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Abstract
In a physiologically structured populationmodel (PSPM) individuals are characterised
by continuous variables, like age and size, collectively called their i-state. The world
in which these individuals live is characterised by another set of variables, collec-
tively called the environmental condition. The model consists of submodels for (i) the
dynamics of the i-state, e.g. growth and maturation, (ii) survival, (iii) reproduction,
with the relevant rates described as a function of (i-state, environmental condition),
(iv) functions of (i-state, environmental condition), like biomass or feeding rate, that
integrated over the i-state distribution together produce the output of the population
model.When the environmental condition is treated as a given function of time (input),
the population model becomes linear in the state. Density dependence and interaction
with other populations is captured by feedback via a shared environment, i.e., by let-
ting the environmental condition be influenced by the populations’ outputs. This yields
a systematic methodology for formulating community models by coupling nonlinear
input–output relations defined by state-linear population models. For some combi-
nations of submodels an (infinite dimensional) PSPM can without loss of relevant
information be replaced by a finite dimensional ODE. We then call the model ODE-
reducible. The present paper provides (a) a test for checking whether a PSPM is ODE
reducible, and (b) a catalogue of all possible ODE-reducible models given certain
restrictions, to wit: (i) the i-state dynamics is deterministic, (ii) the i-state space is
one-dimensional, (iii) the birth rate can be written as a finite sum of environment-
dependent distributions over the birth states weighted by environment independent
‘population outputs’. So under these restrictions our conditions for ODE-reducibility
are not only sufficient but in fact necessary. Restriction (iii) has the desirable effect
that it guarantees that the population trajectories are after a while fully determined by
the solution of the ODE so that the latter gives a complete picture of the dynamics of
the population and not just of its outputs.

Keywords ODE-reducibility · Linear chain trick · Evolutionary system ·
Input–output system

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01454-0&domain=pdf
http://orcid.org/0000-0002-0967-8454


206 O. Diekmann et al.

Mathematics Subject Classification 92D25 · 93B11

1 Introduction

From the very beginning of community modelling, ordinary differential equations
(ODEs) have been its main tool. This notwithstanding the fact that much earlier Euler
(1760) and other mathematicians working on population dynamics had already con-
sidered age structured models, see (Bacaër 2008, 2011; Gyllenberg 2007) for more
information on the history of population dynamics. This probably had two causes,
the architects of the initial flurry in the nineteen-twenties and thirties (cf. Scudo and
Ziegler 1998) and their successors like MacArthur and May (cf. Kingsland 1995) got
their inspiration from the successes of physics, which is dominated by differential
equations, and ODEs are rather easier to write down and analyse than e.g. integral
equations. However, the assumptions needed to arrive at ODEs generally match bio-
logical reality less closely, and give these models more of a toy character: good to get
new ideas, but difficult to match in some detail to concrete ecological systems. That for
the latter age may well matter also mathematicians know from their immediate expe-
rience: few women give birth before the age of ten and while most humans nowadays
reach their seventy’s anniversary still few live beyond a century. For this reason, many
mathematical modellers turned to age as a structuring variable, even in the non-linear
realm. However, for ectotherms, that is, all organisms other than mammals and birds,
size usually matters far more than age (cf. de Roos and Persson 2013). We have spent
considerable effort in the past to develop tools for studying general physiologically
structured models in the hope to gradually overcome the surviving endotherm-bias
of the modelling community. Yet ODE models remain paramount as didactical tools
and for the initial exploration of so far unexplored mechanisms, notwithstanding the
disadvantage that in these models individual level mechanisms generally can only be
fudged instead of faithfully represented. Given this situation, it becomes of impor-
tance to explore in what manner ODEmodels fit among the physiologically structured
ones. Of course, there is the boringly simple embedding of the unrealistic case where
individuals indeed have only a single, or at most a few possible states.

Example 1.1 Consider a size-structured population with individual size (biomass)
denoted as x , starting from a birth size xb, individual growth rate g(x, E), E a resource
density, per capita birth rate β(x, E), and per capita death rate μ(x, E). For such pop-
ulations, if

xbβ(x, E) + g(x, E)

x
− μ(x, E) = v(E), (1.1)

the population biomass B per unit of spatial area or volume (below to be abbreviated
as just volume) satisfies

dB

dt
= v(E)B, (1.2)
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To see this, observe that the left hand side of (1.1) corresponds to the contribution to
the change in population biomass by an individual of size x expressed as fraction of
its own biomass. So if we integrate this term over the biomass density over size (and
volume), say xn(t, x), n the numeric (per unit of volume) size density, we get the total
change in biomass (per unit of volume), (cf. de Roos et al. 2013).

If moreover

(i) the per capita contribution to the “consumptive pressure on a resource unit” is a
product of an individual’s size and a size-independent functional response based
component, say, f (E)/E ,

(ii) all other populations in the community are similarly affected only by our focal
population’s biomass, and

(iii) we ourselves are also only interested in this quantity,

then we can for all practical purposes represent our focal population by no more than
its biomass.

