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Abstract: Adjusting land use is a practical way to protect the ecosystem, but protecting water
resources by optimizing land use is indirect and complex. The vegetation, soil, and rock affected by
land use are important components of forming the water cycle and obtaining clean water sources. The
focus of this study is to discuss how to optimize the demands and spatial patterns of different land
use types to strengthen ecological and water resources protection more effectively. This study can
also provide feasible watershed planning and policy suggestions for managers, which is conducive
to the integrity of the river ecosystem and the sustainability of water resources. A watershed-scale
land use planning framework integrating a hydrological model and a land use model is established.
After quantifying the water retention value of land use types through a hydrological model, a multi-
objective land use demands optimization model under various development scenarios is constructed.
Moreover, a regional study was completed in the source area of the Songhua River in Northeast China
to verify the feasibility of the framework. The results show that the method can be used to optimize
land use requirements and obtain future land use maps. The water retention capacity of forestland is
strong, about 2500–3000 m3/ha, and there are differences among different forest types. Planning with
a single objective of economic development will expand the area of cities and cultivated land, and
occupy forests, while multi-objective planning considering ecological and water source protection
tends to occupy cultivated land. In the management of river headwaters, it is necessary to establish
important forest reserves and strengthen the maintenance of restoration forests. Blindly expanding
forest area is not an effective way to protect river headwaters. In conclusion, multi-objective land use
planning can effectively balance economic development and water resources protection, and find the
limits of urban expansion and key areas of ecological barriers.

Keywords: land use optimization; water retention; land planning framework; watershed
management; China

1. Introduction

Human needs for habitat and natural resources gradually reshaped the earth’s surface.
The interactions between land use change and climate, hydrological systems and biodi-
versity are having long-term impacts on global food supply, fresh water, forests, regional
climate and atmospheric environmental quality [1–3]. These changes may be permanent or
unstable, or may be short-term or long-term. They start from multiple locations on a small
scale to large-scale regions, and eventually have a positive or negative impact on the global
environment [4]. Different surface reflectance and warming characteristics of land surfaces
such as forests and cities lead to different substance circulation of land surface–water and
land surface–atmosphere, which affects the regional water vapor cycle, carbon cycle and
vegetation growth [5–7]. Numerous studies have shown that human activities such as
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deforestation, farming, urban sprawl and water conservancy can change regional climate
and precipitation distribution, and reduce the value and sustainability of ecosystem ser-
vices [8–11]. In recent years, the macro-control of land has attracted the attention of local
managers. Rational use of land resources limits the speed of urban expansion and ensures
enough ecological functional areas are very effective methods.

It is well known that there is a strong interaction between watershed land and rivers.
Land use and cover are the key factors affecting the river ecosystem, water quantity, water
quality and aquatic biodiversity [12–14]. Land use change in the basin will lead to changes
in surface roughness, plant transpiration and soil characteristics, and finally transform the
existing water cycle balance into a new balance [2,4,15,16]. It is found that cultivated land
expansion and deforestation will significantly affect the watershed water cycle by changing
regional evapotranspiration [17]. In addition, deforestation reduces surface roughness,
resulting in increased surface runoff [18,19]. For groundwater, the increase in impervious
surfaces associated with urban areas lowers the water table [20–22]. Groundwater over
extraction leads to the disappearance of springs worldwide, which affects the interaction
between surface water and groundwater [23,24].

Numerous studies have proved that forest ecosystem has a strong ability to conserve
water and ensure water quality, which shows important value in regulating climate, re-
ducing flood peaks and alleviating soil erosion in most areas [19,25,26]. The upstream
water source area of the river plays an irreplaceable role in ensuring the downstream
water volume, so the water source area is an important ecological function area for water
resources protection. Therefore, quantifying the ecological value and water retention value
of different land uses, such as forests, farmland and wetlands, has become a topic in recent
years. [27–30]. Water retention value estimation methods include small-scale field exper-
iments [31–33] and large-scale evaluation and prediction, which mainly rely on remote
sensing technology and hydrological models. In general, the research direction is gradually
changing from discussing the internal mechanism of soil water retention to quantifying
regional soil and water retention capacity [34,35]. Furthermore, based on quantitative eco-
logical and water resources development goals, regional demand and spatial distribution
of land use can be gradually optimized. However, pressure on ecological retention also
limited economic development of the cities in the water source region, particularly in the
mountains. Although some regions have introduced watershed management policies and
provided ecological compensation funds for the water source area, the supports were still
limited. In sum, the watershed planning should focus on quantifying the value of land use
to water security, designing protection area accurately so that the land with high ecological
value will not be destroyed.

Land use demands are often restricted by local economic development, population
migration and policy orientation, while the spatial optimization of each land use type is
affected by historical evolution, elevation, slope, climate, industrial layout, etc. [36]. The
allocation of land demand is a plan to improve the efficiency of land resource use in the
whole region by optimizing the allocation of different land use types based on multiple
development objectives under the restriction of regional land use schemes [37]. Commonly
implemented land use demand optimization methods include the time series analysis
method, the Markov chain, the simulated annealing method, the genetic algorithm, etc. [38].
Combined with the spatial information management function of GIS, the optimization of
the spatial pattern of land use can be realized, and the integration of multiple algorithms
is the research direction [39]. The PLUS (patch-generating land use simulation) model
integrates the land expansion analysis strategy and CA model based on multi-type random
patch seeds (CARS), and completes practical research on landscape dynamic change in
multiple study areas [40–43]. Therefore, this model has a great advantage in simulating
landscape patch changes of natural land types concerned with landscape pattern changes.

