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a b s t r a c t

This paper examines a recently developed statistical approach for evaluating the effec-
tiveness of vaccination campaigns in terms of deaths averted. The statistical approach
makes predictions by comparing death rates in the vaccinated and unvaccinated pop-
ulations. The statistical approach is preferred for its simplicity and straightforwardness,
especially when compared to the difficulties involved when fitting the many parameters of
a dynamic SIRD-type model, which may even be an impossible task.
We compared the estimated number of deaths averted by the statistical approach to the
“ground truth” number of deaths averted in a relatively simple scheme (e.g., constant
vaccination, constant R0, pure SIR dynamics, no age stratification) through mathematical
analysis, and quantified the difference and degree of underestimation. The results indicate
that the statistical approach consistently produces conservative estimates and will always
underestimate the number of deaths averted by the direct effect of vaccination, and thus
obviously the combined total effect (direct and indirect effect).
For high R0 values (e.g. R0 � 8), the underestimation is relatively small as long as the
vaccination level (v) remains below the herd immunity vaccination threshold. However, for
low R0 values (e.g. R0 � 1.5), the statistical approach significantly underestimates the
number of deaths averted by vaccination, with the underestimation greater than 20%.
Applying an approximate correction to the statistical approach, however, can improve the
accuracy of estimates for low R0 and low v.
In conclusion, the statistical approach can provide reasonable estimates in scenarios
involving high R0 values and low v, such as during the Omicron variant epidemic in
Australia. For low R0 values and low v, applying an approximate correction to the statistical
approach can lead to more accurate estimates, although there are caveats even for this.
These results suggest that the statistical method needs to be used with caution.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The vaccination campaigns that were put in place during the COVID-19 pandemic across the globe saved millions of lives
(He et al., 2022; Jia et al., 2023;Watson et al., 2022). Recent modelling studies have attempted to estimate the number of lives
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saved or deaths averted (DA) for any given country or state considering their specific contexts. The following paper is an
attempt to examine a widely used statistical approach (Haas et al., 2022; Jia et al., 2023; Kayano et al., 2022; Lin et al., 2024a)
for evaluating the effectiveness of vaccination campaigns.

Finding the number of deaths averted (DA) by vaccination in a population is a two-step process. It requires (i) determining
Z, the actual number of lives lost observed after the vaccination campaigns has been implemented (e.g., as determined from
mortality records) and (ii) estimating Z*, the number of lives lost in the absence of the vaccination campaigns, which can be
determined through modelling. The number of deaths averted (DA) by the vaccination campaigns is simply the difference,
DA ¼ Z* � Z. The usual approach to estimate DA is to fit the country's mortality timeseries over the epidemic period, (for
which Z is already known), with a dynamic epidemiological Susceptible-Infectious-Recovered-Deceased (SIRD) type model
(Feng et al., 2022; Ghosh & Ghosh, 2023; Lin et al., 2022; Moore et al., 2021; Somekh et al., 2022). Ideally, the model should
include the vaccination over the epidemic as based on known data. Once themodel parameters have been fitted, it is a simple
matter to switch off vaccination and rerun the model to obtain Z*, and thus, DA. However, building such a model can be
challenging as it “has to take into account various complex interactions between multiple factors affecting the dynamics of
the epidemic, like the initial disease prevalence, the compliance with nonpharmaceutical interventions (NPIs), the rate of
growth or decay of infection at various times, the speed of the vaccine rollout, and its targeting and uptake” (Somekh et al.,
2022).

