
The energy landscape underpinning module dynamics in the 
human brain connectome☆

Arian Ashourvana,b, Shi Gua,c, Marcelo G. Mattara,d, Jean M. Vettela,b,f, and Danielle S. 
Bassetta,e,*

aDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

bU.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

cApplied Mathematics and Computational Science Graduate Program, University of Pennsylvania, 
Philadelphia, PA 19104, USA

dDepartment of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA

eDepartment of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 
19104, USA

fDepartment of Psychological & Brain Sciences, University of California, Santa Barbara, CA 
93106, USA

Abstract

Human brain dynamics can be viewed through the lens of statistical mechanics, where 

neurophysiological activity evolves around and between local attractors representing mental states. 

Many physically-inspired models of these dynamics define brain states based on instantaneous 

measurements of regional activity. Yet, recent work in network neuroscience has provided 

evidence that the brain might also be well-characterized by time-varying states composed of 

locally coherent activity or functional modules. We study this network-based notion of brain state 

to understand how functional modules dynamically interact with one another to perform cognitive 

functions. We estimate the functional relationships between regions of interest (ROIs) by fitting a 

pairwise maximum entropy model to each ROI’s pattern of allegiance to functional modules. This 

process uses an information theoretic notion of energy (as opposed to a metabolic one) to produce 

an energy landscape in which local minima represent attractor states characterized by specific 

patterns of modular structure. The clustering of local minima highlights three classes of ROIs with 

similar patterns of allegiance to community states. Visual, attention, sensorimotor, and subcortical 

ROIs are well-characterized by a single functional community. The remaining ROIs affiliate with a 
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putative executive control community or a putative default mode and salience community. We 

simulate the brain’s dynamic transitions between these community states using a random walk 

process. We observe that simulated transition probabilities between basins are statistically 

consistent with empirically observed transitions in resting state fMRI data. These results offer a 

view of the brain as a dynamical system that transitions between basins of attraction characterized 

by coherent activity in groups of brain regions, and that the strength of these attractors depends on 

the ongoing cognitive computations.
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Energy landscape; Maximum entropy model; Community structure; Modularity; Functional brain 
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Introduction

The human brain is a complex dynamical system comprised of billions of neurons that 

continuously communicate with one another. Although the vast number of processing units 

challenges exact prediction of single neuron activity, recently developed statistical models 

reveal a characteristic meso-scale structure whereby sets of larger-scale brain regions display 

coherent activity at rest. These sets form putative functional modules characterized by 

locally dense functional connectivity, and include the default mode, salience, attention, 

fronto-parietal, cingulo-opercular, motor, visual, auditory, and subcortical systems (Salvador 

et al., 2005; Meunier et al., 2009; Yeo et al., 2011; Power et al., 2011). Interestingly, 

although within-module functional connectivity is in general higher than between-module 

functional connectivity, these patterns fluctuate dynamically over short periods of time (Ma 

et al., 2014; Kiviniemi et al., 2011; Watanabe et al., 2013), both at rest and during task 

performance (Cole et al., 2014; Mattar et al., 2015; Bassett et al., 2011, 2013b, 2015; Braun 

et al., 2015).

The existence of functional modules – as measured using graph theory – was first reported 

nearly a decade ago (Salvador et al., 2005; Meunier et al., 2009), and these initial reports 

were swiftly corroborated by studies using complementary methodologies ranging from co-

activation analysis to independent components analysis. A natural question following the 

observation of these modules was “What do they do? And how are they recruited as we go 

through life performing a variety of functions?” To address these questions, dynamic 

community detection methods were developed and applied to neuroimaging data, revealing 

the fact that modules reconfigure in support of working memory (Braun et al., 2015, 2016), 

reinforcement learning (Gerraty et al., 2016), visuo-motor learning (Bassett et al., 2011, 

2013b, 2015), and linguistic processing (Chai et al., 2017; Doron et al., 2012a). Module 

reconfiguration at rest has also been reported as a marker of aging and development (Betzel 

et al., 2015). These studies collectively demonstrate that module reconfiguration is a 

hallmark of healthy brain function (Telesford et al., 2016), and recent evidence suggests that 

it is a marker that is altered in psychiatric disease, even providing an intermediate phenotype 

of schizophrenia (Braun et al., 2016).
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Despite the extensive work demonstrating the presence and cognitive utility of dynamic 

module reconfiguration, fundamental insights into the mechanisms or rules by which 

modules interact with one another over time have remained elusive (Mattar et al., 2015; 

Khambhati et al., 2016). Evidence suggests that module reconfiguration may be driven by 

glutamatergic signaling (Braun et al., 2016), affect and arousal Betzel et al. (2016a), and 

may provide a substrate for cognitive control (Khambhati et al., 2016), supporting a delicate 

balance between domain-general and domain-specific function (Fedorenko and Thompson-

Schill, 2014a). Although these observations support the biophysical relevance of the 

phenotype, they do not provide computational theories for its existence. Indeed, the 

development of a theory explaining and predicting module dynamics would be particularly 

important in informing studies of its cognitive specificity, transmitter-level drivers, and role 

in psychiatric disease.

One potential route towards a mechanistic theory of brain network dynamics is to consider 

probabilistic models that were originally developed in the field of statistical mechanics. Pair-

wise maximum entropy models (MEM), for example, have proven very useful in estimating 

and predicting spiking activity in neurons (Shlens et al., 2006), local field potentials from 

neuronal assemblies (Tang et al., 2008), and blood oxygen level dependent signals (BOLD) 

from brain regions using functional magnetic resonance imaging (fMRI) (Watanabe et al., 

2013, 2014b, 2014c). When a pair-wise MEM accurately fits empirical data, it implies that 

the observed activation pattern can be described as a combination of each unit’s independent 

activation rate plus the units’ joint activation rates. When a pair-wise MEM does not 

accurately fit empirical data, it implies that higher order interactions (such as triplets) or 

nonlinearities contribute to the observed dynamics. Importantly, pair-wise MEMs can be 

used to infer an energy landscape of brain activity during task performance. Here the term 

energy is used in an information theoretic sense, and it does not have a direct relation to 

metabolic energy or to a formal Hamiltonian. The energy landscape is characterized by 

basins of attraction representing common brain states, as well as the paths or trajectories 

along which the brain moves as it transitions from one basin to another. The architecture of 

this energy landscape has proven useful in predicting individual differences in human 

perception and behavior (Watanabe et al., 2014c).

In traditional applications of MEMs to neurophysiological data, a brain state is defined as a 

pattern of activity across brain regions (or similarly, a neural state is defined as a pattern of 

activity across neurons). However, these notions of brain state are agnostic to the patterns of 

communication or synchronization linking brain regions, and therefore are unable to address 

the question of how one pattern of coherent activity could evolve into another pattern of 

coherent activity. To address this question, we explicitly define a network state as the pattern 

of module allegiance across brain regions, and we use this definition to examine transitions 

between network states. We test the hypothesis that mesoscale structure in dynamic 

functional connectivity patterns is well explained by pairwise interactions between 

communities. The null hypothesis that we seek to reject is that such patterns cannot be 

explained without contributions from higher-order interactions between communities. To test 

this hypothesis, we construct a time-dependent network by linking 10 regions of interest by 

the low frequency (0.06–0.19 Hz) wavelet coherence between their time series in a given 

time window. We use a community detection algorithm to identify groups of brain regions 

Ashourvan et al. Page 3

Neuroimage. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that show stronger coherence with one another than they do to other groups. We refer to 

these groups as network communities, and we fit the MEM to each ROI’s time series of the 

state of co-occurrence in the same community with other ROIs. This approach enables us to 

identify network states that form local energy minima, as well as features of the energy 

landscape surrounding these minima. More generally, this approach highlights the dynamic 

functional roles that different ROIs play in network states and the transitions between them.

Our results reveal the presence of local minima on the energy landscape, many of which are 

characterized by the activation of a single community. Interestingly, different ROIs show 

different patterns of membership to these single community states. Visual, attention, 

sensorimotor, and subcortical ROIs tend to form a single functional community (Class-I). 

The remaining ROIs form the putative executive control network (Class-II) and the putative 

default mode and salience network (Class-III). To further study these dynamics, we modeled 

the transitions of single community states over the landscape of the states’s energy via a 

random walk process. Our numerical simulations of basin transitions using an MCMC 

random walk predict empirical frequencies and probabilities of state transitions with high 

fidelity for Class-I and Class-III ROIs, and with lower fidelity for executive control (Class-

II) ROIs. In addition, empirically the executive control ROIs also display higher entropy 

energy landscapes, linking diverse state classes, and utilizing uniform transition probabilities 

across basins. These features support the unique role of executive control regions in 

diversifying the brain’s dynamic functional repertoire across many cognitive processes via 

their rich and flexible dynamic functional fingerprint.

