary
infections in other organs still harbor persistent infections within
their lymph nodes, suggesting that the lymphatic dissemination
model is correct (Ganchua et al., 2018). The application of tools
such as PET scans and genetic labeling of bacterial in non-human
primate infections suggests that thismodel is likely to shed deeper
insight into the mechanisms of M. tuberculosis dissemination in
the future (Martin et al., 2017).

BREACHING THE BARRIER: A QUESTION
OF MECHANISM

From what we have learned over the past century from both
observations of human patients and experimental animal models,
the likelihood of M. tuberculosis initiating infection from a
single site and disseminating through the lymphatic and/or
circulatory system is incredibly high. However, relatively little is
understood about the molecular mechanisms of dissemination.
Based on the correlation between susceptibility to severe disease
and the frequency of extrapulmonary infections in various
animal models, it can be assumed that the host immune
response to infection plays a major role. This conclusion is
further substantiated by the link between immunodeficiency
and extrapulmonary tuberculosis in humans. However, there
is also evidence that M. tuberculosis is not a passive player
in this process and that bacterial virulence factors actively
promote dissemination. There is evidence that M. tuberculosis
strains from different phylogenetic lineages show different
rates of extrapulmonary disease, and clinical isolates from
extrapulmonary infections cause a greater degree of disseminated
disease in animal models (Hernandez Pando et al., 2010; Be
et al., 2011; Click et al., 2012). Furthermore, there is evidence
that M. tuberculosis actively induces angiogenesis to promote
dissemination through the formation of new blood vessels
(Oehlers et al., 2015; Polena et al., 2016).

Of particular interest from a mechanistic viewpoint is the
essential first step of extrapulmonary dissemination, the egress of
M. tuberculosis out of the lung. For mycobacteria to gain access
to interstitial tissues, it would first need to cross the epithelial
barrier of the lung, circumventing the primary purpose of barrier
epithelia. A number of models have been proposed regarding
how non-motile bacteria could breach the lung epithelium, which
we will discuss in more detail (Figure 2). One hypothesis is
that asM. tuberculosis preferentially infect alveolar macrophages
in high numbers, the bacteria could be transiting within these
macrophages as they cross into and out of the lymphatic and
circulatory systems. Another hypothesis is that M. tuberculosis
directly infects the epithelial cells composing the barrier of
the lung and is able to either translocate across these cells
without disrupting the epithelium, or causes a breach in the
monolayer by inducing cell death (Russell, 2001). Alternatively,
dissemination could involve a role from a less ubiquitous
cell type within the lung, dendritic cells, which are known
to sample antigens from the alveoli and present them within
the lymph nodes (Humphreys et al., 2006). Interestingly, there
are genetic and phenotypic evidence available in the literature

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 February 2020 | Volume 10 | Article 65

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Moule and Cirillo Mycobacterium tuberculosis Dissemination

FIGURE 2 | Proposed mechanisms of M. tuberculosis dissemination across

the airway epithelia (A) The “trojan horse” model of dissemination where M.

tuberculosis is carried across the epithelial barrier within infected

macrophages. (B) M. tuberculosis is capable of directly infecting epithelial

cells, which could result in bacteria translocating across the barrier through the

epithelial cells or inducing cell death to cause a breach in the barrier (C)

Passage across the epithelium may occur in specialized M cells which actively

translocate antigens to the interstitium for presentation to antigen presenting

cells (D) Alternatively, dendritic cells sampling antigens in the alveoli may traffic

live mycobacteria to the lymph nodes.

for all three hypotheses regarding routes of dissemination,
possibly suggesting that in reality dissemination may occur by a
combination of several or all of these pathways.

MACROPHAGE MIGRATION: THE TROJAN
HORSE THEORY

The “trojan horse” theory of dissemination hypothesized that
M. tuberculosis traffics within alveolar macrophages (AM) across
the airway epithelium. This is an attractive theory, because
it is well-established that AMs are one of the first and most
numerous types cells to become infected with tuberculosis in
both humans and animal models (Berthrong, 1970; Wagner,
1975; Srivastava et al., 2014). M. tuberculosis can survive and
replicate within AMs, and the ability of this cell type to cross
into and out of the circulatory and lymphatic systems is well-
characterized. Moreover, this mechanism has been demonstrated
in other bacterial pathogens, suggesting it could be a conserved
mechanism for bacterial dissemination (Vazquez-Torres et al.,
1999). However, the role of macrophages in M. tuberculosis
dissemination and extrapulmonary spread is still not completely
understood and knockouts in animal models are not usually
specific enough to allow definitive demonstration of their role.
Possibly, tissue-specific or lineage-specific knockouts in mice
could allow careful analysis of their role in future studies.