For these reasons, a number of recent studies have attempted to avoid the epidemic SIRD-type model and make use of a
simple statistical approach that focuses on separately analyzing observed mortality timeseries data for vaccinated and un-
vaccinated populations (Haas et al., 2022; Jia et al., 2023; Kayano et al., 2022; Lin et al., 2024a). This approach estimates the
number of lives lost in the absence of vaccination, under the assumption that individuals in the unvaccinated population
would experience the same mortality rate as observed in the actual vaccination scenario. Based on this, it calculates the
number of deaths averted due to vaccination. However, this approach is unable to incorporate the impact of indirect
vaccination effects. These emerge because vaccinated individuals block transmission chains in the larger population thereby
additionally limiting disease transmission (Arinaminpathy et al., 2017; Eichner et al., 2017; Haber, 1999). These indirect ef-
fects, if large or widespread enough, can give rise to herd immunity (Fine et al., 2011). To correctly evaluate the effectiveness of
vaccination campaigns, one must consider both direct and indirect effects, the latter being absent by using this statistical
approach.

The statistical approach is preferred for its simplicity and straightforwardness compared to fitting a dynamic epidemio-
logical SIRD-type model to data, especially when estimating the many parameters of such a model is difficult or impossible.
However, the statistical approach would underestimate the effectiveness of vaccination campaigns. Haas et al. (2022)
comment that their “analysis does not include potential indirect effects that could have reduced disease burden among
the unvaccinated population… If indirect effects stemming from the vaccination programwere substantial, our results likely
underestimate the effect of the nationwide vaccination program.” Although this underestimation is recognized, its extent
remains unclear and has not been thoroughly quantified. Quantifying the degree of underestimation could be crucial for
researchers using this approach, as it would provide insight into how much the effectiveness is being underestimated and
enable them to provide a more accurate estimate of the effectiveness of vaccination campaigns.

To achieve this, we first applied the final size formula (Ma & Earn, 2006) to calculate the number of deaths in an SIRD
epidemic model both with and without vaccination, by applying the same parameter values, thereby determining DA, the
number of deaths averted. The latter served as the “ground truth” (Murayama et al., 2023) of vaccination impact. Next, we
applied the statistical approach to estimate the number of deaths without vaccination. This is implemented using the
mortality rate of the unvaccinated as found in the observed data. From this, the number of deaths averted could be estimated.
Finally, we calculated the underestimation as a fraction by comparing the “ground truth” number of deaths averted to that
estimated by the statistical approach.

2. SIRD epidemics with vaccination

The SIRD epidemic model can be represented by the following differential equations (Bailey, 1975):

dS
dt

¼ � bSI
N

;

dI bSI

dt

¼
N

� gI � mI; (1)

dR

dt

¼gI;

dD

dt

¼mI:
In these equations, S, I, R and D represent the number of Susceptible, Infectious, Recovered and Deceased individuals,
respectively. The total population size N is assumed to be constant over time, i.e., N ¼ Sþ Iþ Rþ D. Note that this requires
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that, during the epidemic, the number of births and natural (non-disease-related) deaths are balanced, and the number of
disease-related deaths remains insignificant relative to the total population. This assumption holds if the infection fatality
ratio is low. The parameters b, g and m are the rates of infection, recovery, and mortality, respectively. The basic reproduction
number is defined as R0 ¼ b

gþm and in simple terms might be considered the number of secondary infections a typical infected
individual can generate when the whole population is susceptible. The infection fatality ratio is defined as q ¼ m

gþm. This ratio
quantifies the probability that an infected individual will die from the disease, given that they either recover or die from the
infection. The initial conditions are such that almost all individuals in the population are susceptible, and the number of
initially infected individuals is negligible. We can therefore approximate the initial conditions as follows: Sð0Þ ¼ N, Ið0Þ ¼
Rð0Þ ¼ Dð0Þ ¼ 0.

A simple model of “perfect” vaccination (i.e., with 100% efficacy) can be explored by changing the initial conditions.
Suppose that vN (where 0< v<1) of the initially susceptible population are vaccinated at t ¼ 0, making them fully protected
from infection. For simplicity, these vaccinated individuals can then be considered as recovered individuals and belong to the
recovered class R. Thus, the initial conditions are: Sð0Þ ¼ ð1 � vÞN, Rð0Þ ¼ vN, Ið0Þ ¼ Dð0Þ ¼ 0. Assume that as time goes to
infinity (t/∞), the epidemic ends and no infectives remain, i.e., Ið∞Þ ¼ 0. By integrating Eq. (1) over t, we obtain the
following Eqs. (2) and (3):