This study attempts to build a land use optimization framework on the watershed
scale to form a feasible future land use spatial pattern that can ensure the optimal economy,
ecology and water sustainability of river source regions. In order to achieve this goal,
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Songhua River, the most important river in Northeast China, which ensures the water secu-
rity of the two downstream provinces, is selected as the research area. The region has high
forest coverage and abundant water resources, but its economy is underdeveloped, namely,
it is often difficult to balance urban expansion and economic development. Therefore, this
work aims to solve the following issues: (1) quantifying the amount of water retention
through the SWAT (Soil and Water Assessment Tool, https://swat.tamu.edu/, accessed
on 20 January 2022) hydrological model; (2) forming a multi-objective optimal allocation
model of land use demand to promote economic development and protect ecological value
and water conservation; (3) using the land use change simulation model to form the spatial
planning of future land use development. Prospectively, it can provide reference for quanti-
fying the amount of water retention and putting forward a multi-model coupled land use
planning framework, and provide the government with reasonable planning for watershed
management, economic taxation and future development.

2. Materials and Methods
2.1. Methods

This study constructs a framework suitable for regional land use planning with high
demand for water conservation. Figure 1 shows the flow chart of the steps followed in
this study. We aim to provide managers with a way to develop the regional economy
and ensure water security by forming an optimized land use plan for the headwaters of
the river.
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Figure 1. Land use planning framework and flow chart.

2.1.1. Water Retention Value (wrv) Calculation by SWAT

In this study, the water retention amount can be obtained more accurately by con-
structing a watershed hydrological model. SWAT has been applied worldwide to analyze
the temporal and spatial variation characteristics of hydrological processes such as sur-
face runoff, evapotranspiration, soil water, and groundwater. The spatial database and

https://swat.tamu.edu/
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attribute database of the SWAT model mainly include land use data, DEM, soil attribute
data, meteorological data, and hydrological data. The meteorological and hydrological
data are organized into the standard format required by SWAT and then input into the
model. The observed runoff of the hydrological station is input into the calibration model
SWAT-CUP software (USA, https://swat.tamu.edu/software/swat-cup/, accessed on
10 March 2022) dedicated to the SWAT model for parameter calibration and error analysis.
The specific model construction and calibration process refer to the official description and
related papers [44,45]. The accuracy of the hydrological model is usually measured by NS
(Nash–Sutcliffe efficiency coefficient) and R2 (correlation coefficient), and the closer to 1,
the better the simulation result. After constructing the SWAT, the water retention amount
was calculated based on the water balance equation of the model, which served as the basis
for assessing the water retention value of different underlying surfaces in the framework.
The equation is as follows:

∆ S = PREC − SURQ − ET − LATQ − GWQ (1)

where ∆S is the change of soil water content in the time step; PREC is the precipitation;
SURQ is the surface runoff; ET is the evapotranspiration; LATQ is the water quantity
entering the aeration zone through the soil profile; GWQ is the underground water quantity.
Next, introduce the water yield variable,

WYLD = SURQ + LATQ + GWQ (2)

where WYLD is water yield, i.e., the total amount of the water entering river runoff. The
SWAT model divides the watershed into hydrological response units (HRU), and then the
formula is converted into:

Wi = ∑n
j=1

(
PRECij−ETij−WYLDij

)
×Aij×1000 (3)

Wi is the water retention amount of land use i, m3; PRECij, ETij, WYLDij are the PREC,
ET and WYLD of the j HRU (hydrological response unit) of land use i, mm; Aij is the area
of the j HRU of land use i, km2; n is the number of HRU of land use i.

WLi =
Wi

∑n
j=1 Aij

× 100 (4)

WLi is water retention amount per unit area of land use i, m3/ha. The water retention
values of each land use type is calculated by the following formula:

wcvi= WLi × pw (5)

where wcvi is the water retention value of land use i, 104 CNY (China Yuan)/ha; pw is the
average water price for all administrative units in the catchment, CNY/m3, in this case the
value is 3 CNY/m3.

2.1.2. Multi-Objective Land Use Demand Optimization

First, we establish an optimal allocation model for land resource demand, including
variables, objective functions, constraints and required parameters, with 2030 and 2050
as the target years. Land use according to the research goals, three land use planning
objectives of economic benefit (EV), ecological service value (ESV) and water retention
value (WRV) are set, and scenarios are proposed according to the different combination of
these three objectives:

(1) Economic development scenario (ES), which only focuses on a single economic de-
velopment goal, of course, within a certain development range, to maximize the EV
objective function;

https://swat.tamu.edu/software/swat-cup/
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(2) Ecological protection development scenario (ECS), which maximizes two objectives
of EV and ESV and attaches equal importance to sustainable economic development
and ecological protection;

(3) Water resource conservation scenario (WCS), which simultaneously maximizes the
three objectives of EV, ESV and WRV in order to strengthen the water retention capacity.