Results

Distillation of drivers of resting state dynamics

Maximum entropy models are optimally constructed to fit patterns of interactions between 

relatively few brain regions. We therefore sought to distill the drivers of resting state 

dynamics to a few well-chosen regions of interest. Specifically, in resting state fMRI data 

acquired from 20 healthy adult individuals in a multiband imaging sequence, we extract 10 

regions of interest in a data-driven fashion as centroids of independent components (see 

Methods). These regions include the cuneus, precuneus, precentral gyrus, caudate, right and 

left rostral middle frontal cortex, dorsomedial prefrontal cortex, medial orbitofrontal cortex, 

and pars triangularis (see Table 1). We use these regions as proxies of their respective 

cognitive systems, spanning visual, dorsal attention, sensorimotor, basal ganglia, executive 

control, dorsomedial prefrontal cortex, default mode, and salience systems, respectively. For 

explicit maps of each independent component, and the representative region chosen, see SI3.

Maximum entropy model of network states

Our goal is to understand how the brain transitions between network states. We focus our 

attention on the transitions characterized by changes in the community structure of the 

network, or the organization of putative functional modules. This focus is motivated by a 

growing literature demonstrating (i) the presence of network communities at rest, which map 

on to known cognitive systems (Salvador et al., 2005; Meunier et al., 2009; Power et al., 

2011; Yeo et al., 2011), and (ii) changes in the integration or segregation of these 
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communities during task performance (Bassett et al., 2011, 2013b, 2015; Cole et al., 2014; 

Braun et al., 2015). Based on these emerging lines of research, we define network states 

based on regions’ congruent community allegiance. Specifically, we fit a MEM to the 

binarized community allegiance probability of region i where (i = 1, 2, …, N) with the other 

9 ROIs. This approach assesses the community-based interactions between a single ROI and 

all others, thus significantly reducing the space of possible states from the total number of 

partitions of an n-element set (the Bell number 115975) to only 2N−1 (=512) local single 

community states, and thereby increasing model accuracy (Grimaldi, 2006).

In SI1 we discuss the goodness of fit of the model in detail. Briefly, we observe that the 

pairwise MEM offers a statistically supported model of observed dynamics, as it accounts 

for ≈70% of the entropy that is not captured by the first-order model. Interestingly, the 

accuracy of the pairwise MEM plateaus as a function of the amount of data (i.e., the number 

of subjects) used to fit the model.

Local minima in the brain’s functional energy landscape

After fitting the MEM to regional congruence in community allegiance across all subjects, 

we characterized the resultant energy landscapes of all ROIs. We identified 3–5 local 

minima states from the landscape of a single ROI, for a total of M = 25 unique local minima 

states across all ROIs. We note that each state represents the set of brain regions that are 

commonly allied together in a single community (see Fig. 2A). Because ROIs with strong 

functional interactions are expected to display congruent membership in local minima states, 

we performed hierarchical clustering on the pattern of ROI allegiance to local minima states. 

Interestingly, we observed that ROIs divided neatly into three separate classes. Class-I was 

composed of occipital, parietal, and subcortical ROIs in the visual, attention, sensorimotor, 

and basal ganglia systems. Class-II was composed of fronto-parietal, and frontal ROIs in the 

right and left executive control network and the rostral middle frontal systems. Finally, 

Class-III was composed of medial and opercular ROIs in the dorsal medial prefrontal, 

default mode, and salience systems.

Although we identified a total of 25 unique local minima states across all ROI landscapes, 

the majority of these states approximated single communities consisting largely of ROIs 

from one or two identified classes. For example as see in Fig. 2A, local minima states 1–3 

are characterized by congruent community allegiance of Class-II and Class-III ROIs. 

Hierarchical clustering of local minima states based on their similarity (as measured by the 

Hamming distance between the local minima states) underlines several groups of very 

similar local minima states, where each group is characterized by a few common ROIs. 

Interestingly, these results highlight the tendency of Class-I and Class-III ROIs to display 

incongruent (or dissimilar) community allegiance, whereas Class-II ROIs form communities 

with ROIs across both classes.

Basins surrounding local energy minima

In the previous section, we identified minima of the energy landscape underpinning module 

dynamics, and we further described the clustering of these minima states into groups with 

similar regional profiles of allegiance to dynamic modules. These minima were located at 
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the locally least-energetic position on the energy landscape. However, it is also intuitively of 

interest to study the group of states neighboring each local minimum since the shape of the 

surrounding low-energy basin effects the state transition dynamics over the basin. The brain 

states are expected to rapidly converge to the local minima in a smooth, steep, funnel-like 

basin, whereas over the larger rough basins the systems displays frustrated dynamics; i.e. it 

is difficult to reach local minima because of the large number of peaks and troughs. To study 

this larger group of states, we defined basin states of local minimum A to be any state from 

which one can travel down the steepest gradient of the energy landscape (using a steep 

search algorithm) to reach the local minimum A (see Methods for details). Using this 

definition, we estimated any basin’s size as the ratio of the number of basin states to the total 

number of possible states. Since the energy landscapes of the community allegiance states 

are estimated locally, the estimated landscape for each ROI naturally differs from all the 

other landscapes due to its reduced dimension (N−1). Therefore the size of the analogous 

basins of attraction can appear marginally different across ROIs. Importantly, this estimate 

of basin size is not the same as an estimate of basin depth. We observed that the largest basin 

– making up to >60% of the total state space of Class-I ROIs – surrounded minima state #17, 

which was characterized by congruent allegiance of visual, sensorimotor, basal ganglia, and 

attention systems (see Fig. 2B). The large size of this basin suggested that these systems had 

stronger than average intrinsic functional interactions, perhaps due to the ongoing visual 

flxation that is characteristic of the resting state with eyes open.

To better understand the anatomical drivers of observed module dynamics, we next studied 

which brain regions contributed most to basin states surrounding each minimum. To address 

this goal, we began by counting the number of times that each basin state appeared in a 

single region’s profile. Using this information, we defined for each ROI the number of basin 

states seen by that ROI as a fraction of the total number of possible states. In other words, 

associated with each ROI was a vector that represented the fraction of its states that were 

identified in the basin of each of the minima states. Interestingly, the identified classes of 

ROIs seemed to show similar profiles, as measured by a Pearson correlation coefficient 

between any two ROIs’ vectors (see Fig. 2C). Moreover, with the exception of a few states 

(e.g., states 7 and 8), the ROIs from the same class appear with the same frequency between 

different basin states; in Fig. 2D, this effect is evident through the comparable average 

allegiance values of ROIs from the same class.

To understand how local minima states with large basin sizes effect the state transition 

dynamics, we calculated the dwell time of each ROI in a given basin. Intuitively, a dwell 

time is the length of time in which an ROI remains in a given local minima’s basin. We 

observed that the size of the basin was positively related to dwell time within the basin (see 

Fig. 2E). We note that on average the dwell time of each basin is only a few seconds (< 10 

secs), except for state #17 which displays twice the average dwell time (21.46 secs) although 

the variance is large (std = 31.41 secs). In addition, Supplementary figures SI1–2 also reveal 

the relatively rough surface of the state #17 basin, marked by the presence of several 

prominent peaks and troughs. Together these results suggest that close functional 

relationships between ROIs (especially between Class-I ROIs) promotes frustrated dynamics 

over large basins, marked by coherent activity in Class-I ROIs.
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The frequency of transitioning between basins

After identifying local minima states and the times spent dwelling within their basin, we 

next turned to examining the frequencies with which the brain transitioned between single 

community states to estimate an ROI’s transition profile. Because each time point of the 

subjects’ dataset is often associated with two or more single community states, we estimated 

the frequency of transitioning from one basin to another, separately for each ROI’s energy 

landscape (see Fig. 3). Specifically, after establishing the dynamic functional community 

organization and the local community allegiance states from the empirical data, we 

identified the basins that each state belongs to. Next for each ROI, the empirical basin 

transition frequency from basin A to B was calculated as the number of state transitions 

from basin states A to B across the scan, and the empirical basin transition probability was 

determined by normalizing the transition frequencies: dividing by the total number of 

transitions from A to all basins. Importantly, we refer to this quantity as the basin transition 

probability, rather than the probability of transitioning between local minima states, because 

the measure counts transitions between peripheral areas of basins, rather than only counting 

transitions from basin centers. For Class-I ROIs that include occipital, parietal, and 

subcortical areas in the visual, attention, sensorimotor, and basal ganglia systems, we 

observed that the basin of minima state #17 (characterized by the largest basin size and by 

congruent allegiance of visual, sensorimotor, basal ganglia, and attention systems) was also 

the most frequently visited basin. These results once again highlight the strength of this 

attractor state, which in turn echoes the close functional interactions between Class-I ROIs. 