Sð∞Þ ¼ Sð0Þ e
�R0

�
Sð0Þ�Sð∞Þ

N

�
;

(2)

g

Rð∞Þ � Rð0Þ ¼

m
ðDð∞Þ � Dð0ÞÞ : (3)
Details can be found in prior research (Hethcote, 2000). Since Ið∞Þ ¼ 0, it follows that Sð∞Þ ¼ N� Rð∞Þ� Dð∞Þ.
Consequently, we can determine the Final Size of deaths, denoted as Z ¼ ZðvÞ, by solving for ZðvÞ ¼ Dð∞Þ� Dð0Þ.This gives the
implicit relation:

ZðvÞ ¼ ð1� vÞNq
�
1� e�R0

ZðvÞ
Nq

�
: (4)
Ma and Earn (Ma & Earn, 2006) give a comprehensive discussion of the Final Size formula. In the absence of vaccination
(v ¼ 0), we denote the final size of deaths as Z* ¼ Zð0Þ and is given by the solution of:

Z* ¼ Nq
�
1� e�R0

Z*
Nq

�
: (5)
Deaths averted DAðvÞ Our main interest centers on estimating the number of deaths averted DAðvÞ by virtue of modelling
a vaccination campaign in which v of the population has been vaccinated, or has had “coverage” v. The number of deaths
averted DAðvÞ is just the difference in the number of deaths that would have occurred in the absence of a vaccine (Z*) and the
deaths for the same population if there were a vaccine (ZðvÞ) of coverage v. That is:

DAðvÞ ¼ Z* � ZðvÞ : (6)
By working with the SIRD model, when the same parameter values are applied but vaccination is switched off (i.e., v ¼ 0),
the estimated Final Size of deaths without vaccination (Z*, as shown in Eq. (5)) can be seen as the “ground truth” of estimated
Final Size of deaths. Thus, DAðvÞ, as shown in Eq. (6) can be seen as the “ground truth” of estimated number of deaths averted
by vaccination. See also Table 1 for a summary of the main symbols used in this work.

Fig.1 shows that the number of deaths averted,DAðvÞ (blue lines) increases with v and reaches its maximum, Z*, at the herd
immunity vaccination threshold v ¼ vh ¼ 1� 1

R0
, which is the vaccination level needed to achieve herd immunity (Fine et al.,

2011). The plots are derived from the SIRDmodel above with results for a high R0 value of 8 in Fig. 1a and a low R0 value of 1.5
in Fig. 1b, as a function of v.
Table 1
The key variables.

Symbol Meaning

ZðvÞ The Final Size of deaths of an epidemic given the vaccination campaign (with coverage v)
Z* The “ground truth” Final Size of deaths of an epidemic if there were no vaccination campaign
ZsðvÞ The estimated Final Size of deaths of an epidemic if there were no vaccination campaign, based on the statistical approach
Z0sðvÞ The estimated Final Size of deaths of an epidemic if there were no vaccination campaign, based on the “corrected” statistical approach
DAðvÞ Z* � ZðvÞ, the “ground truth” number of deaths averted by the vaccination campaign
DAsðvÞ ZsðvÞ� ZðvÞ, the estimated number of deaths averted by the vaccination campaign, based on the statistical approach
DA0

sðvÞ Z0sðvÞ� ZðvÞ, the estimated number of deaths averted by the vaccination campaign, based on the “corrected” statistical approach
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Fig. 1. The relationship between the number of deaths averted by vaccination DAðvÞ (blue) for (a) R0 ¼8 and (b) For R0 ¼1.5. The estimated number of deaths
averted based on the statistical approach, DAsðvÞ (orange); and the estimated deaths averted before vaccination level reaches the herd immunity vaccination
threshold, based on the statistical approach but with an approximate correction, DA0

sðvÞ (green), as a function of the vaccination level v. This figure plots DAðvÞ,
DAsðvÞ, and DA0

sðvÞ, scaled by the total population N and the infection fatality ratio q. More precisely, the figure presents the values of DAðvÞ
Nq , DAsðvÞ