Second, the land use types are divided into ten categories, each represented by a code
to simplify the following presentation. The area of each land use type is a variable in the
optimization model. The details and the initial value of the area of each land use type are
shown in Table 1. Third, for the parameters in objective functions, the economic benefits
(ev), ecological service values (esv) and water retention values (wrv) of different land use
types per unit area were required. Among them, the ev parameter is obtained by dividing
the output value of forestry, agriculture, animal husbandry, fishery, secondary and tertiary
industries from the local statistical yearbook by the area of the land use type corresponding
to this function. The esv parameter is the value of ecological services provided by different
land use types per unit area, which is determined by the value of China’s ecosystem
services [46]. The wrv parameter is obtained in Section 2.1.1.

Table 1. Land use change of the research area from 2010 to 2020.

Land Use Code Variable
Name

Percentage of Total Area (%)

2010 2020

Cultivated Land AGRL x1 11.42 10.12

Deciduous Broad-leaved Forest FRSD x2 78.13 79.01

Evergreen Coniferous Forests FRSE x3 1.39 1.41

Needle-broad-leaved Mixed Forest FRSM x4 3.07 3.04

Open Forest FRSO x5 0.33 0.45

Shrub Land SHRUB x6 0.02 0.02

Grass Land GRASS x7 3.89 3.64

Wet Land WETL x8 0.02 0.06

Water Body WATR x9 0.99 1.00

Artificial Surface URBN x10 0.75 1.27

The formulas are shown in Table 2. Fourth, the constraints are based on multiple
factors, such as current and future policy direction and long-term population change, which
mainly include total area constraint, forest cover constraint and the upper and lower limits
constraint of each land use type. Determining the upper and lower limits of each land use
area in 2030 and 2050 was mainly based on the predicted value of the Markov chain, and also
referred to the limit of the minimum agriculture land area, urbanization rate, and per capita
living land area in the study area. The constraint range in 2050 is larger than the constraint
in 2030 to ensure a relatively better objective function value in a larger optimization
space. The constraint conditions of the optimization model are described in detail in
Table 3. Variables, objective functions, and constraints constitute the land use demand
optimization model, and the next step is to solve the model. Among the three scenarios,
the ES scenario is a single objective problem, which is solved by linear programming; the
others are multi-objective problems solved by NSGA-II [47]. The procedure code is written
in Python language (https://www.python.org/, accessed on 2 July 2021). The main genetic
algorithm process relies on Geatpy2.6.0 (http://www.geatpy.com/, accessed on 2 July 2021),
a high-performance and practical evolutionary algorithm toolkit in Python. It provides a
convenient, modular, problem-solving-oriented evolutionary algorithm framework. Since
the initial population is randomly generated in the algorithm, the Pareto optimal population
generated after each iteration is reached is different. In order to determine the appropriate
number of iterations and avoid falling into local optimization, seven groups of tests are

https://www.python.org/
http://www.geatpy.com/
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set, the number of iterations is at least 1000 times, each group is increased by 1000 times,
repeated three times, and the top 200 in the ranking are output. If the value of the objective
function changes significantly, the number of iterations may be insufficient, there may
be a possibility of falling into local optimization, and the number of iterations needs to
be increased. The top five ranked are selected to form the optimal group, in which the
individual closest to the current situation is selected as the land demand value of the
scenario. Through the above steps, the area demand of various land use types in future
years under different scenarios can be obtained, which is also the input data for PLUS to
obtain future land use maps.

Table 2. Objective function of land use demand optimization model. CNY: China Yuan.

Objective Function Formula Units

Economic value
objective (EV)

EV = ∑n
i=1 eci Ai

= 1.93x1+0.03x2+0.03x3+0.03x4+0.03x5+0.03x6+1.71x7+0.59x8+0.59x9+99.57x10

EV 104 CNY
eci 104 CNY/ha

Ai ha

Ecological service
value objective (ESV)

ESV = ∑n
i=1 esvi Ai

= 1.17x1+4.04x2+3.09x3+4.06x4+3.37x5+2.68x6+2.12x7+11.96x8+11.96x9+1.16x10

ESV 104 CNY
esvi 104 CNY/ha

Ai ha

Water retention
value objective

(WRV)

WRV = ∑n
i=1 wrvi Ai

n
∑

i=1
wcvi Ai

= 0.73x1+0.99x2+0.95x3+1.06x4+0.77x5+0.96x6+0.83x7+0.9x8+0.36x9+0x10

WRV 104 CNY
wrvi 104 CNY/ha

Ai ha

Table 3. Constraints and description of land use demand optimization model.