We call (1.2) an ODE-reduction of the size-structured population model.
The question then naturally arises whether or not this example of ODE-reducibility

is essentially the only one, that is, up to coordinate choices, such as in the case of
isomorphs not biomass but its scaled cubic root, length. The following example shows
this not to be the case.

Example 1.2 Daphnia models. Now let in the wake of (Kooijman and Metz 1984)
and (de Roos et al. 1990) size be represented by length, starting from a size xb at
birth, the growth rate be given by g(x, E) = δ f (E) − εx , the per capita birth rate
by β(x, E) = α f (E)x2, the per capita death rate by μ, and the per capita resource
consumption by f (E)x2. (This means that individual biomass, w, scaled to be equal
to x3, grows as 3δ f (E)w2/3 − 3εw, that is, mass intake is taken to be proportional
to surface area and metabolism to biomass.) Let n(t, x) again denote the numeric
size-density. Now define

Ni (t) =
xmax∫

xb

xi n(t, x)dx, (1.3)

that is, N0 is the total population size, N1 the total population length, N2 the total
population surface area, N3 the total population biomass, all per unit of volume. Then

dN0

dt
= α f (E)N2 − μN0,

dN1

dt
= xbα f (E)N2 + δ f (E)N0 − (μ + ε)N1,

dN2

dt
= x2bα f (E)N2 + 2δ f (E)N1 − (μ + 2ε)N2,

dN3

dt
= x3bα f (E)N2 + 3δ f (E)N2 − (μ + 3ε)N3, (1.4)
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etc.. If the only other component of the community is an unstructured resource, and we
need no further output from the population than its total biomass per unit of volume,
we can combine (1.4) with

dE

dt
= h(E) − f (E)N2 (1.5)

into a sufficient representation of our community model.
The differential equation for N0 is obvious, and so is the first term in the differential

equation for N1. To understand the second term observe that g consists of two terms,
the first of which is size independent. This termmakes all individuals of the population
increase their length at a rate δ f (E). We get the corresponding increase in the total
population length by multiplying this δ f (E) with the total population density. The ε

in the last term also derives from the length growth except that the corresponding term
in g contains a factor x . When we account for this x when calculating the integral over
n we get N1. The differential equations for the other Ni follow in a similar manner.

ODE-reducibility of age-structured models and, slightly more generally, of dis-
tributed delay systems, has been investigated since the mid 1960s (Vogel 1965; Fargue
1973, 1974; Gurtin and MacCamy 1974, 1979a, b; McDonald 1978, 1989).

It has already been known for a long while that there also exist more realistic cases,
where for instance a size-structured model allows a faithful representation in ODE
terms (Murphy 1983; Cushing 1989; Metz and Diekmann 1991).

The next question is then whether we can characterise the set of all possible cases.
For the practically important subset of cases where the population birth rate figures
on the list of population outputs and with a single state variable on the level of the
individuals, the last author solved this problem on a heuristic level already in 1989
during a holiday week in summer spent at the Department of Applied Physics of the
University of Strathclyde. An allusion to this was given in a “note added in print” to
the paper (Metz and Diekmann 1991). However, it took till now before we together
had plugged all the minor holes in the proof. Below you find the result.

2 Preview of Sects. 3 to 6

In this section we give a preview of the main content of the paper, first for theoretical
biologists and probabilists and then for all kinds of mathematicians. The much shorter
paper (Diekmann et al. 2019) provides additional examples and may serve as a more
friendly user guide to ODE-reducibility of structured population models.

2.1 Mainly for theoretical biologists and probabilists: the context of discovery

2.1.1 Biological context

The term “physiologically structured population models” (PSPM) refers to large sys-
tem size limits of individual-based models where (i) individuals are differentiated by
physiological states, e.g. x = (size, age), referred to as i(ndividual)-states, (ii) the
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world in which these individuals live is characterized by a set of variables collectively
called environmental condition, to be denoted as E . [Hard proofs for the limit conjec-
tures are still lacking except for age-based models (cf. Tran 2008, and the references
therein), and more recently also for a class of simple (size,age)-based ones (Metz
and Tran 2013).] Sections 2.2 and 3 go into how these deterministic models can be
specified by means of equations.

The i-level model ingredients are a set of feasible i-states, Ω ⊂ R
m , m ∈ N, and,

most commonly,

(i) a rate of i-state change taken to be deterministic, g(x, E),
(ii) a death rate, μ(x, E), and
(iii) a birth rate, β(x, E).

In the general case β(x, E) has as value a distribution over Ω . However, from a
mathematical perspective it is preferable to use instead of “distribution” the term
“measure” as this is more encompassing, and the birth rate does not total to one
and may consist of a mixture of discrete and continuous distributions. (Actually, we
should even be a bit more general and talk about a signed measure as a cell that divides
generates a measure over the states where the daughters may land plus a compensating
negative mass, equal to minus the division rate, at the state of the mother.)

Notational convention The value of β(x, E) for the measurable set ω ⊂ Ω is
denotedbyβ(x, E, ω).A similar convention applies to othermeasure valued functions.