For Class-II ROIs including fronto-parietal and frontal areas in the right and left executive 

control network and the rostral middle frontal systems, we observed a more uniform 

distribution of transition frequencies between basins. This more uniform transition 

probability architecture is also characteristic of Class-III ROIs, which are composed of 

medial and opercular areas in the dorsal medial prefrontal, default mode, and salience 

systems.

To have a better understanding of the fluidity of the state transitions for each ROI, we 

measured the level of unpredictability (i.e., entropy) of each ROI’s community allegiance 

states. We calculated the entropy of allegiance state probabilities for each ROI separately. 

The significantly higher entropy of the Class-II ROI landscapes (p < 0.01 bootstrap) 

provides converging evidence of the highly dynamic community organization of ECN ROIs 

where their single community states more fluidly transition between local minima state 

basins as highlighted in Fig. 3 (right).

Next, we asked whether we could use the maximum entropy model results to predict the 

empirically observed transition frequencies, as a confirmation of the modeling framework. 

To derive theoretically expected transition frequencies, we simulated the transition dynamics 

between basins using a Markov Chain Monte Carlo (MCMC) method over the energy 

landscape of each ROI using the Metropolis-Hastings algorithm (see Methods for details). A 

secondary benefit of this approach was that it allowed us to identify groups of brain regions 

whose module dynamics were not well-predicted by a random walk model, and therefore 

might require consideration of more highly constrained walk dynamics. In general, we 

observed that simulated and empirical transition frequencies were positively correlated with 
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one another (average slope β = 1.09, p < 0.0002 except LECN for which p = 0.02), offering 

initial validation of the MEM approach. Interestingly, however, this relationship displayed 

differential strength across the three classes of ROIs (see as Fig. 4A and SI2 for more 

details), indicating that some transition frequencies were less well characterized by pairwise 

interactions (the assumption of the MEM) and/or by random walks across the underlying 

energy landscape (the assumption of the MCMC). In particular, Class-I ROIs showed the 

strongest relationships between the simulated and empirical transition frequencies; Class-III 

ROIs showed significant but weaker correlations and Class-II in general showed 

insignificant correlations after FDR correction for multiple comparisons. In the earlier MEM 

analysis, the functional activity of Class-II ROIs were well fit, yet the transition frequencies 

here find low similarity between the model and empirical data. This suggests that a simple 

random walk model fails to capture the state transition behavior of putative areas in the 

executive control networks, which form the bulk of Class-II ROIs.

Finally, we asked whether the empirical transition frequencies could be predicted by simpler 

statistics drawn from the maximum entropy model (and associated energy landscape) and 

not requiring the full MCMC modeling approach. In general, we observe a positive 

relationship between the size of a basin and the transition frequency of that basin: the brain 

tends to transition into and out of large basins. This effect is strongest in Class-I and Class-

III ROIs, and weaker for Class-II ROIs (Fig. 4B). Intuitively, while the basin size is likely to 

be a strong predictor of transition frequency, another important consideration lies in the 

energy barriers between basins. That is, are two basins separated by a low hill or by a high 

mountain on the energy landscape? To clarify the relative predictive power of basin size 

versus barriers between basins, we estimated the energy barrier between pairs of basins by 

identifying saddle nodes on the energy landscape (see Methods). Importantly, we could 

estimate these barriers either by considering symmetric transition frequency estimates 

(averaging both transitions into and out of a state), or by considering the full transition 

frequency matrix with small asymmetries. We did not observe any consistent trend linking 

the size of the energy barrier and the empirically observed transition frequencies (Fig. 4C), 

particularly in the case of the asymmetric estimates (Fig. 4D). These results suggest that 

module dynamics are best explained by basin size rather than by barriers between basins.

Non-stationarity of BOLD FC timeseries

In this study we assume that statistical interdependence between regions is a reflection of 

their functional connectivity, and that the fluctuations in FC (or dynamic FC) are a true 

reflection of changes in the underlying functional relationships between brain regions. 

However it possible that these changes are in fact only artifactual (e.g. noise) and the true 

underlying FC process is a non-stationary one. Several studies have proposed statistical 

approaches to test for the presence of non-stationarity, including the assessment of the 

variance of the FC time series (Sakoğlu et al., 2010), test statistics based on the FC time 

series’ Fourier-transform (Handwerker et al., 2012), linear (e.g., variance of correlation 

series (Hindriks et al., 2016)) and nonlinear test statistics (Zalesky et al., 2014), among 

others (Chang and Glover, 2010; Keilholz et al., 2013; Laumann et al., 2016). The bulk of 

the evidence points to the non-stationary nature of BOLD FC, a conclusion that is consistent 

with recent work suggesting that non-stationarity in BOLD functional connectivity reflects 
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changes in ongoing cognitive processes supporting learning, working memory function, 

linguistic processing, and executive function (Bassett et al., 2011; Braun et al., 2015; Chai et 

al., 2016, 2017; Hutchison et al., 2013a). Nonetheless, some of these reports are 

inconclusive, mainly because test statistics are commonly compared against that of null 

(stationary) time series and creating such time series with matching covariance structure, 

spectral properties, and stationary FC to this day remains a challenge (Hindriks et al., 2016).

Here we explored an alternative approach to answer this question, namely by comparing the 

estimated interaction matrices from the original data to that of an appropriate null model. 

Specifically, we created surrogate time series with preserved covariance structure using the 

method proposed by (Laumann et al., 2016), which builds the time series from stationary 

white noise while matching the covariance structure and spectral profile of the empirical 

data. Next, we estimated the energy landscape of the community allegiance states from the 

surrogate data. In Fig. 5B, we display estimated local minima states of this surrogate data as 

well as the corresponding size of their basins, and the basin similarity correlation matrix. 

Visually, we can note that these results look quite different from the estimated empirical 

results reported in the manuscript. To statistically test this observation, we performed a non-

parametric statistical test (bootstrap N = 600) to measure (i) the correlations between the Jij 

interaction matrices (all possible pairs) estimated from the null time series, and (ii) the 

correlations between the Jij interaction matrices estimated from a single set of null time 

series and that of the true data. We observed that the Jij interaction matrices derived from 

separate sets of null time series were significantly (p ≈ 0) more similar to one another than 

Jij interaction matrices derived from the true time series (Fig. 6).

The observed dissimilarity between the Jij matrices estimated from the null and empirical 

time series suggests that there are fundamental differences in the null and empirical energy 

landscapes. This suggestion is supported by additional tests examining simple summary 

statistics including state existence, basin size, and basin dwell time. First, we observe that 6 

out of the 25 local minima states identified from the BOLD time series are present less than 

expected (one–tailed, p < 0.05, N = 1046 iterations) in the null energy landscapes (Fig. 7A). 

Importantly, minima states 14 and 15 are significant at an α = 0.05, with an FDR correction 

for multiple comparisons (see Fig. 7A); they also remain significant after a stricter 

Bonferroni correction. Second, we observe significant (one–tailed, p < 0.05, N = 1046 

iterations) changes in the dwell times as well as in the basin size of several local minima 

states (Fig. 7B–C). Minima states 9 and 13 in Fig. 7B and minima state 9 in Fig. 7C are also 

significant at an α = 0.05, with an FDR correction for multiple comparisons; they also 

remain significant after a stricter Bonferroni correction. These data support the notion that 

the null and empirical energy landscapes are fundamentally different from one another.

It is worth noting that the presence of fluctuations in FC and the presence of functional 

states are not definitive signs of non-stationarity in the underlying process. In fact, a weak-

sense stationary process, such as a stationary stochastic Markov process, can display 

dynamic FC and state transitions over short timescales, while appearing stationary when 

studied over long timescales (Liegeois et al., 2017). Therefore, when testing for stationarity 

of a given timeseries, it is advised to create a null with properties such as linearity and 

Gaussianity that are analogous to the original timeseries. Here we demonstrated that 
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empirical interactions estimated using a pairwise MEM were significantly different than 

those observed in a null with matching covariance structure and spectral profile (Laumann et 

al., 2016). These differences are consistent with the presence of non-stationarity in the 

empirical data, but they could also be explained by differences in linearity and Gaussianity 

of the null model. Further work is necessary to determine whether the empirical time series 

are in a weak sense stationary or indeed non-stationary.