Constraint
Condition Formula

Total area constraint A = ∑n
i=1 Ai

= x1+x2+x3+x4+x5+x6+x7+x8+x9+x10 = 1,876,897 ha

Forest cover constraint 1,876,897 ha > x2+x3+x4+x5+x6 > 1,500,000 ha

Upper and lower
boundaries of x1 to x10

in 2030

Lb = [128,000, 1,400,000, 20,000, 55,000, 0, 0, 0, 1000, 18,000, 23,000] ha
Ub = [190,000, 1,500,000, 30,000, 65,000, 9000, 500, 68,000, 2,000,
19,000, 31,000] ha

Upper and lower
boundaries of x1 to x10

in 2050

Lb = [128,000, 1,400,000, 26,000, 57,000, 0, 0, 0, 1000, 18,000, 23,000] ha
Ub = [200,000, 1,876,897, 1,876,897, 1,876,897, 9000, 400, 70,000, 7000,
19,000, 60,000] ha

2.1.3. Land Use Change Simulation and Prediction Land Use

The PLUS model is available to simulate the change of land use patches and to analyze
the drivers of land use change. The PLUS V1.2 5 used in this research is provided on github
(https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model, accessed
on 10 July 2021). The input data for PLUS are land use maps and maps of potential
development factors for the initial year and the simulation year. The error between the
simulated land use map and the real map can be reduced by adjusting parameters of the
model, and the error is measured by Kappa coefficient and figure of merit (FOM) value.
Simultaneously, contributions of all the driving factors for the expansion of each land
use type can be obtained. In this case, we take 2010 as the initial year and 2020 as the
simulation year. A total of 15 potential development factors are selected to simulate the
development probability of different land types, including natural condition factors such
as temperature, precipitation, terrain, slope and soil type, and urban development factors
such as population, GDP, distance from different grades of highways and government.
According to the characteristics of the mineral water and tourism industry in the study area,
the spring with a flow of more than 1000 m3/d and tourist attractions are also considered
as driving factors. In addition, the evolution of landscape pattern will affect the ecological

https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
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service value. Landscape metrics are not only the driving factors leading to the habitat
heterogeneity in the residual forest debris but also the index guiding the conversion of
farmland to forest and ecological restoration. Therefore, this research selects 6 class-level
metrics and 17 landscape-level metrics to explore the evolution of landscape patterns from
2010 to 2020, and detailed information of landscape metrics [48] is shown in Table A1. At the
same time, it can also characterize and quantify the similarity of landscape characteristics
between simulation results and observation results. If all the indicators to measure the
simulation accuracy, including statistical indicators and landscape indicators are within
the acceptable range, the predicted future land use map can be obtained by entering the
demand for the land use type in the future years obtained in the previous step. The Moran’s
I [49] of global autocorrelation and the LISA (local indications of spatial association) cluster
map [50] are used to evaluate the spatial distribution pattern and aggregation of total
ecosystem service value and water retention value in the past ten years and the planned
future 2030 and 2050 at the patch level.

2.2. Study Area

In order to explore the applicability of the planning model to the land use planning
of important forest ecosystems and water retention and protection areas, the source area
of Songhua River in the Changbai Mountain Area of China is selected as the study area.
Figure 2 shows the location and terrain. Changbai Mountain is the highest mountain
system on the eastern edge of Eurasia, with a complete forest ecosystem. It is not only
a “hot spot” of global biodiversity but also the main water source of the Songhua River,
an important river in Northeast China. The source area of the Songhua River supplies
39% of the water of the Songhua River, ensuring the water safety of tens of millions of
people in the two downstream provinces, and has an extremely important ecological
status and water retention value. The area is a typical volcanic landform, covered with
lava flows (basalt and trachyte) [51], with an altitude of about 1000–1800 m. The climate
conditions are temperate continental mountain climate affected by the monsoon. The
average annual temperature is between −7 and 3 ◦C, and the annual precipitation is
700–1400 mm (http://data.cma.cn/). The precipitation from June to September accounts
for 60–70% of the annual precipitation. Most of the groundwater is basalt hole fissure
water, which is discharged in the form of evaporation and spring. The spring flow is
voluminous, the largest can reach more than 30,000 m3/d, and it is rich in metasilicic acid,
attracting some mineral water companies to invest and build factories here. Contrary to
the contradiction that the economic development of other developed regions destroys the
regional ecology, due to its unique ecological value and tourism resources, the economic
development and the development of land resources in this region are seriously limited. It
has always been a poor area with slow economic development and insufficient government
tax revenue. Therefore, how to develop the region’s economy through planning for future
land use needs and find out the best solution between protecting forest ecology and water
sources is a difficult problem.

2.3. Data Source

The data required for this study are divided into three categories: spatial database
and meteorological data necessary for the construction of SWAT hydrological model;
land use status and future government planning data required for multi-objective land
demand planning; and economic development data and land use grid data necessary for
the construction of PLUS model, spatial natural conditions and the social factor driving
factors. Table 4 shows the specific data sources and uses. Among them, the land use data
are superimposed from the two data sources, GlobeLand30 V2020 and global CCI-LC land
use maps, and further calibrated based on satellite remote sensing images. Due to the
wide distribution of forests in the study area, the forest land is subdivided into deciduous
broad-leaved forest, evergreen coniferous forests, needle-broad-leaved mixed forest, and
open forest, which can discover the changes of different forest types.

http://data.cma.cn/
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Natural
condition

DEM Grid data
ASTER GDEM 30 m (http://www.gscloud.
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accessed on 5 June 2021)
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modeling/Driving factor of

land use

Soil Grid data
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Hydrological
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Precipitation Grid data WorldClim v2.0
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Driving factor of land use
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3. Results
3.1. Accuracy of SWAT Model and Water Retention Value