The p(opulation)-state then is a measure m on Ω . However, on many occasions it
suffices to think in terms of just densities n onΩ , or n ∈ L1(Ω) in themathematicians’
jargon. As a consequence of how the rates are specified, when E is given as a function
of time (below to be looked at as input) the individuals are independent (except for a
possible dependence of their birth state on the state of their parents), and hence the
dynamics of the p-state is linear.

The more interesting case is when E is determined by the surrounding community.
Community models are sets of population models coupled through a common E . This
leads to c(ommunity)-state spaces that are products of the state spaces of the comprised
species, times the state spaces of any non-living resources. The mass action principle
tells that generally E can be calculated by applying a linear map to the c-state, like
when a predation pressure equals the sum of the predation pressures exerted by all
individuals in the community. This leads us to the final set of ingredients of a population
model:

(iv) functions of (x, E), like biomass or per capita feeding rate, that when cumulated
over all individuals produce components of the population output.

Side remarks on terminology: In our context, each output component is thus obtained
by taking the integral of the p-state over Ω after multiplying it with a, possibly E-
dependent, function of the i-state variables. This function specifies the relationship
between the i-state and the property that we want to measure, e.g., biomass as a
function of length. In mathematical jargon we say that the output components are
obtained by applying a linear functional, i.e., a linear map from the p-state space to
the real numbers. The corresponding function will be referred to as weight function,
and for a p-state m and weight function ψ , the corresponding map will be written as
〈m, ψ〉.
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The population dynamical behaviour of individuals almost never can be captured
in terms of a finite number of i-states. Yet, ecological discourse is dominated by ODE
models. This leads to the philosophical question which of thesemodels can be justified
from themore realistic physiologically structured populations perspective. At themore
pragmatic side there ismoreover the problem that in community biology PSPMusually
become too difficult to handle for more than two or three species. This leads to the
complementary question whether there are relevant choices of model ingredients for
which a PSPM can be represented by a low dimensional system of ODEs. To answer
these questions we looked at populations as state-linear input–output relations, with
E as input, and as output a population’s contribution to E as well as anything that
‘a client’ may want to keep track of. The key question addressed in this paper is
thus: under what conditions on the model ingredients is it possible to obtain the same
input–output relation when the PSPM is replaced by a finite dimensional ODE? (This
representation may have an interpretation in its own right, but this is not required.) If
such a representation is possible, we say that the population model is reduced to the
ODE or that the input–output relation is realised by it.

2.1.2 The mathematical question

Our starting point thus are models that can be represented as in the following diagram.
In Fig. 1 Y is the p-state space and R

r the output space. E is the time course of the
environment andUc

E (t, s) the (positive) linear state transition map with s, t the initial
and final time. (The upper index c here refers to the mathematical construction of
the p-state, explained in Sect. 3, through the cumulation of subsequent generations.)
Finally O(E(t)) is the linear output map. The mathematical question then is under
which conditions on the model ingredients it is possible to extend the diagram in Fig. 1
(for all E, t, s) to the following diagram.

Here P is a linear map, ΦE (t, s) a linear state transition map (which should be
differentiable with respect to t) and Q(E(t)) a linear output map. The dynamics of the
output cannot be generated by an ODE when the space spanned by the output vectors
at a given time is not finite dimensional. Hence ODE reducibility implies that there
exists an r such that the outputs at a given time can be represented by R

r . (Below
we drop the time arguments to diminish clutter, except in statements that make sense
only for each value of the argument separately, or when we need to refer to those
arguments.) Moreover, the biological interpretation dictates that

O(E)m = 〈m, Γ (E)〉 :=
∫

Ω

Γ (E)(x)m(dx),

where m is the p-state and the components of the vector Γ (E) are functions γi (E) :
Ω → R.

Y
Uc
E(t, s)

Y
O(E(t))

R
r

Fig. 1 Structure of models with output
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Thanks to the linearity of Uc
E (t, s) and O(E(t)) we can without loss of generality

assume P , ΦE (t, s) and Q(E(t)) to be linear. Moreover, ODE reducibility requires
that P can be written as Pm = 〈m, Ψ 〉withΨ = (ψ1, . . . , ψk)

T,ψi : Ω → R, where
the ψi should be sufficiently smooth to allow

dN
/
dt = K (E)N , with N := Pm and K (E(t)) := dΦE (t, s)

/
dt
∣∣
s=t . (2.1)

(The last expression comes from combining dΦE (t, s)
/
dt = K (E(t))ΦE (t, s) and

ΦE (t, t) = I .) Finally, we should have O(E) = Q(E)P , and therefore Γ (E) =
Q(E)Ψ , implying that the output weight functions should be similarly smooth. (The
precise degree of smoothness needed depends on the other model ingredients in a
manner that is revealed by the TEST described in Sect. 2.1.4.)