Nq and DA0
sðvÞ
Nq , which

are derived from solving Eqs. (6), (12), and (17), respectively. The dashed line shows the herd immunity vaccination threshold vh (e.g., for R0 ¼ 8, vh ¼ 1� 1
R0

¼
0.875).
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The total vaccination effect in terms of the number of deaths avertedDAðvÞ includes both the direct vaccination effect DDðvÞ
and the indirect vaccination effect DIðvÞ. The direct vaccination effect is the number of deaths averted among those protected
by the vaccine. For a perfect vaccine,

DDðvÞ ¼ v Z* : (7)
A formal derivation is given in Lin et al. (2024a), but see also Scutt et al. (Scutt et al., 2022) who studied a simpler discrete
time model. The result can also be understood intuitively (see Supplementary Information (SI) Note 1).

The indirect vaccination effect, is the number of deaths averted among the unvaccinated individuals due to population-
level immunity (i.e., herd immunity effects), and is easily seen to be:

DIðvÞ ¼ DAðvÞ � DDðvÞ ¼ Z* � ZðvÞ � v Z* : (8)
As plotted in Fig. S1 in SI Note 2, the number of deaths averted by the direct vaccination effect DDðvÞ increases with v,
reaching its maximum Z* when v ¼ 1. The number of deaths averted by the indirect vaccination effect DIðvÞ increases with v

and reaches its maximum ð1�vhÞZ* when v ¼ vh, and then decreases to 0 when v ¼ 1.

2.1. The statistical approach

The statistical approach used in (Haas et al., 2022; Jia et al., 2023; Kayano et al., 2022; Lin et al., 2024a) provides an es-
timate of the number of deaths in a population if therewere no vaccination campaign (the “coverage” v), notated here as ZsðvÞ.
This is determined by assuming that individuals in the unvaccinated population will experience the same death rate as that
observed for the unvaccinated individuals in a population that is partially vaccinated.

Recall that, in the actual scenario, we assumed that vN of the initially susceptible population N is vaccinated at t ¼ 0 and
immediately fully protected (perfect vaccination). Thus, deaths ZðvÞ only occur in the unvaccinated subpopulation ð1 � vÞN.
This leads to an observed overall death rate ZðvÞ

ð1�vÞN in the unvaccinated subpopulation. For the scenario of no vaccine, the
unvaccinated subpopulationwould now beN, and thus, the overall death rate of this unvaccinated populationwould be taken
to be the same as when there was vaccination, namely ZðvÞ

ð1�vÞN. An estimate of the Final Size of deaths in the absence of
vaccination, derived from the statistical approach, i.e., ZsðvÞ, depends on the actual scenario's vaccination campaign
“coverage” v:

ZsðvÞ ¼ ZðvÞ
ð1� vÞN N ¼ ZðvÞ

1� v
: (11)
More generally, the daily or weekly observed death rate in the unvaccinated subpopulation would be used for the
calculation rather than the overall. For the example here, the vaccination level is fixed over time, and we can use the overall
death rate without lose generality.

The number of deaths averted estimated by the statistical approach is thus:
368



L. Lin, H. Demirhan and L. Stone Infectious Disease Modelling 10 (2025) 365e373
DAsðvÞ ¼ ZsðvÞ � ZðvÞ ¼ v

1� v
ZðvÞ : (12)
Combining Eqs. (6) and (8) and (11e12), the difference between the number of deaths averted DAðvÞ, and the estimated
number of deaths averted based on the statistical approach DAsðvÞ can be given by:

DAðvÞ � DAsðvÞ ¼ Z* � ZsðvÞ ¼ Z* � ZðvÞ � v Z*

1� v
¼ DIðvÞ

1� v
: (13)
Combining this with Eqs. (4) and (5), we have

DAðvÞ�DAsðvÞ¼Nq
�
e�R0

ZðvÞ
Nq � e�R0

Z*
Nq

�
:

Given that 0< v<1, thus Z* > ZðvÞ, it follows that DAðvÞ� DAsðvÞ>0, meaning the statistical approach always un-
derestimates the number of deaths averted by the vaccination campaigns. Since ZðvÞ decreases as v increases and reaches zero
at the herd immunity vaccination threshold vh ¼ 1� 1

R0
, the underestimation DAðvÞ � DAsðvÞ increases with v and reaches its

maximum at Z* when herd immunity is achieved. Fig. 1 shows how DAsðvÞ (orange lines) changes with v, and by comparing it
to DAðvÞ (blue lines), the underestimation is evident. In Fig. 1a, for a high R0 value of 8, the underestimation is minor as long as
the vaccination level is not close to the herd immunity vaccination threshold vh. However, for a low R0 value of 1.5 in Fig. 1b,
the underestimation is obvious.

Haas et al. (2022) correctly pointed out that this statistical approach cannot capture indirect effects and thus un-
derestimates the effect of vaccination. Thus, whether this approach can at least capture the direct effect will be of great
importance. The difference of the number of deaths averted by the direct vaccination effect DDðvÞ, and the estimated number
of deaths averted based on the statistical approach DAsðvÞ is:

DDðvÞ � DAsðvÞ ¼ v

1� v
ðZ* � ZðvÞ � vZ*Þ ¼ v

1� v
DIðvÞ : (14)
Combined this with Eqs. (4) and (5), we have

DDðvÞ�DAsðvÞ¼ vNq
�
e�R0

ZðvÞ
Nq � e�R0

Z*
Nq

�
:

Since Z* > ZðvÞ, it follows that: DDðvÞ� DAsðvÞ>0. This means that the statistical approach underestimates the number of
deaths averted by the direct vaccination effect. Also, this can be seen by comparing DDðvÞ with DAsðvÞ in Fig. S2 in SI Note 3.

2.2. A correction for the statistical approach

As mentioned earlier, for a low value of R0, the statistical approach significantly underestimates the number of deaths
averted by vaccination. To improve its accuracy, we propose an approximate correction that accounts for the indirect
vaccination effect, DIðvÞ, which is ignored by the statistical approach.

As shown in Fig. 1b, for a low value of R0, before the vaccination level v reaches the herd immunity vaccination level vh ¼
1� 1

R0
, it can be seen that the number of deaths averted DAðvÞ (blue line) varies almost linearly with v. Since DAð0Þ ¼ 0, and

DAðvhÞ ¼ Z*, it can therefore be expressed as: DAðvÞzZ*

vh
v ¼ Z*

1� 1
R0

v for v � vh : Given that DAðvÞ ¼ Z* � ZðvÞ, we have: Z*�
ZðvÞz Z*

1� 1
R0

v; which simplifies to:

ZðvÞzZ*

0
BB@1� v

1� 1
R0

1
CCA : (15)
Combining this with Eq. (11), we have:

Z*z
ZsðvÞ

1� v
ðR0�1Þð1�vÞ

:

Thus, for v � vh, an approximate corrected estimate of the Final Size of deaths in the absence of vaccination is:
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Z0sðvÞ ¼
ZsðvÞ
dðvÞ ; (16)
where dðvÞ ¼ 1� v
ðR0�1Þð1�vÞ . Here, Z

0
sðvÞ is our notation for the “corrected” value of the Final Size by the statistical approach.

The “corrected” estimate of the number of deaths averted based on the statistical approach is:

DA0
sðvÞ ¼ Z0sðvÞ � ZðvÞ : (17)
Fig. 1b shows the “corrected” estimated number of deaths averted, DA0
sðvÞ (green line), as a function of v for a low R0 value

of 1.5, where v< vh ¼ 1� 1
R0
. Fig. 1b makes clear that DA0

sðvÞ (green) is much closer to DAðvÞ (blue) than DAsðvÞ (orange). This
indicates that the “correction” scheme significantly improves the accuracy of the statistical approach for low R0 values.