Discussion

In this work we aimed to characterize the dynamic organization of large-scale brain 

networks and to provide a probabilistic model of the manner in which the brain transitions 

between large-scale functional states. Drawing on recent work demonstrating the 

fundamental nature of modular organization in large-scale functional dynamics (Sporns and 

Betzel, 2016), we defined these states via local patterns of brain regions’ allegiance to 

network communities (Bassett et al., 2015). We utilized the maximum entropy model 

(MEM) framework to estimate the probability of occurrence of these states as well as each 

ROI’s co-occurrence with another ROI in the same community. We introduced a novel 

definition of brain state that allowed us to uncover functional modules that drive large-scale 

brain functional dynamics. In addition, we studied the inter-ICN relationship while prior 

work mainly focused on the intra-ICN landscape. Our results highlight the existence of three 

classes of ROIs with similar functional relationships. Visual, attention, sensorimotor, and 

subcortical ROIs tend to form a single functional community (Class-I). The remaining ROIs 

form the putative executive control network (Class-II) and the putative default mode and 

salience network (Class-III). In addition to identifying these distinct classes of ROIs that 

display inherently different dynamics within putative functional modules, we also studied 

the probabilities and frequencies with which the brain transitioned from one pattern of 

functional modules to another pattern of functional modules. By modeling basin transitions 

using an MCMC random walk, we predicted empirical probabilities of state transitions with 

high fidelity for Class-I and Class-III ROIs, and with lower fidelity for executive control 

(Class-II) ROIs. Interestingly, executive control ROIs also displayed higher entropy energy 

landscapes, linking diverse state classes, and utilizing uniform transition probabilities across 

basins, consistent with their unique role in diversifying the brain’s dynamic functional 

repertoire. More generally, the relatively good fit of the MEM suggests that the complex 

patterns of network module dynamics can be described simply by pairwise interactions 

between regional allegiances to communities. In contrast to the widespread interest in 

network statistics, our results provide the critical first steps towards a probabilistic model of 

brain networks dynamics.

Model-based versus data-driven approaches to studying dynamic functional connectivity

One of our fundamental aims in performing this work was to understand the dynamic 

functional interactions between large-scale brain networks driven by underlying 

neurophysiological processes at smaller spatial scales (Logothetis, 2008). While many 

empirical and data-driven approaches are currently being developed and utilized (Hutchison 

et al., 2013b), model-based approaches comprise a relatively smaller literature largely 

including efforts in the Virtual Brain (Roy et al., 2014) and dynamic causal modeling 
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(Stephan and Roebroeck, 2012) communities. Development of such approaches is 

imperative to our understanding of the role that network dynamics play in attention (Kucyi et 

al., 2016), learning (Bassett et al., 2015), language (Doron et al., 2012b), and memory 

(Braun et al., 2015), and their evolution through development (Chai et al., 2017) or alteration 

in psychiatric disease (Siebenhuhner et al., 2013; Weiss et al., 2011; Du et al., 2016; Yu et 

al., 2015) and neurological disorders (Khambhati et al., 2015; Burns et al., 2014). Here we 

build on a maximum entropy based modeling framework that has been previously utilized in 

the context of functional activation profiles (rather than functional connectivity profiles) 

(Watanabe et al., 2013, 2014b, 2014c). We adapt this approach to study the functional 

energy landscape of network states and their associated attractor state dynamics. Functional 

brain states are defined based on regional allegiance to dynamic functional communities, 

providing insight into the physiological patterns of synchronization between groups of brain 

regions. This model-based approach revealed notable reductions in the distance (≈70%) 

between the estimated and empirical distributions of patterns of ICN functional modules 

from resting state data by considering interactions between all pairs of regions. Therefore, 

the pairwise MEM suggests that the observed patterns of BOLD-derived ICNs dynamic 

functional communities are partly due to their intrinsic tendency to synchronize with one 

another, likely across known structural connections (Watanabe et al., 2013).

Attractor communities in dynamic brain networks

Our modeling framework is explicitly based on the role that single regions play in the meso-

scale organization of dynamic communities. We fit a maximum entropy model to each ROI’s 

time series of co-occurrence with another ROI in the same community. This approach 

enables us to identify the dynamic functional roles that different ROIs play in network state 

dynamics. When combining information from all ROIs, this approach identifies network 

states that form local energy minima or in essence single community attractors. Indeed, 

while each region displays a distinct profile of activation across the energy minima, several 

groups of regions also show similarities in their activation profiles. We refer to these groups 

as classes, and observe that each single community attractor tended to contain all members 

of one or two ROI classes: Class-II ROIs (largely comprising executive control regions) 

coupled with Class-I or Class-III ROIs, whereas Class-I and Class-III ROIs coupled 

infrequently. This observation suggests that regions in the executive control network play 

unique roles in meso-scale functional dynamics (Andrews-Hanna et al., 2014), forming 

transient control hubs that can guide interactions between large-scale functional networks 

(Mattar et al., 2015; Bassett et al., 2015; Braun et al., 2015; Cole et al., 2013).

Dimensionality of mesoscale brain dynamics

Any assessment of brain states is faced with the question of “So, how many are there?” Most 

prior studies suggests that brain dynamics can be distilled into between 4 and 7 states at the 

coarsest level of inquiry (Allen et al., 2012; Britz et al., 2010; Khanna et al., 2015; Shirer et 

al., 2012b). Yet, evidence from electrophysiology points to the presence of so-called 

microstates, of which there may be many more and which can last for very short periods of 

time (Khanna et al., 2015; Vakorin et al., 2011). The repertoire of states available to the 

brain is therefore arguably more accurately characterized as a hierarchy, with a few coarse 

states composed of multiple levels of more transient (temporally localized) and focal 
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(spatially localized) states. This complex organization requires computational and data-

science approaches (Turk-Browne, 2013) such as the one that we develop in this work. Here, 

we uncover 25 states, as defined by local minima in the energy landscape of module 

dynamics during the resting state, and the fact that basin size is positively correlated with 

transition probability and with transition frequency indicates that the landscape tends to be 

dominated by large basins. Once the brain transitions out of the large basin, there is a much 

higher probability that the system will transition back to the large basin than to a small 

basin. Each state is characterized by a distinct pattern of module allegiance embodied by 

different brain regions. The identification of these states offers a complementary view to that 

provided by prior work, which has described changes in module allegiance of brain regions 

over time (Bassett et al., 2011, 2013b, 2015; Braun et al., 2015; Mattar et al., 2015) and 

speculated on the cognitive drivers of these changes as regions critical for domain-general 

processing (Fedorenko and Thompson-Schill, 2014b), associative processing (Bassett et al., 

2013b), cognitive control (Bassett et al., 2015), and cognitive flexibility (Braun et al., 2015). 

While regional roles are important, the states themselves may also offer insights into what 

cognitive processes are occurring, either in parallel or in series (Mattar et al., 2015). It would 

be interesting in future work to manipulate cognitive processes via task performance and 

determine the direct relationship between local minima states and mental states (Andrews-

Hanna et al., 2014; Kucyi et al., 2016; Betzel et al., 2016b; Gu et al., 2017).

Cognitive control, flexibility, and task-switching

Executive control networks in fronto-parietal cortices play a unique role in the pattern of 

results that we uncover here. Executive ROIs display states of module allegiance that are 

unlike the states displayed by other brain areas. Moreover, our results suggest that the brain 

transitions in and out of these states in a manner that is not as well-fit by an MCMC random 

walk on the observed energy landscape, suggesting a peculiar complexity of dynamics. 

Interestingly, executive ROIs also display higher entropy energy landscapes, link diverse 

state classes, and utilize uniform transition probabilities across basins. These findings are 

particularly interesting when viewed in the context of executive control function, and its 

instantiation in brain network architecture. Executive function supports the ability to link 

information to solve problems, inhibit inappropriate behaviors, and transition between tasks 

and states (Royall et al., 2002). Recent work suggests that these capabilities occur via 

dynamic interactions between large-scale neural circuits (Dajani and Uddin, 2015; Cole et 

al., 2013), often taking the form of competitive or cooperative dynamics (Cocchi et al., 

2013) between putative functional modules (Mattar et al., 2015). Indeed, recent evidence 

points to fronto-parietal cortices as hubs of flexible modular reconfiguration during task 

states (Bassett et al., 2013b), that are directly correlated with individual differences in 

learning (Bassett et al., 2011, 2015), memory (Braun et al., 2015), and cognitive flexibility 

(Braun et al., 2015). Our current results complement these findings by suggesting that the 

baseline functional architecture of executive regions supports their role during task 

performance: (i) the high entropy energy landscapes of these regions can support highly 

transiently dynamics, and (ii) the uniform transition probabilities can support the integration 

(cooperative) and segregation (competitive) of many other cognitive systems. It is interesting 

to speculate that these unique features of executive region dynamics observed at rest may in 
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part be driven by white matter microstructure, consistent with recent evidence pointing 

towards a structural driver of executive function (Gu et al., 2015).