Some evidence for trafficking of mycobacteria within
macrophages comes from a zebrafish model using the related
pathogen Mycobacterium marinum. Zebrafish provide a useful
model to study to progression of mycobacterial infections
because the natural transparency of the larvae allows the progress

of infection to be followed in real time (Davis et al., 2002). Using
this model, Davis and Ramakrishnan showed direct evidence
of macrophage recruitment to M. marinum granulomas and
subsequent migration of infected macrophages to new tissues
(Davis and Ramakrishnan, 2009). The zebrafish model has also
resulted in the identification and characterization of a number
of bacterial factors that appear to play a role in dissemination of
mycobacteria, including Zinc metalloprotease-1 (zmp1) and the
regulatory gene whiB6, as well as the host factor CXC chemokine
receptor 3 (CXCR3) (Torraca et al., 2015; Chen et al., 2016;
Vemula et al., 2016). Interestingly,M. marinum mutants lacking
the ESX-1 secretion locus, which is essential for full virulence
in M. tuberculosis and M. bovis infections, were found to show
decreased granuloma formation but increased dissemination
within macrophages to remote tissues, suggesting an important
role for this locus in dissemination.

While the zebrafish model provides evidence for the trojan
horse theory of mycobacterial dissemination, this model cannot
provide proof of dissemination across the alveolar epithelium or
address the roles of the lymphatic system and adaptive immune
system in dissemination. In addition, while M. marinum is
a natural pathogen of fish and thus an excellent model for
mycobacterial pathogenesis, it is divergent enough from M.
tuberculosis that it will be important to confirm these findings
in the actual human pathogen. A virulence factor that has been
studied in relation to dissemination in both M. marinum and
M. tuberculosis using a mammalian model is the virulence locus
mel2 that affects growth in activated macrophages as well as entry
into host cells and dissemination (Subbian et al., 2007; Cirillo
et al., 2009). The mel2 locus affects susceptibility to reactive
oxygen species (ROS) and this role may be the basis for effects
on intracellular growth, but it is unclear whether this role is
responsible for the effects on dissemination, since dissemination
of a mel2 mutant remains defective in phox−/− and iNOS−/−

mice (Subbian et al., 2007; Cirillo et al., 2009).
Direct evidence for the trojan horse model in mammals

was reported by Cohen et al. (2018). This study utilized an
intratracheal antibody labeling assay to show that alveolar
macrophages (AMs) infected with mCherry-labeled M.
tuberculosis migrate from the lumen of the alveoli, where
they typically reside, to the interstitium (Cohen et al., 2018).
This was an exciting and interesting observation, as AMs
have previously been described as sessile cells that remain
closely associated with the epithelium even when stimulated
(Westphalen et al., 2014). The authors investigated the genetics
of this process, determining that migration is dependent on
the M. tuberculosis virulence factor ESX-1, corroborating
observations in the zebrafish model. Furthermore, using gene
knockout mice, bone marrow chimeras, and adoptive transfer
experiments, they demonstrated a role for the host IL-1R
signaling pathway in dissemination through a mechanism
that is dependent on non-hematopoietic cells, most likely
epithelial cells. Not only is this a potentially important host-side
mechanism in M. tuberculosis dissemination, but it suggests
that mycobacterial dissemination may not be solely dependent
on exploitation of a single host cell type, but rather the entire
alveolar environment.
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EPITHELIAL CELL INFECTION: THE
DIRECT APPROACH

Perhaps the most direct strategy to breach the alveolar barrier is
to directly infect the cells that make up the barrier. Once inside
an epithelial cell, bacteria could translocate across the cells or
induce apoptosis or necrosis, causing a break in the epithelium
due to cell death. Mycobacteria has been known to be capable
of infecting HeLa cells since the 1950’s (Bloch, 1956; Shepard,
1957), and was shown to be capable of growth and replication
in human lung epithelial cells over 20 years ago (Bermudez and
Goodman, 1996; Mehta et al., 2006). The same year, the first M.
tuberculosis adhesin, the heparin-binding hemagglutinin HbhA
was identified and shown to be involved in adhesion of M.
tuberculosis to epithelial cells (Menozzi et al., 2006). Infection
of epithelial cells has also been shown to induce chemokine
expression suggesting that this cell type could also play an
important role in the immune response against M. tuberculosis
(Lin et al., 1998; Wickremasinghe et al., 1999). Analysis of
infected cells present in human sputum and in bronchiolar lavage
samples shows that epithelial cells become infected with M.
tuberculosis in human patients and in fact are one of the most
commonly infected cell types after macrophages and neutrophils
(Eum et al., 2010).