It is also possible to use the “correction” to help derive an estimate for the ratio of indirect to direct vaccination effects.
Combining Eq. (15) with Eqs. (7) and (8), gives:

DIðvÞ
DDðvÞ

¼ Z* � ZðvÞ � v Z*

v Z*
z

Z* � Z*

0
BB@1� v

1� 1
R0

1
CCA� v Z*

v Z*
¼ 1
R0 � 1

:

The ratio of indirect to direct vaccination effects is also found in (Lin et al., 2024b) and (Eichner et al., 2017).

2.3. Determining underestimation in the statistical approach

To quantify the extent to which the statistical approach underestimates the number of deaths averted, we calculated the
bias as a proportion of the true amount, i.e.

rðvÞ ¼ DAðvÞ � DAsðvÞ
DAðvÞ : (18)
As a reference we suppose that when the bias rðvÞ >20% or rðvÞ <-20% (Centers for Disease Control and Prevention, 2023),
the statistical approach is problematic in estimating the number of deaths averted by the vaccination campaigns; otherwise, it
can provide a reasonable estimation. Note that if the bias is negative, this means that the approach provides an overestimate.
To the best of our knowledge, there is no work that quantifies the extent to which the under- or over-estimation becomes
significantly impactful on the inferences. However, (Centers for Disease Control and Prevention, 2023) discusses that an
interval estimate with a width of 20% would give a greater certainty about the true effect of a vaccine.

Similarly, to quantify the extent to which the statistical approach with an approximate correction misestimates the
number of deaths averted, the bias as a proportion of the true amount is calculated as:
Fig. 2. (a) R0 ¼8; (b) R0 ¼1.5. The underestimation that arises with the statistical approach, rðvÞ (blue). The underestimation arising from the “corrected”
statistical approach is r1ðvÞ (orange). These are plotted as a function of the vaccination level v, as calculated by solving Eqs. 18 and 19. The dashed line shows the
herd immunity vaccination threshold vh (e.g., for R0 ¼ 8, vh ¼ 1� 1

R0
¼ 0.875). The black circles indicate that the underestimation does not exist when v ¼ 0. And

when v ¼ 0þ , as proved in SI Note 4, the underestimation is calculated as rð0þÞ ¼ R0
�
1 � Z*

Nq

�
, and r1ð0þÞ ¼ R0 þ 1� R0

2

ðR0�1Þ
Z*

Nq , where Z*

Nq can be obtained by
solving Eq. (5).
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r1ðvÞ ¼
DAðvÞ � DA0

sðvÞ
DAðvÞ : (19)
Fig. 2a shows the bias rðvÞ (blue line) as it varies with v for a high R0 value of 8. It indicates that rðvÞ remains low as long as
the vaccination level v is not close to the herd immunity vaccination threshold vh. This implies that the statistical approach
provides a reasonably accurate estimate when R0 is high and v is low.

Fig. 2b shows the bias rðvÞ (blue line) as it varies with v for a low R0 value of 1.5. Here, rðvÞ is high, exceeding 60%. This
implies that the statistical approach leads to a significantly underestimation for low R0 values. However, an approximate
correction to the statistical approach can improve its accuracy. Fig. 2b shows the bias r1ðvÞ (orange line) arisen from the
“corrected” statistical approach before the vaccination level reaches the herd immunity vaccination threshold. Although r1ðvÞ
becomes negative, meaning the correction causes a slight overestimation, the overestimation remains small since r1ðvÞ <
�20%.

2.4. A simulation method

SI Note 5 examines the Final Size of deaths with vaccination ZðvÞ and without vaccination Z* using a simulation method
based on the SIRDmodel, rather than directly applying the Final Size formula (Ma& Earn, 2006) presented in Eqs. (4) and (5).
We then calculate the number of deaths averted DAðvÞ and the estimated number of deaths averted DAsðvÞ. As expected, the
simulation results of DAðvÞ and DAsðvÞ shown in Fig. S3 are consistent with those obtained analytically by directly solving Eqs.
(6) and (12) and shown in Fig. 1.