Methodological considerations

For computational reasons, we have reduced the dimensionality of the data in two ways. 

First, we chose a small number of ROIs (n = 10) whose time series offer a reasonable 

representation of the resting state networks from which they are derived (see Methods). 

However, because of this down-sampling procedure, we are not sensitive to dynamic 

fluctuations within a network. Future work using larger datasets could explore whether 

higher order ICA decompositions offer additional insights into finer-scale dynamics 

underlying the functional hierarchy that we observe here. Second, we fit the MEM to each 

ROI’s community allegiance time series, rather than to all ROI pairs’ allegiance at the same 

time. Future work could aim to develop novel optimization-based methods to characterize 

the energy landscape of the global structure.

Here in the main manuscript, we present the results based on ROI time series to maximize 

interpretability and anatomical specificity of claims. Yet, a single estimated time series 

cannot exactly capture the activity of an entire network. To address this limitation, it is 

useful to consider the utility of examining the back-projection of the component itself. In the 

supplementary section entitled ‘Energy Landscape of ICA Components’, we examine the 

ICA back-reconstructed time series and observe results that are consistent with those we 

obtained from the ROI time series.

Moreover, recent work has demonstrated that dynamic FC displays significant covariance 

with head motion after standard motion correction (Burgess et al., 2016). Therefore it is 

critical to understand the robustness of the reported results to any residual noise. The 

converging results from the ROI-based and ICA back-reconstructed time series (presented in 

SI-5) suggest that any residual effect of head motion does not simply explain the results and 

interpretations provided in this paper.

A distinct set of important methodological considerations relates to the dynamic community 

structure that we estimate as the input to the regional MEMs. We estimate dynamic 

community structure using a modularity maximization approach (Lancichinetti and 

Fortunato, 2011), which has an implicit structural resolution parameter that can be used to 

tune the number of communities. Following prior work, we employ the default parameter 

value of unity (Bassett et al., 2013a), and it would be interesting in future to study the 

changes in energy landscapes that occur at different spatial and temporal scales (Mucha et 

al., 2010). Moreover, following the extraction of dynamic community structure, we binarize 

the pair-wise allegiance probabilities, necessarily losing sensitivity to fine-scale network 

perturbations of nodes that are loosely associated with a single community. However, since 

we mainly focus on the most robust attractor communities, the computational benefits of the 

reduced state space following binarization outweighs the cost associated with this lack of 

sensitivity.

It is important to note that while we apply the maximum entropy model to study the 

relationships between functional connections estimated with a Pearson correlation, the 
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results do not address the question of whether higher-order (>2nd) interactions exist in 

functional brain networks. This question requires a different statistical approach, such as 

explicitly fitting higher-order MEMs to activity time series rather than functional 

connections. Prior work on this question has suggested that while there may be a few higher-

order relationships (Ganmor et al., 2011), most of the variance in neurophysiological activity 

can be accounted for by pairwise MEMs both at the level of BOLD (Watanabe et al., 2013) 

and at the level of neuronal activity (Schneidman et al., 2006).

We performed an additional test to assess the likely affect of head motion on the modeled 

dynamics. We examined the Spearman correlation coefficient between the mean framewise 

displacement and the total basin transition frequency between all pairs of basins, assessed 

over subjects. We observed no statistically significant relationship between total basin 

transition frequency and mean framewise displacement, either when considering all sessions 

for all subjects, or when considering across-session averages (all p > 0.05, FDR corrected 

for multiple comparisons across regions). These data suggest that the frame-wise 

displacement is a poor predictor of basin transition dynamics.

Conclusions and future directions

Here we present a viable probabilistic model of dynamic reconfiguration in functional brain 

networks estimated from resting state fMRI. By representing a brain state as a pattern of 

functional interactions between brain regions, we reveal structured transitions between a 

finite number of brain states that act as basins of attraction. Critically, each basin is 

characterized by a specific set of functional modules: groups of brain areas that display 

coherent BOLD time series. By characterizing the energy landscape surrounding these 

basins, we accurately predict the manner in which the brain transitions between states, and 

we uncover novel markers of the functional role that executive regions play in guiding these 

transitions. These efforts lay the groundwork for empirical investigations into how these 

energy landscapes change during task performance, over normative neurodevelopment, 

throughout healthy aging, or in the context of psychiatric disease or neurological disorders. 

Moreover, they lay important theoretical groundwork in the critical development of 

probabilistic models of brain network dynamics subserving cognitive function.

Methods

Participants

Twenty participants (nine female; ages 19–53 years; mean age = 26.7 years) with normal or 

corrected vision and no history of neurological disease or psychiatric disorders were 

recruited for this experiment. All participants volunteered and provided informed consent in 

writing in accordance with the guidelines of the Institutional Review Board of the University 

of Pennsylvania (IRB #801929).

Human fMRI Data collection

Magnetic resonance images were obtained at the Hospital of the University of Pennsylvania 

using a 3.0 T Siemens Trio MRI scanner equipped with a 32-channel head coil. T1-weighted 

structural images of the whole brain were acquired on the first scan session using a three-
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dimensional magnetization-prepared rapid acquisition gradient echo pulse sequence 

(repetition time (TR) 1620 ms; echo time (TE) 3.09 ms; inversion time 950 ms; voxel size 1 

mm × 1 mm × 1 mm; matrix size 190 × 263 × 165). A field map was also acquired at each 

scan session (TR 1200 ms; TE1 4.06 ms; TE2 6.52 ms; flip angle 60°; voxel size 3.4 mm × 

3.4 mm × 4.0 mm; field of view 220 mm; matrix size 64 × 64 × 52) to correct geometric 

distortion caused by magnetic field inhomogeneity. In all experimental runs with a 

behavioral task, T2*-weighted images sensitive to blood oxygenation level-dependent 

contrasts were acquired using a slice accelerated multiband echo planar pulse sequence (TR 

2000 ms; TE 25 ms; flip angle 60°; voxel size 1.5 mm × 1.5 mm × 1.5 mm; field of view 

192 mm; matrix size 128 × 128 × 80). In all resting state runs, T2*-weighted images 

sensitive to blood oxygenation level-dependent contrasts were acquired using a slice 

accelerated multiband echo planar pulse sequence (TR 500 ms; TE 30 ms; flip angle 30°; 

voxel size 3.0 mm × 3.0 mm × 3.0 mm; field of view 192 mm; matrix size 64 × 64 × 48).

fMRI Preprocessing

We preprocessed the resting state fMRI data using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL (FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl. 

Specifically, we applied: EPI distortion correction using FUGUE (Jenkinson, 2004); motion 

correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using Fourier-

space timeseries phase-shifting; non-brain removal using BET (Smith, 2002); grand-mean 

intensity normalization of the entire 4D dataset by a single multiplicative factor; highpass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 50.0 

s). Our sample had an average relative framewise displacement of 0.047 mm (standard 

deviation of 0. 015 mm).

Nuisance timeseries were voxelwise regressed from the preprocessed data. Nuisance 

regressors included (i) three translation (X, Y, Z) and three rotation (Pitch, Yaw, Roll) 

timeseries derived by retrospective head motion correction (R = [X, Y, Z, pitch, yaw, roll]), 

together with expansion terms ([ ]), for a total of 24 motion regressors 

(Friston et al., 1996)); (ii) the five first principal components calculated from timeseries 

derived from regions of non-interest (white matter and cerebrospinal fluid), using the 

anatomical CompCor method (aCompCor) (Behzadi et al., 2007) and (iii) the average signal 

derived from white matter voxels located within a 15 mm radius from each voxel, following 

the ANATICOR method (Jo et al., 2010). Global signal was not regressed out of voxel time 

series (Murphy et al., 2009; Saad et al., 2012; Chai et al., 2012). Finally, the mean functional 

image and the 125-scale Lausanne parcellation template (Cammoun et al., 2012a) were 

coregistered using Statistical Parametric Mapping software (SPM12; Wellcome Department 

of Imaging Neuroscience, http://www.fil.ion.ucl.ac.uk/spm in order to extract ROIs’ mean 

timeseries.