The study area is divided into 63 sub-watersheds. The parameters of the model were
calibrated using the monthly average runoff of the six hydrological stations shown in
Figure 1. The calibration period is 2006 to 2014; after that is the validation period. The
simulation results and accuracy are shown in Figure 3. During the calibration period, the
NS value of the runoff at all hydrological stations was greater than 0.6, and during the
verification period, all except Jingyu and Jiugongli hydrological station were above 0.6, so
the simulation results were acceptable [44]. Therefore, the water balance equation output
from the SWAT model can be used to estimate the WLi, which is the water retention amount
per unit area according to Equations (1)–(4). The results are shown in Table 5. The water
retention capacity of forest land is the highest, and coniferous and broad-leaved mixed
forest and deciduous broad-leaved forest are higher than coniferous forest, followed by
wetland and shrub forest. The water retention capacity of sparse forest land, cultivated land
and grassland is relatively low. The construction of urban hard pavement and drainage
pipe network weakens the city’s ability to retain precipitation. From 2006 to 2017, the model
results show that the average precipitation in the study area was 754 mm/a, of which the
annual average water production and annual average water storage accounted for 51%
and 38%, respectively. The results obtained are similar to those of previous research [52,53].
In general, the plant and soil conditions give the area a strong water retention capacity
and sufficient groundwater recharge capacity. Figure 4 shows the average annual amount
of water yield and water retention for 63 sub-basins. From the perspective of spatial
distribution, the southern mountainous area of the study area has a large water yield and
a high supply of surface water sources to river runoff. The central part of the study area
has strong water retention capacity, with an average annual water retention capacity of
390–490 mm/a, which is very similar to the distribution of mineral springs in the study
area. In total, 58% of the springs with flow rates greater than 5000 m3/a are concentrated
in this part of the region. Therefore, this area is the area with the strongest water resources
storage capacity and the most frequent recharge to surface runoff, underground runoff and
spring water.

3.2. PLUS Model Simulation Accuracy and Results
3.2.1. Model Accuracy and Landscape Comparison

A random sampling method is adopted, and the sampling rate is set to 5%. In order to
prevent overfitting, 10 regression trees were developed. The value of the neighborhood
effect is 3. The patch generation decay threshold and expansion coefficient are set to 0.9 and
0.1, respectively. During the calibration process, it is found that due to the slow economic
development in the study area, the land use change in the past 10 years is small, and
80% of the land in the study area is forest land, which also has high requirements for the
future forest coverage. In particular, overfitting should be avoided, and the number of
regression trees should be appropriately reduced to reduce the expansion coefficient, to
reduce the generation of new land use patches. The results show that the kappa coefficient
and FOM values characterizing the simulation accuracy are 0.79 and 0.14, respectively, and
the simulation results are acceptable [40,41].

In addition, we also used the selected landscape metrics to quantify the similarity
between the simulation landscape and the observed landscape of 2020. The landscape
pattern metrics of class-level and landscape-level are shown in Tables A2 and A3. In
the past ten years, the landscape pattern index of each land use type in the study area
remained stable. From Table A2, it can be discovered that the forest patches changed
little, but the aggregation index AI of the sparse woodland patches increases. The patch
density (PD) of grassland landscape decreased. The landscape shape index (LSI) that
indicates the patch shape increased significantly in urban patches, which is mainly affected
by urban expansion. The LSI of wetland patches increased and the AI aggregation index
decreased, which may be affected by precipitation and human activities. From Table A3, the
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landscape fragmentation index decreased slightly, and the diversity index SHDI and SHEI
did not change significantly. The similarity of the landscape pattern indicators between
the simulation results and the observation results is high, but the ratio of the indicators
representing landscape fragmentation and shape to the observation results is relatively
large, especially for forests. The reasons may be related to the large forest landscape
dominance, the high degree of patch aggregation and the small land use change in the
study area. It may be that the changes in forest patches during the formation of new patches
are over-simulated.
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Table 5. Water retention amount per unit area of different land use types.

Land Use Type AGRL FRSD FRSE FRSM FRSO SHRUB GRAS WETL WATR URBN

WLi (104 m3/ha) 0.244 0.332 0.316 0.355 0.258 0.321 0.275 0.300 −0.120 0

3.2.2. Analysis of Land Use Expansion Strategy

The PLUS model can output the contribution of the set driving factors to the change of
each land use type. Figure 5 shows the contributions of different driving factors in driving
the other land uses to convert to a specified target land use type, and the numbers on the
graph indicate the contribution value. The larger the value, the greater the contribution
of this factor to the specific land use transfer direction compared with other factors. In
order to measure the contribution level, we divide the contribution value into four levels,
low contribution means that the contribution of the driving factor is very low, general
contribution means that the contribution is not obvious, medium contribution means that
there is a certain contribution, but it is not a dominant factor, and great contribution means
that it has a strong influence. Table 6 is the classification standards and the number of con-
tribution value at each level, X is the mean of all data and σ is the standard deviation. The
contribution of most driving factors is between the general contribution and the medium
contribution, and the number of high and low contributions is consistent. Among the
10 land use types, the expansion of 7 types is driven by elevation, with a large contribution,
and the contribution to grassland, shrub, and construction land is medium, indicating that
the terrain of mountainous areas has a significant impact on the initial form of regional
land use, forest vegetation, water body, and wetland fluctuation. However, due to the
slow speed of urban expansion in this area, the terrain has not seriously restricted urban
expansion. The change path of evergreen coniferous forest and coniferous broad-leaved
mixed forest is similar, and it is also affected by temperature and distance from scenic spots,
which is related to the fact that the growth and distribution of coniferous forest are more
vulnerable to climate change [54]. The scenic spots in the region are mainly mountain forest
landscape, which is located in the zone with high altitude range 1000–1800 m and a large
area of coniferous forest, resulting in an interactive relationship between the two. Both
wetland and open forest land are driven by GDP. With economic development, the area of
open forest land and wetland increases. The distance from the railway is the main driving
factor for the expansion of building environment. Between 2010 and 2020, both GDP and
road mileage increased by 20% in the study area. The development of towns and villages
in mountainous areas depends very much on traffic conditions, and the railway is the basis
for ensuring basic passenger transport, freight transport, and long-distance transportation.
In particular, precipitation has a strong driving force on the change of shrub land, and the
contribution of each driving force to grassland is similar.