2.5. Sensitivity analysis and initial conditions

(1). SI Note 6 examines the performance of the statistical approach across various R0 values (including R0 ¼ 1.5, 2, 3, 4, 5 and
8), with results shown in Figs. S4e5. The findings indicate that the plain vanilla statistical approach provides a
reasonable estimate only when R0 is high (e.g., R0 ¼ 8) and v is low. In all other cases, this approach tends to yield poor
estimates, with underestimations exceeding 20%, particularly when R0 is low or moderate (e.g., R0 ¼ 1.5, 2, 3). The
reason why the statistical approach only works well for high R0 and low v is that in this case the indirect effects are
insignificant. This can be seen in Fig. S1. Thus, even if the statistical approach ignored the indirect effects, it would still
give a reasonable estimate. This will be discussed in more detail below. In contrast, the “corrected” statistical approach
can provide a reasonable estimate only when R0 is low (e.g., R0 ¼ 1.5) and v is low. This is because the assumption of a
linear relationship between the number of deaths averted DAðvÞ and v only holds for a low value of R0 (see Fig. S4).

(2). In many real-world situations, vaccines for newly invading diseases may not be immediately available at t ¼ 0; instead,
they may only become available after a significant proportion of the population is infected. It is useful to examine what
might happen if vaccination v initiates at time t ¼ k > 0 after the epidemic initiates at time t ¼ 0. When running a
simulation, at time t¼ kwe set p ¼ IðkÞ=N and q ¼ RðkÞ=N. Clearly what follows is equivalent to initiating vaccination at
t ¼ 0 with Ið0Þ ¼ pN and Rð0Þ ¼ qN. This allows us to examine the performance of the statistical approach in cases
where vaccination begins at t¼ k, as detailed in SI Note 7. In the SI we consider a special case, where vaccination begins
at t ¼ k, when 20% of the population has already been infected (i.e., pþ q ¼ 20%). The results are shown in Figs. S6eS7.
Consistent with previous findings, we observe that the statistical approach provides a reasonable estimate only when
R0 is high (e.g., R0 ¼ 8) and v is low. While the “corrected” statistical approach fails to yield accurate estimates even
when R0 is low (e.g. R0 ¼ 1.5) and v is also low. This is because the assumption of a linear relationship between the
number of deaths averted DAðvÞ and v dose not hold well when the initially infected individuals are non-negligible (see
Fig. S6). Thus, the effectiveness of the “corrected” statistical approach is dependent on initial conditions and thus has
limitations when applied to broader scenarios.

3. Discussion

Our concern stems from our observation that the statistical approach (Haas et al., 2022; Jia et al., 2023; Kayano et al., 2022;
Lin et al., 2024a) may significantly underestimate the effectiveness of vaccination campaigns. Sometimes, this approach is
used to evaluate the impact of initiating vaccination campaigns earlier (Jia et al., 2023; Lin et al., 2024a). We have observed
such a disparity in the following studies. Somekh et al. (2022) used an SIRD-type model to estimate that approximately
650,000 cases of SARS-CoV-2were averted by vaccination efforts in the entire population of Israel during the first twomonths
of the vaccination campaign (January and February 2021). However, another study conducted in Israel using a statistical
approach (Haas et al., 2022) estimated that the Israeli vaccination campaign (from January 3, 2021, to April 10, 2021) averted
approximately 159,000 SARS-CoV-2 infections, which is only a quarter of the number estimated in (Somekh et al., 2022). This
implies that the statistical approachmay significantly underestimate the effectiveness of vaccination campaigns by up to 75%,
far exceeding the 20% threshold discussed above (Centers for Disease Control and Prevention, 2023). Additionally, Kayano
et al. (2022) found that during Japan's vaccination campaign from March 2021 to November 2021, the number of
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infections and deaths averted attributable to the vaccination campaign, as predicted by an SIRD-type model, were 100 times
and 30 times higher, respectively, than those predicted by a statistical approach.