2.1.3 A tool

The main tool in the following considerations is the so-called backward operator, to
be called Ā(E), as encountered in the backward equation of Markov process theory
and thereby in population genetics, used there to extract various kinds of information
from the process without solving for its transition probabilities. What matters here is
that the backward operator summarises the behaviour of the “clan averages” ψ̄(t, s)
of weight functions ψ (such as occur in Pm = 〈m, Ψ 〉), defined by

ψ̄(t, s)(x) :=
∫

Ω

ψ(ξ)m(t, s; δx , dξ), (2.2)

where m(t, s; δx ) is the p-state resulting at t from a p-state corresponding to a unit
mass δx at x at time s (hence the term clan average), in the sense that

Ā(E(s))ψ̄(t, s) = −∂ψ̄(t, s)

∂s
. (2.3)

For further use we moreover note that

ψ̄(s, s) = ψ, (2.4)

independent of s, which on differentiating for s gives

at t = s : −∂ψ̄(t, s)

∂s
= ∂ψ̄(t, s)

∂t
. (2.5)

(When E does not depend on s, (2.5) also holds good for t �= s, leading to the perhaps
more familiar form of the backward equation: dψ̄/dt = Āψ̄ .)

One reason to start from (2.2) is that it leads to simple interpretation-based heuristics
for calculating backward operators, which we shall discuss a little later on. (More
abstract and rigorous functional analytical counterparts to the intuitive interpretation-
based line of argument developed here can be found in Sects. 2.2 and 4.) The reason for
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coming forth with the backward operator is that it provides the counterpart in the space
of weight functions ψ of the time differentiation in (2.1). To see that, the perspective
sketched so far still needs a slight extension. A look at (2.2) shows that we can also
interpret the ψ̄(t, s) as weight functions in their own right that can be paired with δx
as
〈
δx , ψ̄(t, s)

〉
(= ψ̄(t, s)(x) ). Moreover, thanks to the linearity of (2.2), (2.3) and

the p-state transition maps Uc
E (t, s) and the consequent linearity of m(t, s; ·), we can

extend the action of these candidate functionals to more general measures ms at time
s, and in this way calculate

∫
Ω

ψ(ξ)m(t, s;ms, dx) as
〈
ms, ψ̄(t, s)

〉
. This sleight of

hand transforms the question about the change of Pm over time to a question about
the dynamics of the ψ̄(t, s), for which we can find the time derivative by applying
Ā(E) to ψ̄ . The final step then is to make the connection with (2.1) by setting s = t
and using (2.4), to arrive at

Ā(E)Ψ = K (E)Ψ . (2.6)

To apply these ideas we need to find expressions for the backward operators. To this
end we use that we assumed E to be given, making individuals independent. Then on
the level of population averages it makes no difference whether we start with a scaled
large number of individuals all with i-state x or with a single individual in that state.
Since it is easier to think in terms of individuals, we shall do the latter. We can then
look at the effect on the clan averages of the founder individual engaging in each of the
component processes (i) to (iii) over a short time interval from s to s+h. For such short
intervals the effects of the interaction of the components in determining their combined
effect on the clan average is only second order in h and can be neglected together with
the other higher order terms. Hence the backward operator can be written as a sum
of operators corresponding to the model ingredients as introduced at the beginning of
Sect. 2.1.1. As this is useful for the remainder of the paperwe here combine ingredients
(i) and (ii):

Ā(E) = Ā0(E) + B̄(E),

(i) and (ii) : (
Ā0(E)ψ

)
(x) = dψ

dx
(x)g(x, E) − μ(x, E)ψ(x),

(iii) : (
B̄(E)ψ

)
(x) =

∫

Ω

ψ(ξ)β(x, E, dξ). (2.7)

The expressions in (2.7) are found as follows:

(i) If we neglect births and deaths, for small h an individual situated at x at time
s produces an individual situated at x + g(x, E(s))h at time s + h. Therefore
ψ̄(t, s+h)(x+g(x, E(s))h) = ψ̄(t, s)(x), which after on both sides subtracting
ψ̄(t, s + h)(x) and dividing by h, gives

−∂ψ̄(t, s)(x)

∂s

∣∣∣∣
movement

= ∂ψ̄(t, s)(x)

∂x
g(x, E(s)). (2.8)
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(ii) Next we account for the possibility that individuals die on the way, which hap-
pens with probability μ(x, E(s))h, so that, if we neglect movement and births,
ψ̄(t, s)(x) = (1 − μ(x, E(s))ds)ψ̄(t, s + h)(x) (over a longer time survival is
less), giving

−∂ψ̄(t, s)(x)

∂s

∣∣∣∣
death

= −μ(x, E(s))ψ̄(t, s)(x). (2.9)

(iii) Finally a parent at x through its kids at ξ will have added a contribution
hβ(x, E(s), dξ)ψ̄(t, s)(ξ) to ψ̄(t, s)(x), which is missing in ψ̄(t, s + h)(x).
Summing over all these contributions gives

−∂ψ̄(t, s)(x)

∂s

∣∣∣∣
births

=
∫

Ω

ψ̄(t, s)(ξ)β(x, E(s), dξ). (2.10)

2.1.4 Testing combinations of model ingredients for ODE reducibility

The classical search heuristic for finding a state space representation for a given set
of dynamical variables in continuous time is to see whether their derivatives can be
expressed in terms of the variables themselves, and, if not, to join the derivatives for
which this is not the case as additional prospective state variables to the original set,
whereupon the procedure is repeated till one succeeds or runs out of patience (cf.
Diekmann et al. 2018, p. 1443; Fargue 1973).