ICA-informed identification of regions of interest

We used group-ICA (GIFT toolbox (Calhoun et al., 2001)) to identify ten large-scale 

intrinsic connectivity networks (ICN) characteristic of the resting state. Computational 

considerations preclude us from studying a larger number of networks in the context of the 

maximum entropy model approach. Next, we identified the regions of interest (ROIs) by 
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choosing the ROI from a commonly used anatomical atlas (the 125 scale Lausanne 

parcellation (Cammoun et al., 2012b)) in which we observed the maximum weighting of an 

ICA component. A list of identified ICNs and their corresponding Lausanne atlas ROI are 

provided in Table 1. In Supplementary Fig. SI5, we also discuss the effect of anatomical 

versus functional parcellation methods on our results.

For computational reasons which we will discuss in more details shortly, we only included 

ROIs from the left hemisphere for the majority of components. The one exception to this 

rule was the right executive control network (RECN). Prior work has demonstrated that the 

putative fronto-parietal executive control network is identified as two bilateral ICNs (Shirer 

et al., 2012a; Laird et al., 2011), which separately play critical roles in executive function 

through their dynamical interactions with the DMN and attention systems (Andrews-Hanna 

et al., 2014; Menon and Uddin, 2010). Thus we included time series from both the right and 

left executive control networks in all following analysis.

A note on statistics and computational considerations

The fit of the maximum entropy model to small datasets can be subject to a sampling bias. 

More exactly, the estimation of the entropy suffers severely from downward bias (Treves and 

Panzeri, 1995) such that the estimated entropy from the observations is lower than the actual 

entropy of the underlying model (Macke et al., 2011). Ultimately the amount of data needed 

to accurately fit the model is exponential to the number of ROIs. Therefore even a small 

number of ROIs (on the order of ten) requires access to extremely large datasets. This issue 

of computational complexity is especially critical for fMRI data where the slow sampling 

rate prohibits collection of individual subject data with a large number of observations. 

Consequently, in this manuscript we focus on group concatenated multiband data (with a 

quarter-second TR) and do not discuss results from individual subjects. In Supplementary 

Figure SI1, we briefly discuss the model fit at the subject- and group-level where we 

demonstrate that the goodness of fit and accuracy of the model drops considerably when 

considering individual subjects as opposed to the group.

The total number of partitions of an n-element set is the Bell number nBn (Grimaldi, 2006). 

In combinatorial mathematics, the Bell numbers count the number of partitions of a set. 

Thus the total number of possible community states of the 10 ROIs equals 115975. To 

accurately model this large number of states would require a large amount of data. However, 

local analysis (through the lens of a single ROI) of congruent community allegiance deals 

with a much smaller state space of 2N−1(=512). At this level, it is computationally feasible to 

fit a MEM with a relatively large multiband fMRI dataset such as the one we use here.

It is worth noting that ICA assumes the BOLD data can be linearly decomposed into several 

spatially independent sources and the activation of each voxel is a mixture of all the ICA 

sources with varying contribution to each component. Therefore in order to find an ROI 

within the component that is least diluted with other sources and represents the estimated 

ICA time series, we need to pick the ROI with the highest contribution to each component. 

In fact our complementary analysis (SI5) of the energy landscape of the ICA time series 

shows the close similarity between the results, which provides additional verification that the 

chosen ROI correctly represents the estimated signal sources. Nevertheless as shown 
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recently by Watanabe et al. (2013), the resting state networks such as the DMN and 

executive control network also contain several basins of attractions of their own. Therefore 

we expect to see the reported landscape change if we choose ROIs other than the peak voxel, 

and these landscapes will be less representative of the average large-scale dynamics. To 

support this assumption, we have estimated the energy landscape of a randomly chosen set 

of ROIs from each ICA component. The results are presented in Fig. 11. B, where we 

observe that the energy landscape differs from that characteristic of the ROIs most highly 

contributing to the independent component. Therefore, choosing ROIs other than the peak 

ROI will alter the results, either due to mixing of sources or due to the true internal state 

space dynamics. Our choice to use the ROI with the highest contribution to the component 

ensures that our results are most representative of the average state dynamics, but finer-scale 

state dynamics could be explored by choosing ROIs that are not the highest contributors to 

the ICs.

Functional network construction

Following prior work (Bassett et al., 2011), we estimated the dynamic functional 

connectivity between all pairs of ROIs using wavelet coherence (WTC (Grinsted et al., 

2004)). In Supplementary SI4 Fig. 1, we show that we observe two distinct bands of high 

WTC: 0.64–0.2 Hz and 0.19–0.06 Hz. In the main manuscript, we focus on the 0.19–0.06 

Hz band due to known sensitivity to underlying neural activity, and we relegate discussion of 

the higher frequency band to the Supplement. WTC amplitudes were averaged over all 

frequencies within the selected band to construct the timecourse of the bandpassed WTC for 

each pair of ROIs resulting in a total of T (= 1190 (TRs) × 20 (subjects) × 4 (runs) = 95200) 

unique functional connectivity patterns, which we represent in N × N adjacency matrices A 
(see Fig. 8).

Community detection and module allegiance estimation

In the maximum entropy framework, it is critical that data points are as temporally distinct 

from one another as possible. In the context of our study, this requires that we reduce the 

dependence of community structure in the neighboring time slices. To do so, we identified 

the community structure (Fortunato, 2010; Porter et al., 2009) of the each time slice 

adjacency matrix independently using a Louvain-like (Blondel et al., 2008) locally greedy 

heuristic algorithm to maximize the modularity quality function (Newman, 2006) with a 

structural resolution parameter of γ = 1 (Bassett et al., 2013a). The method partitions ROIs 

into communities based on the optimization of the following function:

where A is a weighted adjacency matrix, ROI i and j are assigned respectively to community 

gi and gj, the Kronecker delta δ (gi, gj) = 1 if gi = gj (and zero otherwise), γ is the structural 

resolution parameter, and Pij is the expected weight of the edge between ROI i and j under 

some null model. We used the Newman-Girvan null model (Girvan and Newman, 2002)
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where ki = Σj Aij is the strength of ROI i and . Briefly, this method partitions 

the ROIs into groups such that the total connection strength within communities is more than 

expected in the null model.

Importantly, the algorithm we use is a heuristic that implements a non-deterministic 

optimization (Good et al., 2010). Consequently we repeated the optimization 100 times 

(Bassett et al., 2013a), and we report results summarized over those iterations by forming a 

module allegiance matrix (Bassett et al., 2015; Mattar et al., 2015).

The allegiance matrix for each time slice represented the probability that ROI i and j were 

assigned to the same community over all iterations of the community detection algorithm 

(Fig. 9). For use in the maximum entropy model, we binarized the allegiance matrix by 

subtracting a random null model allegiance matrix from the original allegiance matrix: 

elements in the binarized allegiance matrix were 1 when the true allegiance was greater than 

the null, and 0 otherwise (Bassett et al., 2013a). The null allegiance matrices were generated 

by shuffling the ROI community assignments for each individual time point uniformly at 

random (Fig. 10).

Maximum entropy model fitting

Here we hypothesize that the brain transitions between different functional community 

states. To obtain an unbiased estimate of these states and their probabilities, we fit a pair-

wise maximum entropy model. The principle of maximum entropy states that when 

estimating the probability distribution, given the constraints, one should find the distribution 

that maximizes the uncertainty (i.e., entropy). Choosing any other distribution that lowers 

the entropy would assume information that we do not possess; therefore the only reasonable 

distribution is the maximum entropy distribution. Fitting the MEM entails tuning the first 

and second-order interaction parameter between regions so that the predicted activation rates 

and co-activation rates match that of the empirically observed values. An accurate pair-wise 

MEM fit suggests that the observed dynamics of the communities can be simply explained 

as a combination of each region’s independent activation rate plus the regions’ joint 

activation rates. In other words, the MEM allows us to establish a model of brain functional 

dynamics as a probabilistic process shaped by intrinsic relationships between brain regions.

We fit the pairwise MEM to the binarized community allegiance of ROI pairs. To reduce the 

size of the state space and therefore ensure less error in our estimates, we fit the MEM to 

each row of the allegiance matrix independently for each ROI, effectively reducing the 

dimensionality to N−1 (= 9) and reducing the total number of possible congruent community 

membership states to 29 = 512. For ROI i at time t the congruent community membership 

state is defined as , where  is the binarized 

community allegiance of i and j at time point t (‘1’ for congruent community membership 

and ‘0’ otherwise), and N is the total number of ROIs (= 10). Because it is not possible to 
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directly compare the local community allegiance states due to the unmatched cardinality of 

the set of ROIs, we assume that the ROI being examined will always have an allegiance state 

of one. For ROI i the empirical congruent community membership rate of ROI j, 〈σj〉, is 

given by , where T is the number of time slices, which in this case is equal to the 

number of TRs. Likewise the empirical pairwise congruent community membership rate of 

ROIs j and l, 〈σj, σl〉, is defined as .