Transit of M. tuberculosis across epithelial cells has been
demonstrated in vitro using polarized bilayers of epithelial and
endothelial cells to recreate the airway barriers of the human lung
in culture. In these three-dimensional models, epithelial cells and
endothelial cells are cultured and allowed to polarize on opposite
sides of a permeable transwell membrane.M. tuberculosis is then
added to the apical chamber, and the basal chamber is monitored
for bacteria that are able to translocate across the cell bilayer,
showing that the bacteria is able to migrate across the epithelial
and endothelial cell barriers (Birkness et al., 1999; Bermudez
et al., 2002) In addition, Pethe et al. published a study in 2001 on
the previously characterized adhesin HbhA that demonstrated a
clear role for this gene in dissemination through interactions with
epithelial cells. They showed that deletion of hbhA from either
M. tuberculosis or the human vaccine strainMycobacterium bovis
BCG had no effect on the ability of the bacteria to infect or
grow within the lung, but significantly impaired the ability to
disseminate to the spleen following intranasal infection (Pethe
et al., 2001). Moreover, they showed that hbhA mutants had
no phenotype whatsoever in J774 macrophage cells, but were
impaired in their ability to infect A549 human lung epithelial
cells, consistent with the role of this gene in cell adhesion. Overall,
these studies provide evidence for a direct role for epithelial cells
in dissemination.

The role of hbhA in dissemination across epithelial cells
has since been confirmed in vitro using the polarized bilayer
models described above (Ryndak et al., 2016). However, these
experiments do not address whether dissemination is due
to translocation across epithelial cells, or cell death. Purified
recombinant HbhA binds to the surface of polarized epithelial
cells, induces actin reorganization, and can be internalized into
cytoplasmic vacuoles via endocytosis. However, HbhA does not
disrupt the integrity of cellular tight junctions or affect the

permeability of epithelial cell monolayers (Menozzi et al., 2006).
In contrast, infection of polarized monolayers with live bacteria
does affect the isoelectric properties of epithelial cell monolayers,
possibly by inducing TNFα expression, suggesting that there
could be additional HbhA-independent mechanisms of barrier
disruption (Zhang et al., 1997).

Another possible route of passage across epithelial cells could
be through specialized epithelial cells known as microfold cells,
or M cells. M cells are part of the epithelial barrier in mucosa-
associated lymphoid tissues (MALT) including the gut and some
parts of the respiratory system. Although M cells form tight
junctions with other epithelial cells and are part of the epithelial
barrier, they play an active role in taking up antigens and
delivering them across the epithelia to antigen-presenting cells
(Neutra et al., 1996). Due to this unique ability, M cells have
been shown to be exploited by a large number of bacterial
intestinal pathogens to invade deeper tissues (Owen et al., 1986;
Grutzkau et al., 1990; Jones et al., 1994). The first suggestion that
mycobacteria could also be using M cells as a route across the
epithelia came in 1986, via demonstration of uptake of the M.
bovis BCG vaccine strain by M cells in a rabbit ileum ligated loop
model (Fujimura, 1986). A similar role for pulmonary M cells
was later demonstrated in the guinea pig model using virulent
M. tuberculosis (Teitelbaum et al., 1999).

Additional evidence for the role of M cells in mycobacterial
dissemination was provided more recently using the mouse
model to demonstrate that depletion of M cells decreases
dissemination to the cervical lymph nodes, and an in vitromodel
using Caco-2 epithelial cells to show increased translocation
when M cells are co-cultured in the monolayers (Nair et al.,
2016). Taken together, these studies suggest that M cells are
capable of translocating M. tuberculosis and likely play a role in
dissemination. The only downside to this model of dissemination
is that the prevalence of M cells in the human lung epithelium
is unclear. Both nasal-associated lymphoid tissues (NALT) and
bronchus-associated lymphoid tissues (BALT) are present in
rodent models, but very little is known about these tissues
in healthy human adults. They have been described as being
primarily present in childhood and subsequently receding,
perhaps inducible in response to infection or inflammation
or only sparsely present (Bienenstock and McDermott, 2005).
Therefore, it remains somewhat unclear what role M cells play in
M. tuberculosis dissemination in humans, and it is likely that this
is not the sole route that mycobacteria may disseminate through.