If one is after a representation as a state linear systemwith a linear output map, “can
be expressed as” translates to “is linearly dependent on”, a property that can be checked
algorithmically, so that with infinite patience we end up with a firm conclusion. In our
case the only difference is thatwe choose not to look at the output variables themselves,
but at the weight functions by which they are produced from the population state, and
therefore replace the time derivative of the output variables by the backward operator
applied to these functions.

Notation For the remainder of this subsection we shall again use E to denote the
environmental conditions, as opposed to the course of the environment as we did in
the previous two subsections.

TEST
Choose a basis V0 = {ψ1, . . . , ψk0} for the γi making up the population output
map.
Provided that the expression Ā(E)Vi makes sense, extend Vi to a basis Vi+1 for
Vi ∪⋃all possible E Ā(E)Vi .

The population model is ODE reducible if and only if the expressions Ā(E)Vi
keep making sense, and the Vi stop increasing after a certain i = h.

For the Ā(E) from (2.7), Ā(E)Vi makes sense iff all elements of Vi are differentiable.
(For a mathematically more precise rendering see Sect. 4.)

If the biological ingredients of a model satisfy the above test, it is possible to go
directly from the ingredients to the ODE.
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Example 2.1 Daphnia models, continued. In Example 1.2 the output weight functions
were x3 and x2. Applying the backward operator

Ā(E)ψ(x) = (δ f (E) − εx)
dψ

dx
(x) − μψ(x) + ψ(xb)α f (E)x2

to these functions gives

Ā(E)

(
x3

x2

)
=
(

(δ f (E) − εx)3x2 − μx3 + x3bα f (E)x2

(δ f (E) − εx)2x − μx2 + x2bα f (E)x2

)

=
(
x3bα f (E)x2 + 3δ f (E)x2 − (μ + 3ε)x3

x2bα f (E)x2 + 2δ f (E)x − (μ + 2ε)x2

)
. (2.11)

This introduces x as an additional weight function, linearly independent of x3 and x2.
Applying the backward operator to x gives

Ā(E)x = δ f (E) − εx − μx + xbα f (E)x2 = xbα f (E)x2 + δ f (E) − (μ + ε)x,

(2.12)

introducing the constant 1 as further weight function. Applying Ā(E) to 1 gives

Ā(E)1 = −μ + xbα f (E)x2 = xbα f (E)x2 − μ, (2.13)

which introduces no further linearly independent weight functions, and thus ends the
process. Hence, a P can be built from the weight functions 1, x , x2 and x3 leading to
the four dimensional ODE representation already derived in Example 1.2.

Integrating (2.11) to (2.13) left and right over the p-state gives (1.4). This is why we
could reorder (2.11) to (2.13) to look like (1.4), with the Ni replaced by xi . Rewritten
in matrix form this then gives the K (E) from (2.1). Note though that in the process we
have made some particular choices in order to get the precise form (1.4). In general
K (E) is only unique up to a similarity transform, corresponding to alternative choices
of a basis for the weight functions ψ1, . . . , ψk , with a corresponding change of Q(E).

Remark At first sight the TEST may not seem very practical as deciding that a certain
set of model ingredients is not ODE reducible may require infinitely many operations.
However, if the model ingredients come in the form of explicit expressions it can often
be inferred from these whether the combination of ingredients will or will not pass the
test. And even when those expressions on first sight are less than transparent, not all
is lost, as in practice people are generally not so much interested in whether a certain
model is ODE reducible as such, but in whether there exists a representation with
a relatively low dimensional state space, which after specification of the maximum
allowed dimension leads to a task executable by e.g. MapleTM or Mathematica®.

2.1.5 A catalogue of ODE reducible models

Modellers often initially still have quite some freedom in their choice of model ingre-
dients. Hence it is useful to construct catalogues of classes of ODE reducible models,
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to help them make their choices with an eye on future model tractability (for a good
example, see (Cushing 1989)). For this purpose observe that the TEST is no more than
an attempt to construct a vector Ψ of weight functions such that for all environmental
conditions E (i) Γ (E) = Q(E)Ψ and (ii)

Ā(E)Ψ = K (E)Ψ , (2.14)

suggesting the following strategy: start from some specific promisingmodel class, and
within this class try to solve (2.14) forΨ and K . In Sects. 5 and 6we concentrate on one
particular class of models that is both hallowed by tradition, and has the good property
of allowing the p-state trajectory to be reconstructed by relatively easy means:

β(x, E) =
p∑

i=1

βi (E)αi (x) (2.15)

with theαi treated as outputweight functions au parwith the other γi . (For the numerics
it helps when the βi (E) consist of just a few point masses at positions that depend
smoothly on E .) For the remainder of this subsection we assume that (2.15) holds
good.