Here our only constraints were that the model 〈σj〉m and 〈σjσl〉m matched the empirical 

values of 〈σj〉 and 〈σjσl〉 respectively. It is known that given these constraints the probability 

distribution that maximizes the entropy is the Boltzman distribution (Jaynes, 1957)

(1)

where P (Vk) is the probability distribution of kth state Vk, and E (Vk) the energy of that 

state given by

(2)

where σj(Vk) is the value of σj for state Vk, hj represents the expected base allegiance of 

ROI j (with respect to ROI i) in isolation, and jjl represents the functional interaction 

between ROI j and l. Fitting the MEM entails iterative adjustment of hj and jjl with a 

gradient ascent algorithm (similar to (Watanabe et al., 2014c)) until the empirical 〈σj〉 and 

〈σjσl〉 values approximately match the model  and 

. In depth analysis of the goodness of MEM fits 

(provided in SI1), allows us to conclude that the pair-wise MEM can account for a large 

portion of the observed functional module dynamics. Nevertheless, higher-order and/or 

nonlinear interactions likely contribute to smaller yet non-negligible portions of the observed 

brain dynamics.

It is important to note that in our presented framework, the concept of energy is not a literal 

one, but is rather metaphorical. Indeed, we cannot yet claim that the calculations are related 

to biological notions of energy (e.g., ATP) or physical notions of energy (e.g., an exact 

Hamiltonian for BOLD fluctuations). Instead, we use the term because it is the technical 

term associated with the landscapes that can be extracted from a maximum entropy model, 

and is therefore a relevant function based on the region’s community allegiance that allows 

us to capture the observed spatial correlation patterns. It should be treated simply as a useful 

mathematical quantity.
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Defining an energy landscape

The energy landscape for each ROI is defined separately by the network of congruent 

community membership states Vk and their corresponding energy values E (Vk). In this 

landscape the adjacent states’ vectors are only one hamming distance apart, which means 

that all ROIs except one have the same binary values as in adjacent states’ vectors. 

(Watanabe et al., 2014a).

An interesting question to ask of this landscape is the location and nature of energy minima. 

To address this question, we exhaustively searched the entire landscape using a steep search 

algorithm to find the states with energies lower than all their neighboring states (i.e. local 

minima). Next in order to identify the states that belong to the basin of each local minima 

we first start at a given state Vk (one of the 2N−1(=29 = 512) possible states) and iteratively 

move to the neighboring state Vw in the landscape if E (Vw) < E (Vk). We continue tracing 

out this path until we reach a local minima state where no neighboring states exist with 

smaller energy values (similar to (Watanabe et al., 2014c, 2013)). We consider this final state 

Vk the basin state of the local minima. We also define the basin size of that local minima 

state as the fraction of the number of basin states to the total number of possible states.

We were next interested in understanding the predicted barriers between states. We 

estimated the energy barrier opposing the transition between all the local minima states in 

the following way. (1) We removed the state (node) with the highest energy from the energy 

landscape along with the edges connecting that state to its neighbors. (2) We assessed 

whether each pair of local minima were connected by a path in the reduced landscape. We 

repeated steps (1) and (2) until we found the saddle state where removing the highest energy 

node disconnects one or more local minima from the rest of the landscape. We continued 

this process until we obtained a reduced landscape where all of the local minima are isolated 

and we identified all saddle states. (3) We calculated the symmetric energy barrier (Zhou, 

2011) between all pairs of minima states as the minimum of [ES (Vk, Vw) − E (Vk), ES (Vk, 

Vw) − E (Vw)], where ES (Vk, Vw) is the energy of the saddle point between minima states 

Vk, Vw and E (Vk) and E (Vw) are the energies at these states, respectively. If the energy 

barrier between to minima states was high then the model predicts that the rate of transition 

between them is low, at least in one direction (Watanabe et al., 2013). We also calculated the 

asymmetric energy barrier between minima states Vk, Vw as ES (Vk, Vw) − E (Vk) and ES 

(Vk, Vw) − E (Vk), where the former indicated the Vk → Vw and the latter the Vw → Vk 

energy barriers. Overall, our results did not show any relationship between estimated energy 

barriers (symmetric and asymmetric) between local minima states and the empirical basin 

transition probabilities and frequencies. We speculate that the energy barrier mimics the 

basin transition probabilities only when the basins are smooth and funnel-like. We speculate 

that other unaccounted factors such as the shape of the basins may contribute more to the 

observed basin transition probabilities than the energy barriers between the basins.

Simulation of state transitions

To better understand the dynamic patterns of functional communities at rest, we simulated 

these dynamics as a random walk process over the estimated local energy landscapes using a 

Markov chain Monte Carlo with Metropolis-Hastings (MCMC) algorithm (Metropolis et al., 
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1953; Hastings, 1970; Zhou, 2011). In this model, local community allegiance state Vi is 

allowed an isometric transition to one of N − 1 neighboring state with uniform probability. 

Next the actual transition from Vi to Vj occurs with probability Pij = min [1, eE(Vi)−E(Vj)]. 

For each ROI, we repeated a 4 × 107 step (plus 34 initial steps) walk with randomly chosen 

initial states 24 times. Next, we removed the initial steps to ensure independence of results 

from the initial conditions and decreased the sampling rate by 500 to reduce the correlation 

between the samples. Since each state in the energy landscape belongs to the basin of a 

single local minima, we can construct a trajectory of local minima states’ basin transitions 

from the down-sampled state transitions patterns. Comparing the empirical and simulated 

basin transition probability and frequency patterns allows us to evaluate the resemblance of 

the proposed random walk model’s dynamics to that of the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of local community allegiance energy landscape estimation. (A) Fluctuations of 

the strength of functional connectivity between brain regions over time manifests as 

reconfiguration of the brain’s functional modules. (B) The state of the community allegiance 

of a single region (e.g., node A) with the rest of the brain regions (‘1’ when both pairs 

appear in the same community (yellow nodes) and ‘0’ otherwise (blue nodes)) are then used 

to establish local functional module allegiance states. (C) We fit a MEM using these 

allegiance state vectors and estimate the functional interaction strength between brain 

regions to construct an energy landscape of regional community allegiance states.
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Fig. 2. 
Local Minima in the Brain’s Functional Energy Landscape. (A) We identified M = 25 

unique local minima states characteristic of the time series of a region’s allegiance to 

putative functional modules over time. Here, each state represents the set of regions that are 

commonly allied together in a single community. Using hierarchical clustering, we identified 

three classes of ROIs with similar patterns of community allegiance across these local 

minima. Class-I (blue), Class-II (red), and Class-III (green) branches are shown in the 

dendrogram on the right side of the matrix and visualized on the brain images as ROIs. 

Using the same clustering technique applied to the matrix transpose, we identified several 

classes of minima states with common ROI members, denoted by the colored branches on 

the top of the matrix. ICN labels and their corresponding Lausanne atlas ROI are provided in 

Table 1. (B) In addition to identifying the unique minima states, for each ROI we also 

calculated the basin size of local minima states as the fraction of the number of basin states 

to the number of total possible states. Note that the sizes of the analogous basins slightly 

vary across some ROIs since each local energy landscape is estimated using only 9 out of the 

10 ROIs. (C) Calculating the Pearson correlation coefficient between any two ROIs’ vectors 

of basin size across minima states revealed groups of ROIs with similar energy landscapes. 

(D) The basin states’ average vectors highlight the unifying features of the basin states, i.e. 

omni-present core ROIs (average value 1), commonly present core ROIs (average value 

between 0.5 and 1) that tend to be among the minima states’ member ROIs, and finally the 
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ROIs with incongruent membership (average value <0.5). (E) The average dwell time of 

minima state’s basins (all ROIs combined) grows exponentially with respect to the basins’ 

size. The close exponential fit (red curve) highlights this relationship.
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Fig. 3. 
Empirically Estimated Transition Frequncies Between Basins. (A) The circular graph 

represents the empirical basin transition frequency pattern of a sample Class-II ROI 

representing the left hemisphere executive control network (LECN). Each color coded dot 

along the circumference of the circular graph represents one of the 25 local minima states. 