DENDRITIC CELL INFILTRATION:
OPPORTUNISTIC HITCHHIKERS

Another candidate cell population suggested to play a role in
M. tuberculosis dissemination are dendritic cells (Humphreys
et al., 2006). These cells are particularly attractive candidates
due to the established role of dendritic cells in active transport
of antigens to the lymph nodes. Therefore, dendritic cells could
provide a potential route of dissemination out of the primary site
of infection for M. tuberculosis as they transport bacteria to the
lymph nodes for presentation to immune cells. This hypothesis
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is supported by data showing that infection of dendritic cells
by BCG can occur within 48 h following intranasal infection of
BALB/c mice, a timepoint that is relevant to early dissemination
out of primary granulomas and formation of the Ghon’s complex
(Reljic et al., 2005). Moreover, infected inflammatory dendritic
cells (iDCs) defined as CD11c+CD11b+Ly6C+ cells are capable
of moving into and out of acute and chronic lesions induced
by BCG in a CD11c-eYFP dendritic cell reporter mouse strain.
Importantly, iDCs in dendritic cell reporter mice infected with
BCG also migrate to peripheral sites at a much higher rate
than in uninfected mice (Schreiber et al., 2011). Harding et al.
also show that iDCs in the same reporter strain are recruited
to M. tuberculosis granuloma-like lesions, after which they are
found outside of the lesions interacting with populations of P25
cells and forming new regions of granulomatous inflammation
(Harding et al., 2015).

Although these experiments establish a link between dendritic
cells and dissemination, they have all been performed in mouse
models that do not form structurally similar primary and
secondary granulomas to those observed in humans. Many
of these experiments also used the model organism M. bovis
BCG, rather than virulent M. tuberculosis, so there remains
a need to confirm the results of these novel experiments
using M. tuberculosis. Interestingly, both human and mouse
dendritic cell migration decreases across an epithelial barrier
toward lymphatic chemokines following infection with the
attenuated M. tuberculosis strain mc27000 or BCG (Roberts
and Robinson, 2014; Harding et al., 2015). However, a
computational model extrapolated from a data set consisting
of blood and lung samples of non-human primates infected
with the Erdman strain of M. tuberculosis also predicted an
essential role for dendritic cells in dissemination, suggesting
that dissemination within dendritic cells can occur in human
tuberculosis (Marino and Kirschner, 2016).

Dendritic cells have also been described as playing a “trojan
horse” role in transiting other respiratory pathogens to the lymph
nodes, setting a precedent that could extend to M. tuberculosis.
Cleret et al. observed transit of fluorescent-labeled Bacillus
anthracis spores to the thoracic lymph nodes in GFP-labeled
dendritic cells (Cleret et al., 2007). Subsequent studies suggest
similar roles for DCs in trafficking Streptococcus pneumoniae
and Francisella tularensis from initial infection sites in the lungs
to the lymphatic system as well as roles for DCs in systemic
dissemination of Burkholderia pseudomallei and Salmonella
typhimurium (Bar-Haim et al., 2008; Rosendahl et al., 2013;
Williams et al., 2014; Carden et al., 2017). Taken together,
these studies suggest that dendritic cells play a prominent role
in bacterial dissemination and that this may be a conserved
mechanism across bacterial species.

DISCUSSION

Extrapulmonary tuberculosis accounts for a relatively small
percentage of human tuberculosis cases in immunocompetent
adults. However, the clinical impact of extrapulmonary
tuberculosis is larger than this statistic may suggest as

extrapulmonary infections are some of the most difficult
to diagnose and treat. The gold standard for diagnosis of
tuberculosis in many countries with the highest tuberculosis
burdens remains sputum smear microscopy, but patients with
extrapulmonary infections do not necessarily have bacteria in
their sputum. Other assays that can be used to test for exposure
to mycobacterial antigens, such as the tuberculin skin test and the
QuantiFERON blood test are limited due to cross-reactivity with
the BCG vaccine or environmental mycobacteria, respectively,
and thus cannot be used to diagnose clinical tuberculosis. In 2010,
GeneXpert was introduced and recommended by the WHO for
pulmonary infections, but although this has the potential to
address diagnostic challenges the test requires sophisticated and
expensive equipment that is not always available in the places it
is most needed and remains a sputum-based test (Walzl et al.,
2018). Overall, this means that diagnosis strategies are lacking
for extrapulmonary infections. The wide range of sites and
symptoms associated with extrapulmonary tuberculosis means
that it can masquerade as a number of different diseases and
syndromes, such that tuberculosis may not even be suspected
and tested for, delaying the time before appropriate treatment
can be provided. Even when extrapulmonary tuberculosis is
diagnosed in a timely manner, the recommended treatment
regimen are primarily designed against pulmonary tuberculosis,
and may or may not be effective depending on the presentation
of extrapulmonary disease.