Remark In earlier papers like (Metz and Diekmann 1991) we referred to ODE
reducible models satisfying (2.15) as ordinarily ODE reducible or ODE reducible
sensu stricto, as these models then were the only ones figuring in discussions of ODE
reducibility (or linear chain trickability as it then was called).

The assumption that the αi are additional output weight functions makes that we
can absorb the birth term of the backward operator into the right hand side of (2.14)
giving

Ā0(E)Ψ = H(E)Ψ . (2.16)

All our general results so far pertain to the case where dim(Ω) = 1. In Sect. 8 we
showhow the results for this case can be combined tomakeODE reduciblemodelswith
dim(Ω) > 1, but a full catalogue for general Ω is still lacking. So for the remainder
of this subsection we assume that dim(Ω) = 1.

Below we give a gross sketch of the reasoning. As first step we choose a fixed
constant E = Er, write vr(x) = g(x, Er), μr(x) = μ(x, Er), Hr = H(Er), where
the label r in the subscipts stands for “reference”, and solve the corresponding version
of (2.16),

dΨ

dx
(x)vr(x) − μr(x)Ψ (x) = HrΨ (x), (2.17)

for Ψ . The result is that Ψ (x) is the product of

Gr(x) := exp

(∫ x μr(ξ)

vr(ξ)
dξ

)
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(note that Gr(x) can be interpreted as the inverse of a survival probability up to size
x) and a matrix exponential in the transformed i-state variable

ζr(x) :=
∫ x dξ

vr(ξ)
.

This tells that the weight functions ψ should be linear combinations of polynomials
times exponentials in ζr, all multiplied with the same Gr. The fact that these weight
functions should not depend on E then gives a set of conditions that should be satisfied
by the Ψ , g and μ together. There are three possibilities to satisfy these conditions:

(i) and (ii) Without any restrictions on Hr, the death rateμ should be decomposable as
g(x, E)γ0(x)+μ0(E), that is, a death rate component that at each value of x depends
on how fast an individual grows through this value plus a death rate component that
does not depend on x , and

(i) the representation should be one-dimensional, in which caseΨ (x) = dG (x)with
G (x) := exp

(∫ x
γ0(ξ)dξ

)
, d a scalar of choice, and H(E) = μ0(E),

or, in the higher dimensional case,
(ii) g should be decomposable as g(x, E) = v0(x)v1(E), so that we may interpret

ζ(x) := ∫ x
(v0(ξ))−1dξ as physiological age. H in this case can be written as

H(E) = −μ0(E)I + v1(E)L , with L an arbitrary matrix with all eigenvalues
having geometric multiplicity one. Ψ can then be written as

Ψ (x) = G (x)D
(
eλ1z, . . . , zk1−1eλ1z, . . . , eλr z, . . . , zkr−1eλr z

)T
,

D a nonsingular matrix, with a corresponding representation of L as

L = D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

λ1 0

1
. . .

. . .
. . .

0 k1 − 1 λ1

⎞
⎟⎟⎟⎟⎠ 0

. . .

0

⎛
⎜⎜⎜⎜⎝

λr 0

1
. . .

. . .
. . .

0 kr − 1 λr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D−1.

(iii) For higher dimensional representations also slightly less restricted growth laws
are possible, but at the cost of a severe restriction on the eigenvalues of Hr which
should lie in special regular configurations in the complex plane. A lot of hard
work is then required to render the corresponding class of representations into a
biologically interpretable form. The end result becomes a slight extension of the
Daphnia model of Examples 1.2 and 2.1 withμ(x, E) = g(x, E)γ0(x)+μ0(E),
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g(x, E) = v0(x)(v1(E) + v2(E)ζ ) (note that if we transform from x to ζ the
growth law stays the same but for the disappearance of the factor v0(x)). In this
caseΨ (x) = G (x)DΞ(x)withΞ(x) = (1, . . . , ζ k−1)T. (Thegrowth lawsof this
model family, in addition to von Bertalanffy growth, also encompass two other
main growth laws from the literature: logistic, a(E)x + b(E)x2, and Gompertz,
a(E)x − b(E)x ln(x). Just appropriately transform the x-axis.)

A further extension comes from a mathematical quirk for which we failed
to find a biological interpretation: it is possible to add a quadratic term in ζ

to the growth law, g(x, E) = v0(x)(v1(E) + v2(E)ζ + v3(E)ζ 2), which then
should be exactly compensated by a similar additional term in the death rate,
μ(x, E) = g(x, E)γ0(x) + μ0(E) + (k − 1)v3(E)ζ . Not only are these terms
uninterpretable, the required simultaneous fine tuning of the model components
makes them irrelevant in any modelling context coming to mind.
For this model family H(E) = −μ1(E)I + DL(E)D−1 with

L(E) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −(k − 1)v3(E) 0 · · · 0
v1(E) v2(E) −(k − 2)v3(E) 0
0 2v1(E) 2v2(E) 0
... 0 3v1(E) 0

. . .

0 · · · · · · (k − 1)v1(E) (k − 1)v2(E)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with v3 = 0 in the Daphnia style models.