Lines linking local minima states indicate empirically estimated transition frequencies 

between local minima states’s basins; the width of the line is proportional to the empirically 

estimated frequency of that transition. The length of the lines and the width of the vertical 

colored bars contain no quantitative information and they serve only to enhance the 

visualization of the connected minima states. Transition frequencies are separately 

normalized for ROIs by dividing by the largest transition frequencies calculated for each 

ROI. All ICNs with community allegiance congruent with LECN (red overlay) are 

represented with yellow brain overlays (z > 1.5) for all 4 local minima states. (B) The 

empirical basin transition frequency pattern for two sample ROIs from Class-I (Visual) and 

Class-III (DMN). Note that unlike LECN, the basin transition frequency pattern of the visual 
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ROI is heavily skewed towards a single state (that is, state 17, which we describe in greater 

detail in the body of the text).
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Fig. 4. 
Empirical versus predicted frequencies of transitioning between basins. (A) We used a 

Markov Chain Monte Carlo (MCMC) simulation over the energy landscape of each ROI via 

the Metropolis-Hastings algorithm to estimate theoretically predicted frequencies of 

transitioning between basins of local community allegiance dynamics of ROIs. The 

normalized empirical and model transition frequencies were significantly correlated for 

Class-I(left) and Class-III (middle) ROIs but not for Class-II(right) ROIs. Colored dots 

represent values on the lower (red) and upper (blue) triangles of the transition matrices (See 

SI2 for details). The β-value represents the slop of the fitted line, the p-value represents the 

significance of the fit, and R2 represents the corrected R2 values for all of the regressions (B) 
We define the net empirical basin transition frequencies of minima states as the total in and 

out transition frequencies. These net frequencies are strongly correlated with the size of the 

basin surrounding each minima state, particularly for Class-I and Class-III ROIs. (C) 
Relationship between the empirical basin transition frequency and the predicted energy 

barriers estimated from a symmetrized transition frequency matrix. (D) Relationship 

between the empirical basin transition frequency and the predicted energy barriers estimated 

from the complete asymmetric transition frequency matrix. (E) A two dimensional cartoon 

of an energy landscape with two local minima states VA and VB. We also show their basins 

(color coded in red and blue, respectively) as well as the saddle point between the two basins 

(VS). Any state transition trajectory from basin A to B travels through at least one state with 

energies higher than the saddle point state (unless the trajectory includes the saddle point 
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state). Therefore the energy barrier for getting out of the local minima state is calculated by 

subtracting the energy values between the saddle state and the local minima state. The 

symmetric energy barrier between two local minima states is calculated as the minimum of 

the two energy barriers. Although we have only examined the basin transition frequency in 

(A–D), the results are similar for basin transition probabilities since the two are related to 

one another by a simple normalization factor (see SI2 Fig. 2).
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Fig. 5. 
Energy landscape of the surrogate time series. Here we show (Left) the local minima, 

(Middle) the basin size of local minima states as the fraction of the number of basin states to 

the number of total possible states, and (Right) the Pearson correlation coefficient between 

any two ROIs’ vectors of basin size across minima states of the original time series. (B) 
Similar results are presented for the simulated time series created using the method proposed 

by (Laumann et al., 2016).
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Fig. 6. 
Statistical comparison of the empirically observed interaction matrix to that expected in a 

null model. (A) Distribution of the correlation values between pairs of interaction matrices 

estimated from the null and original datasets. The blue histogram displays the distribution of 

the correlation values between all pairs of interaction matrices estimated from the null time 

series. The orange histogram displays the distribution of the correlation values between the 

empirical and all interaction matrices estimated from the null time series. Note that the 

empirical interaction matrix is notably less similar to the null matrices. (B) Distribution of 

the mean correlation values calculated between a single null and the rest of the null matrices 

(repeated for each individual null matrix). The red line shows the mean correlation value 

calculated between the empirical matrix and all null matrices. Note that the empirical mean 

is significantly smaller than that expected in the null distribution (p < 0.00095).
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Fig. 7. 
Comparison of summary statistics between the empirical and null energy landscapes. (A) 
The number of times that each local minima state identified from the empirical data is found 

in 1046 null energy landscapes. The minima states that are observed less frequently than 

chance (one–tailed, p < 0.05) in the null energy landscapes are marked by a red ‘*’. (B) The 

average dwell time of each local minima states’ basin calculated from the empirical energy 

landscapes as well as from the null energy landscapes is marked by a black ‘o’ and a green 

‘.’, respectively. The minima states that display significantly (one–tailed, p < 0.05) larger or 

smaller dwell times compared to that of the null energy landscapes are marked by a red ‘*’. 

Similar to the results displayed in panel A, we mark the minima states that are observed less 

frequently than expected in the null energy landscapes by a blue ‘*’. (C) The average size of 

each local minima states’ basin calculated from the empirical energy landscape as well as 

from the null energy landscapes is marked by a black ‘o’ and a green ‘.’, respectively. The 

minima states that display significantly larger or smaller basin size compared to that of the 

null energy landscapes are marked by a red ‘*’. Similar to the results displayed in panels A 

and B, we mark the minima states that are observed less frequently than expected in the null 

energy landscapes by a blue ‘*’. These data support the notion that the null and empirical 

energy landscapes are fundamentally different from one another.
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Fig. 8. 
Schematic of Methods. (A) We used a group-ICA decomposition to distill fMRI resting state 

BOLD into N (=10) components representing putative baseline functional networks. For 

each ICN, we identified the voxel with the peak expression of that component. (B) Using the 

Lausanne 125 scale template (234 ROIs) (Cammoun et al., 2012b), we determined the atlas 

region corresponding to the peak expression of each component. After extracting BOLD 

time series from each ROI, we estimated the functional connectivity between pairs of ROIs 

using the wavelet coherence in the frequency interval 0.19–0.06 Hz (Bassett et al., 2011).
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Fig. 9. 
Schematic of Methods for Extracting Dynamic Module Time Series. (A) We represent the T 

(= 1190 (TRs) × 20 (subjects) × 4 (runs) = 95200) unique functional connectivity patterns as 

N × N adjacency matrices A. (B) Using community detection, we extract putative functional 

modules at each TR, and use a statistical comparison to a random null model to determine a 

region’s binary module allegiance. More specifically, we identify the community 

organization of ROIs and calculate the probability of ROI pairs’ congruent community 

allegiance for each time-point. The ROI pairs with higher than expected (via permutation 

tests) congruent community allegiance were thresholded to generate binarized pairwise 

allegiance matrices. (C) We reformat these data to separately store the allegiance time series 

of each ROI, which codes its co-allegiance with other ROIs to the same community (values 

of 1) as a function of time (TR).
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Fig. 10. 
Schematic of Maximum Entropy Model of Brain Network Dynamics. (A) Accurate fitting of 

a MEM requires large amounts of data. We therefore combined data across all subjects 

before fitting a pairwise MEM to each ROI’s pattern of allegiance to functional modules. 

This fitting procedure produced an estimated interaction matrix for each ROI and each TR; 

colors indicate the strength of each element of the interaction matrix Jij. (B) From the 

interaction matrices, we defined and characterized energy landscapes of the local community 

dynamics. Color indicates energy, with yellow indicating high energy and dark blue 

indicating low energy. Each minimum within each landscape is accompanied by an example 

network state, as defined by a binarized pattern of module allegiance (yellow indicating 

congruent module allegiance and dark blue indicating incongruent module allegiance) with 

other ROIs.
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Fig. 11. 
Energy landscape of random ROIs time series. (A) Here we show (Left) the local minima, 

(Middle) the basin size of local minima states as the fraction of the number of basin states to 

the number of total possible states, and (Right) the Pearson correlation coefficient between 

any two ROIs’ vectors of basin size across minima states of the original time series. (B) 
Similar results are presented for the time series extracted from a random set of ROIs from 

ICA components.
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Table 1

Regions of interest and their corresponding ICN.

ICN Lausanne ROI (scale 125)

1. Visual 189 Cuneus.1

2. Dorsal Attention (Attn) 184 Precuneus.1

3. Sensory/Motor (SM) 147 Precentral.3

4. Basal Gangla/Thalamus (BG) 228 Caudate

5. Left Executive Control Network (LECN) 128 Rostral middle frontal.2

6. Right Executive Control Network (RECN) 15 Rostral middle frontal.2

7. Rostral Middle Frontal Cortex (rmFC) 130 Rostral middle frontal.4

8. Dorsomedial Prefrontal Cortex (dMPFC) 135 Superior frontal.3

9. Default Mode Network (DMN) 122 Medial orbitofrontal.1

10. Salience 124 Pars triangularis.1
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