Table 6. Contribution grade standard of land use driving factors. X is the importance of the contribu-
tion of each driving factor, X is the mean of all data and σ is the standard deviation.

Level Low
Contribution

General
Contribution

Medium
Contribution

Great
Contribution

Grading Standard 0 < x < X − σ X − σ < x < X X < x < X + σ X + σ < x < 1

Grading Value 0–0.035 0.035–0.067 0.067–0.098 0.098–1

Amount of factors 19 67 46 18
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3.3. Future Land Use Simulation
3.3.1. Future Land Demand Simulation Based on the Multi-Objective Scenario

Table 7 shows the optimization results of multi-objective land use demand in 2030 and
2050 under the three scenarios, including the area of each land use type and the correspond-
ing objective function value. The results show that under the single objective ES scenario,
the optimal solution of linear programming with economic benefit maximization as the
single objective is to maximize the area of AGRL and URBN with high economic benefit
under the condition of ensuring the basic forest area. Under the other two scenarios, the cul-
tivated land area decreases compared with 2020, which is 18 × 104–19 × 104 ha in 2030 and
14 × 104–16 × 104 ha in 2050. The urban area increases, which is 2.4 × 104–2.7 × 104 ha in
2030 and 2.8 × 104–2.9 × 104 ha in 2050. The urban expansion area of WCS is smaller than
that of the ECS scenario. Compared with 2020, the total forest area remained stable, the
forest type configuration changed, the open forest area decreased under ECS and WCS
scenarios, and the WCS scenario decreased more, and the area of deciduous broad-leaved
forest and coniferous broad-leaved mixed forest increased. The target value of water
retention in the WCS scenarios is higher than that in other scenarios and is about one-
fourth of the total ESV, which is consistent with the previous research. Overall, the three
objective function values after the optimized configuration are better than 2020, which
can be used as the data basis for spatial optimization. It also provides managers with
alternative demand schemes for short-term and long-term planning, ensures water safety
and mineral water supply, and forms a reasonable land use demand allocation for regional
sustainable development.
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Table 7. Land use demand forecast for 2030 and 2050. Land use code is the same as in Table 1.

Land Use
Demand (ha) 2020

2030 2050

S1_ES S2_ECS S3_WCS S1_ES S2_ECS S3_WCS

AGRL 190,014 191,000 182,035 180,439 200,000 140,007 158,637

FRSD 1,483,516 1,462,397 1,498,681 1,499,999 1,400,000 1,489,366 1,500,622

FRSE 26,472 30,000 23,710 26,799 26,000 44,750 68,734

FRSM 56,991 65,000 55,294 60,075 85,497 76,954 65,131

FRSO 8364 9000 3684 3208 9000 4098 771

SHRUB 347 500 274 169 400 253 274

GRASS 68,373 68,000 66,457 62,555 70,000 69,999 34,220

WETL 1054 2000 1217 1165 7000 4246 1698

WATR 18,751 19,000 18,257 18,670 19,000 18,001 18,010

URBN 23,758 31,000 27,288 23,818 60,000 29,223 28,800

EV (107 CNY) 2908 3629 3241 2886 6541 3361 3293

ESV (107 CNY) 6967 6950 6984 7006 6877 7094 7070

WRV (107 CNY) 1773 1765 1773 1777 1735 1782 1782

3.3.2. Future Land Spatial Pattern Simulation Based on PLUS

The land use planning map in 2030 and 2050 is shown Figures 6 and 7. On the
whole, the changes of various land use types in 2050 are significantly more than that in
2030, and the land use conversion near the urban built-up area and around the Changbai
Mountain Area in the southeast of the study area is more intense. The forest land has
a spreading trend, and the area of high-altitude tundra grassland is reduced. In the ES
scenario, dominated by economic value, the urban expansion is the most rapid. The
cultivated land and deciduous broad-leaved forest around the town are transferred to the
urban area, and the cultivated land is also expanding. In the ECS scenario, the land use
conversion is small and the wetland water body increases. In addition, under the WCS
scenario, the transformation among the four forest types is more obvious, and the open
forest area is reduced, indicating that if water conservation is the policy orientation, more
attention should be paid to the change and protection of forest types. Excessive pursuit
of a large area of forest land is not a good management method, which may not only fail
to achieve the desired result but also limit the development of the regional economy. It is
very important to provide targeted protection for primeval forests and primary vegetation.
Simultaneously, the selection of plant species and long-term maintenance of artificial forests
should be strengthened. To summarize, in order to guarantee water resources through
protecting the forest ecosystem, it is necessary to guarantee a certain forest coverage rate
first, and then strengthen the optimization of forest vegetation quality, rather than simply
expanding the area. Compared with the three scenarios, urban expansion in the ES scenario
tends to occupy the surrounding deciduous forest land, while the other two scenarios are
more inclined to occupy cultivated land.
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Figure 7. Land use planning maps of the three scenarios in 2050, the first column is land use map,
the second column is the magnification of Fusong County, and the third column is the magnification
of Changbai Mountain area. Each land use name code is the same as in Table 1.