Extrapulmonary tuberculosis is associated with particularly
high morbidity and mortality. This may be due to the fact
that extrapulmonary forms of the disease often occur in some
of the most vulnerable patients including young children and
immunocompromised individuals. However, while they are no
longer the death sentence that they once were, certain forms of
extrapulmonary tuberculosis, particularly infection of the central
nervous system such as meningitis and miliary tuberculosis, have
very poor clinical outcomes. Diagnosis and morbidity/mortality
are closely related in extrapulmonary tuberculosis, as early
detection of infections can drastically improve the likelihood of
the disease responding to treatment.

As most tuberculosis infections are contracted through
the inhalation of aerosols containing M. tuberculosis,
extrapulmonary infections occur through dissemination of
the bacteria out of the lung into the surrounding lymphatic
tissue, and subsequent distribution throughout the circulatory
system. Secondary pulmonary granulomas are formed through
reseeding of the lungs through the bloodstream. Therefore,
understanding dissemination has broad implications for
tuberculosis treatment and prevention. If these early steps can
be blocked through vaccination or early intervention, it is
conceivable that not only could extrapulmonary infections be
prevented, but that reseeding the lungs could be blocked. This
hypothesis is supported by the success of therapeutics designed
to target the first known M. tuberculosis dissemination factor,
hbhA. Immunization with purified recombinant HbhA protects
mice from infection with M. tuberculosis, reducing the bacterial
burden in both the lungs and extrapulmonary organs (Parra
et al., 2004; Schepers et al., 2015). Boosting with this antigen also
improves the efficacy of the BCG vaccine, suggesting a combined
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regimen has the potential to protect against dissemination
(Guerrero et al., 2010). HbhA has also been investigated as a
potential diagnostic antigen and biomarker (De Maio et al.,
2019), suggesting that work in this area can be applied in a
number of novel ways.

It is not unreasonable to think that identification and
characterization of additional dissemination factors could
lead to the development of equally successful vaccines and
therapeutics. However, since the identification of HbhA,
research in this area has resulted in only a few new
candidates being identified. Further investigation into identifying
mycobacterial dissemination factors is needed. Identification
of a comprehensive set of M. tuberculosis dissemination and
extrapulmonary spread factors could improve our understanding
of the molecular mechanisms involved, which will need to be
confirmed and further evaluated in both small animalmodels and
in vitro models. More sophisticated tracking of dissemination in
vivo usingmodern imaging techniques could allow analysis of the
longstanding belief that dissemination occurs via the lymphatic
and circulatory systems. Moreover, further investigations into the
interactions of M. tuberculosis with their host cells could help
us better understand the mechanisms that the bacteria use to
breach the alveolar barrier and cross into the lymphatic and/or
circulatory systems.

Guidance on the future of M. tuberculosis dissemination
research may come from the progress of research in other
bacterial pathogens. The route through which enteric pathogens
such as Salmonella typhimurium disseminate across the intestinal
endothelial barrier to infect other tissues was once a hotly
debated topic in bacteriology. Closely paralleling the current
state of understanding of M. tuberculosis dissemination, the two
major schools of thought were that S. typhimurium was either
directly invading the epithelium though Microfold (M) cells,
or hitching a ride within migrating macrophages. This debate
was eventually addressed through experiments using bacterial
genetics to address each hypothesis. First, S. typhimurium was

demonstrated to exploit M cells by using bacterial adhesins
to invade and colonize Peyer’s Patches (Galan and Curtiss,
1989; Lee et al., 1992; Jones et al., 1994). A subsequent
study showed that if all proposed epithelial cell adhesins were
deleted from S. typhimurium, the resultant triple knockout
mutant was still able to disseminate within a mouse model,
though at a reduced level. Moreover, if the triple mutant was
used to infect CD18 KO mice that lack a surface antigen
expressed by macrophages and dendritic cells that dissemination
to the liver and spleen was greatly reduced compared to
wild-type mice (Garcia de Viedma et al., 2005). From these
combined studies, it can be concluded that neither of these
proposed mechanisms are mutually exclusive, and that S.
typhimurium likely exploits both potential dissemination routes.
To bring a similar sense of conclusion to the M. tuberculosis
field, it will be necessary to perform similarly careful genetic
studies that clarify the role of each proposed pathway in a
relevant in vivo model such as non-human primates or the
guinea pig model of infection. Using the history of enteric
pathogen dissemination as a lesson, it seems likely that none
of the proposed theories are mutually exclusive and that
future evidence may reveal that mycobacteria are capable of
utilizing more than one strategy to disseminate and establish
extrapulmonary infections.
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