Studies using a statistical approach (Haas et al., 2022; Jia et al., 2023; Kayano et al., 2022; Lin et al., 2024a) often suggest
that their evaluation of the effectiveness of vaccination campaigns may be conservative because their method typically
captures only the direct effect of vaccination, neglecting the indirect effect in calculations.However, as shown in Eq. (14), by
comparing DDðvÞ and DAsðvÞ, it appears that the statistical approach even underestimates the number of deaths averted by the
direct vaccination effect. This is because with vaccination, unvaccinated individuals receive some degree of protection against
infection or death due to the indirect effect of vaccination in the real population. Thus in the absence of vaccination, the
mortality rate in the unvaccinated population would be higher than that observed in the actual vaccination scenario.

Interestingly, as shown in Fig. 2a, when the basic reproduction number (R0) is high and the vaccination level (v) is low, the
underestimation rate remains low. According to Eq. (13), the underestimation of deaths averted is DIðvÞ

1�v , which is 1
1�v times the

number of deaths averted by the indirect vaccination effect. Thus, when v is low, the underestimation of the number of deaths
averted is almost equal to or several times greater than the number of deaths averted by the indirect vaccination effect.
Moreover, the influence of the indirect effect is less pronounced for highly transmissible diseases (R0 >2, such as COVID-19),
as observed in previous studies (Eichner et al., 2017; Lin et al., 2024b; Scutt et al., 2022). Thus, the statistical approach works
best for cases concerning highly transmissible diseases and low vaccination levels.

For example, in an Australia's study (Lin et al., 2024a), the epidemic was mainly driven by the Omicron variant, which has
an estimated R0 as large as 10 (Burki, 2022). Although the Australian population was highly vaccinated, its net vaccination
level can be considered low, as the efficacy of three doses of BNT162b2 was only about 50% effective against infection with
Omicron (Altarawneh et al., 2022). However, in other studies (Haas et al., 2022; Kayano et al., 2022) where the epidemic was
mainly caused by the wild-type strain or the Alpha (B.1.1.7) variant with a relatively low R0 compared with the Omicron
variant (He et al., 2023a), the effectiveness of vaccination may be significantly underestimated by using the statistical
approach. In addition, recent work of Jia et al. (Jia et al., 2024) has shown that this approach provides a lower bound in a SIRD
model only when parameters are constant over time, but the statistical approach fails to give the lower bound under common
violations to the standard assumptions. This implies that, in real data analyses, it is inadvisable to use the statistical approach
to estimate a lower bound on overall effectiveness of vaccination campaigns, and it needs to be used with caution as found
here.

There are several critical simplifying assumptions in this study. We consider epidemics with a fixed basic reproduction
number (R0) and initial constant vaccination level (v), and assume a 100% efficacy of vaccines. In a broader context, these
parameters could vary as the epidemic progresses. Therefore, in certain extreme cases, our main conclusions regarding the
underestimation of the effectiveness of vaccination by using the statistical approach may not be applicable, especially
considering the difficulties in accounting for the rate of immunity loss from infection or vaccination (Feng et al., 2022; He
et al., 2022, 2023b).

4. Conclusion

In this study, we examine a widely used statistical approach for evaluating the effectiveness of vaccination campaigns in
terms of the number of deaths averted. Under the simplest possible scheme (e.g., constant vaccination, constant R0, pure SIR
dynamics, no age stratification), the statistical approach generally provides poor estimates for low R0 values (e.g. R0 ¼ 1.5),
with underestimations exceeding 20%. Given its poor performance in these simple scenarios, it is unlikely to provide better
estimates in more complicated schemes. Our results suggest that this method should be used with caution. The only case
where the statistical approach performs well is at high R0 values (e.g. R0 ¼ 8) and low vaccination levels, such as during the
Omicron variant epidemic in Australia.
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