Figure 8 shows the spatial autocorrelation analysis map of ESV and WRV from 2010
to 2050. These two values show obvious clusters and differences in spatial distribution.
Moran’s I is higher than 0.1, and the z value is much higher than 1.96, that is, the spatial
distribution of total ecosystem service value and water retention value is a clustered pattern
within a 95% confidence interval, with a strong positive correlation. In other words, patches
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with higher values tend to cluster together, which is more obvious in 2020 than in 2010, and
this is consistent with the direction of the natural evolution of cities and ecosystems in the
study area. Moran’s I under the three planning scenarios of 2030 and 2050 is significantly
higher than that in 2010 and slightly higher than that in 2020. Compared with the three
scenarios, the Moran’s I of the ES scenario is smaller. The LISA cluster map divides the
region into four types, namely, HH and LL of a positive correlation type and LH and HL
of a negative correlation type. Spatially, HH clusters of ESV and WRV are located in the
primeval forest of Changbai Mountain in the southeast of the study area, LL clusters are
located in the urban and farmland concentration areas in the East and West, and most
areas are HL clusters. The area of LL clusters of WCS is larger than that of ESV. In terms of
time, the area of LL cluster patches continued to increase from 2010 to 2050. Separately, the
expansion of LL cluster patches of WRV is more significant than that of ESV. In summary,
with social development, patches with low ecological value tend to aggregate and expand,
and the change and development of land use may bring some ecological risks.
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4. Discussion

For the accuracy of the model selected in this paper, the SWAT model has acceptable
simulation accuracy for the hydrological cycle of this study and can be used as a reference
to water resources management and future water resources prediction in mountainous
areas, but there are also some deviations, especially in the snowmelt period and sub-basins
with complex geological conditions where surface water and groundwater exchange are
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frequent. The coupled model of surface water and groundwater can be used to obtain
more accurate water balance simulation results in the study area [55]. A large amount of
spring water in this area is also a major factor affecting the simulation accuracy [51,56].
Especially in the dry season, some large springs contribute greatly to the runoff. Therefore,
establishing a hydraulic connection between the dynamic flow of spring water and the
river can also improve simulation accuracy. The PLUS model has high simulation accuracy
for the landscape patches in the study area. It is necessary to deeply understand the basic
characteristics of the study area, the history of land use transfer, and the policy guidance of
managers so that models and parameters can be adjusted to suit different areas. Carefully
select the driving factors and comprehensively consider the geographical conditions and
industrial characteristics [57]. If the city grows fast or the land use policy changes suddenly,
the simulation accuracy will be affected.

The land use planning framework guided by water resources protection constructed
in this study can quantify the value of regional water retention, and the land demand and
land use planning maps under different development scenarios can be obtained through
the land use demand optimization model. On the whole, the results have credibility,
and can effectively improve the objective function values of economy, ecology, and water
retention through the optimization process. The obtained water conservation value is
similar to the previous research results, which is reasonable [58–60]. However, due to
the high restrictions on forest cover, slow urban development, and population loss, the
optimization space is limited. Furthermore, many studies have also demonstrated that
the increase in vegetation area may also reduce water supply and cause downstream
water demand conflicts, especially in arid and ecologically fragile areas [61,62]. Therefore,
scientific and reasonable land use development models should be constructed in different
river basins. Expanding the forest area or using the same management model is likely to
cause the ecological restoration results to be counterproductive. Furthermore, there is a
strong water holding capacity in the middle of the study area, which is a lava flow unit
with thick basaltic strata and formed joints and fissures. The surface is covered with a large
area of coniferous and broad-leaved mixed forest. High forest vegetation coverage plays
a key role in regional water resource retention and microclimate maintenance [63]. The
soil is dark brown soil and argillaceous dark brown soil. These natural conditions lead to
strong water retention capacity in the region, which can retain precipitation in soil and
groundwater, maintain regional climate and water vapor cycle, and provide a continuous
source of water for downstream surface runoff [64]. Therefore, in future planning, the area
should be regarded as a key nature reserve [65], and the control of natural resources should
be strengthened to avoid excessive urban expansion and the construction of high-polluting
enterprises. At the same time, the quality and quantity of surface water and groundwater
are regularly monitored, and restrictions are imposed on mineral water exploitation and
water conservancy project construction.