The matrix K occurring in the ODE realising the population input–output relation
can be recovered by removing the effect of subtracting the birth operator on both sides
of (2.14) to get (2.15): K (E) = H(E)+ ∫

Ω
ψi (ξ)β j (E, dξ)C , with C defined by the

requirement that α j = ∑
h c jhψh , where the α j are the weight functions telling how

the birth rates depend on the i-states (see Formula (2.15)).
The remainder of the paper is geared to an audience of analysts, and accordingly

stresses proofs, instead of interpretation-based heuristics.

2.2 For mathematicians: the context of justification

We shall look at a community as a set of coupled populations. The coupling ismediated
by the environment, denoted by E . On the one hand individuals react to the environ-
ment, on the other hand they influence their environment. We concentrate on a single
population and pretend that E is a given function of time taking values in a set E . So
E can be regarded as an input. The single population model can serve as a building
block for the community model once we have also specified a population level output
by additively combining the impact that individuals have.

In order to account for the population dynamical behaviour of individuals (giving
birth, dying, impinging on the environment), we first introduce the concept of individ-
ual state (i-state). Given the course of the environment, the i-states of the individuals
independently move through the i-state space and their current position is all that
matters at any particular time. The use of the word state entails the Markov property;
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admittedly idealisation is involved and finding the i-state space as well as specifying
the relevant environmental variables is often a process of trial and error. The art of
modelling comprises deliberate simplification in order to gain significant insights.

We denote the i-state space by Ω and assume that it is a subset of Rn . In general
the population state (p-state) is a measurem on Ω with the interpretation thatm(ω) is
the number (per unit of volume or area) of individuals with i-state in the measurable
subset ω of Ω .

A word of warning We usually denote a Borel subset of Ω by ω. We are aware of
a different notational convention in probability theory where ω denotes a point in Ω .
We hope this will not lead to confusion.

In many models the p-state can adequately be represented by a density n ∈ L1(Ω).
The abstract ODE

dn

dt
(t) = A(E(t))n(t) = A0(E(t))n(t) + B(E(t))n(t) (2.18)

captures that the density n(t) changes in time due to

(i) transport through Ω due to i-state development such as growth of individuals, and
degradation due to death of individuals,

(ii) reproduction.

The effects of (i) are incorporated in the action of A0(E) and the effects of (ii) in the
action of B(E). Since the i-states of offspring are, as a rule, quite different from the
i-states of the parent, the operator B(E) is usually non-local. When x ∈ Ω specifies
the size of an individual, growth is deterministic and giving birth does not affect the
parent’s size, the abstract ODE (2.18) corresponds to the PDE

∂

∂t
n(t, x) = − ∂

∂x
(g(x, E(t))n(t, x)) − μ(x, E(t))n(t, x)

+
∫

Ω

β̃(y, E(t), x)n(t, y)dy, (2.19)

with g, μ and
∫
Ω

β̃(·, ·, x)dx denoting, respectively, the growth, death, and reproduc-
tion rate of an individual with the specified i-state under the specified environmental
condition.

The mathematical justification of (2.18) or (2.19) is cumbersome. In particular, it
is difficult to give a precise characterisation of the domains of the various unbounded
operators. Note that we are not in the setting of (generators of) semigroups of linear
operators for which some results can be found in the paper by Atay and Roncoroni
(2017). Indeed, we are dealingwith evolutionary systems and for this non-autonomous
analogue of semigroups a one-to-one correspondence between an evolutionary system
and a generating family of differential operators is not part of a well-established theory
(but see our earlierwork (Clément et al. 1988;Diekmann et al. 1995) for some results in
that direction). As shown by Diekmann et al. (1998, 2001), one can actually avoid the
differential operators. In the next section we present this approach in the setting where,
because of assumptions concerning reproduction, we can work with densities rather
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than measures. In the present section we simply ignore the mathematical difficulties
and proceed formally.

If the test described in Sects. 4.1 and 2.1.4 yields a positive result in the end, it
provides

– an integer k,
– a bounded linear map P : L1(Ω) → R

k ,
– a family K (E) of k × k matrices,

such that

PA(E) = K (E)P (2.20)

and accordingly

N (t) := Pn(t), (2.21)

where n(t) is a solution of (2.18), satisfies the ODE

d

dt
N (t) = K (E(t))N (t). (2.22)

The p-output that is needed in the community model, which is our ultimate interest,
as well as any other p-output that we are interested in, was the starting point for the test
and thus is incorporated in N , so we can focus our attention on the finite dimensional
ODE (2.22) and forget about the infinite dimensional version (2.18) fromwhich it was
derived.

A special case occurs when there exist

– a family H(E) of k × k matrices,
– a family Q(E) of bounded linear maps from R

k to L1(Ω)

such that

PA0(E) = H(E)P, (2.23)

B(E) = Q(E)P. (2.24)

(Incidentally, we here took L1(Ω) as the range space for Q(E), but actually we shall
allow Q(E) to take on values in a linear subspace of the vector space of all Borel
measures on Ω , see Sect. 4.) This case amounts to taking

K (E) = H(E) + M(E). (2.25)

with

M(E) = PQ(E). (2.26)

The key nice features of this special case are:
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(i) A0(E) is a strictly local operator and this allows us to make an in-depth study of
the characterisation of those A0(E) for which P and H(E) exist.