5. Conclusions

This study forms a watershed-scale multi-objective land use planning framework
oriented to ecological maintenance and water resources security. The framework uses
the SWAT model and water balance to calculate the water retention of different land use
types, and then builds a multi-objective land use demand optimization model aiming at
maximizing economic value, ecosystem service value and water retention value. The PLUS
(patch-generating land use simulation) model is applied to obtain the driving factors of
changes in different land use types and simulate future land use maps under the economic
development scenario (ES), the ecological protection scenario (ECS) and the water resource
conservation scenario (WCS). The application results in the source area of the Songhua River
indicated that the framework can obtain optimized land use planning. The results indicate
that the forest land had the highest water retention capacity, and the mixed coniferous
and broad-leaved forests are higher than the coniferous forests. The water retention value
(WRV) is about one quarter of the total ecosystem service value (ESV). The PLUS model has
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high simulation accuracy and can be used to explore land use change strategies in the study
area. Elevation has a significant effect on changes in forests, water bodies and wetlands,
but does not currently limit urban sprawl. In addition, distance from railways is a major
driver of construction land change. Urban expansion is obvious under the ES scenario, and
the transition between different forest land types is the most prominent under the WCS
scenario. In both the ECS and WCS scenarios, the total value of ESV and WRV in the basin
in 2030 and 2050 is higher than in 2020. Spatially, patches with low ESV and WRV tend to
cluster, which may cause ecological threats. In order to protect the forest ecosystem and the
sustainable development of water resources, key protected areas should be designated and
the forest type should be paid attention to.
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Appendix A

Table A1. The name and interpretation of the landscape pattern index used in the research.

Metrics Explanation Metrics Explanation

PD Patch Density PLADJ Proportion of Like Adjacencies Index

PAFRAC Perimeter-Area Fractal Dimension IJI Interspersion and Juxtaposition Index

LSI Landscape Shape Index CONNECT Landscape Connectivity Index

PLAND Percentage of Landscape COHESION Patch Cohesion Index

COHESION Patch Cohesion Index DIVISION Landscape Division Index

SHAPE Mean Shape Index SHDI Shannon Diversity Index

LPI Largest Patch Index SIDI Shannon’s Diversity Index

ED Edge Density SHEI Shannon’s Evenness Index

CONTIG Contiguity Index AI Aggregation Index

CONTAG Contagion Index

Table A2. Observed and simulated landscape pattern metrics of class-level.

Metric
PD PAFRAC LSI PLAND COHESION AI

Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20

AGRL 0.15 0.17 0.32 1.35 1.31 1.34 96.4 101.1 128.7 11.4 10.1 10.2 99.4 99.3 99.3 93.8 93.1 91.2

FRSD 0.36 0.35 1.25 1.35 1.36 1.41 94.0 93.8 103.0 78.1 79.0 79.0 100.0 100.0 100.0 97.7 97.7 97.5

FRSE 0.01 0.01 0.07 1.30 1.25 1.14 14.7 14.8 17.4 1.4 1.4 1.4 99.6 99.6 99.5 97.4 97.4 97.0
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Table A2. Cont.

Metric
PD PAFRAC LSI PLAND COHESION AI

Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20 Ob10 Ob20 Sim20

FRSM 0.02 0.02 0.02 1.23 1.21 1.30 25.6 26.0 32.9 3.1 3.0 3.0 99.6 99.5 99.6 96.9 96.8 96.0

FRSO 0.10 0.10 0.11 1.29 1.27 1.32 57.3 53.6 60.6 0.3 0.4 0.4 88.8 91.6 91.6 78.3 82.7 80.4

SHRUB 0.01 0.01 0.01 1.28 1.28 1.30 15.3 14.7 16.6 0.0 0.0 0.0 84.6 86.4 85.2 75.4 77.5 74.4

GRASSS 4.07 3.97 4.18 1.43 1.45 1.45 285.9 286.5 294.5 3.9 3.6 3.6 95.7 95.8 95.8 68.3 67.2 66.3

WETL 0.00 0.00 0.00 1.21 1.30 1.23 3.9 8.2 7.0 0.0 0.1 0.0 96.5 98.3 96.2 94.7 93.3 92.8

WATR 0.12 0.12 0.14 1.54 1.54 1.54 59.0 59.8 60.5 1.0 1.0 1.0 99.4 99.4 99.4 87.2 87.1 86.9

URBN 0.03 0.04 0.08 1.22 1.30 1.24 27.6 44.8 41.9 0.8 1.3 1.3 97.1 97.6 97.0 93.3 91.5 92.0

Table A3. Observed and simulated landscape pattern metrics of landscape-level.

Metrics Ob10 Ob20 Sim20 Metrics Ob10 Ob20 Sim20

PD 4.86 4.79 6.18 CONNECT 0.04 0.04 0.05

SHAPE 1.24 1.26 1.22 COHESION 99.96 99.96 99.95

LPI 76.19 76.9 76.99 DIVISION 0.42 0.41 0.41

ED 27.44 27.66 30.6 SHDI 0.84 0.84 0.83

LSI 96.05 96.79 106.89 SIDI 0.37 0.36 0.36

CONTIG 0.23 0.22 0.18 SHEI 0.36 0.36 0.36

CONTAG 77.8 77.75 77.45 IJI 41.27 44.24 43.47

PLADJ 95.84 95.81 95.36 AI 95.88 95.85 95.4
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