(ii) B(E)n = Q(E)N and hence we can rewrite (2.18) in the form

dn

dt
= A0(E)n + Q(E)N . (2.27)

The same local character of A0(E) now allows us to solve (2.27) explicitly, thus
expressing the part of the population that is born after the time at which we put
an initial condition explicitly in terms of N (t). See Proposition 7.2 for a concrete
example.

If we ignore birth, that is, set B(E) = 0 (β̃(·, E, ·) = 0), then the abstract ODE
(2.18) and its PDE counterpart (2.19) become transport-degradation equations and
we only have to consider condition (2.23). In this paper we give necessary and suf-
ficient conditions in terms of g and μ for the existence of k, P and H(E) such that
(2.23) holds and hence N (t) satisfies (2.22) (with K (E) = H(E), or, equivalently
M(E) = 0). Subsequently we view condition (2.24) as a restriction on the submodel
for reproduction. If β̃ is such that the restriction (2.24) holds, then the full infinite-
dimensional system (2.18) is reducible to the finite dimensional ODE (2.22). In this
manner we obtain a catalogue ofmodels that are ODE-reducible andwithin a restricted
class of models with one-dimensional i-state space the catalogue is even complete.

Let wi i = 1, 2, . . . , k be bounded measurable functions defined on Ω such that

(Pn)i = 〈n, wi 〉 =
∫

Ω

n(x)wi (x)dx . (2.28)

Then condition (2.23) amounts to

A∗
0(E)wi =

k∑
j=1

Hi j (E)w j . (2.29)

We might call A∗
0(E) the Kolmogorov backward operator although strictly speaking

that operator acts on the continuous functions on Ω and is the pre-adjoint of the
forward operator acting on the measures on Ω . Since the elements wi that figure
in our catalogue are continuous functions, the distinction between A∗

0(E) and the
Kolmogorov backward operator is inessential.

Inwords (2.29) states that the E-independent subspace spannedby {w1, w2, . . . , wk}
is in the domain of A∗

0(E) and invariant under A∗
0(E) for all relevant E . To avoid

redundancy one should choose k as small as possible and we therefore require that the
functions wi : Ω → R, i = 1, 2, . . . , k, are linearly independent.

When (2.18) represents (2.19), condition (2.23) with P given by (2.28), amounts
to

g(x, E)w′
i (x) − μ(x, E)wi (x) =

k∑
j=1

Hi j (E)w j (x), i = 1, 2, . . . , k. (2.30)
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It is easy to find a solution: if

μ(x, E) = γ0(x)g(x, E) + μ0(E) (2.31)

for some functions γ0 : Ω → R and μ0 : E → R, then the choice

k = 1,

H(E) = −μ0(E),

w(x) = exp

(∫ x

xb
γ0(y)dy

)
, for some xb ∈ Ω, (2.32)

makes (2.30) a valid equality. If we restrict to k = 1, then this is in fact the only
possibility.

As mentioned above, condition (2.24) is a restriction on reproduction. The smaller
the value of k, the more severe is the restriction. We therefore want to make k as
large as possible while retaining the linear independence of {w1, w2, . . . , wk}. So the
question arises whether it is possible to pinpoint more restrictive conditions on g and
μ that allow for arbitrarily large values of k.

If the growth rate of an individual does not depend on its i-state but only on the
environmental condition, that is, if

g(x, E) = v(E) (2.33)

for some function v : Ω → R, we call the i-state physiological age and often talk
about maturation rather than growth. If on top of (2.33) we assume (2.31) and replace
the unknown w by w̃ via the transformation

wi (x) = exp

(∫ x

xb
γ0(y)dy

)
w̃i (x), i = 1, 2, . . . , k, (2.34)

then (2.30) is equivalent to

w̃′(x) = μ0(E)

v(E)
w̃(x) + 1

v(E)
H(E)w̃(x). (2.35)

If we choose

H(E) = v(E)Λ − μ0(E)I , (2.36)

with Λ an arbitrary k× k matrix for arbitrary k, then the E-dependence vanishes from
Eq. (2.35), which becomes an autonomous linear ODE with solution

w̃(x) = e(x−xb)Λw̃(xb). (2.37)
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To avoid redundancy, we have to make sure that Λ and w̃(xb) are such that the com-
ponents of w̃ are linearly independent as scalar functions of the variable x ∈ Ω , see
conditions (H1) to (H3) of Sect. 5 as well as Corollary 6.3.

If instead of (2.33) we assume

g(x, E) = v0(x)v1(E) (2.38)

for some functions v0 : Ω → R and v1 : E → R, we can introduce ζ defined in terms
of x by

ζ(x) = exp

(∫ x

xb

dy

v0(y)

)
(2.39)

as a new i-state variable and thus reduce the situation to (2.33).
In Example 1.2 we have

g(x, E) = v1(E) + v2(E)x . (2.40)

In combination with (2.31) this leads to

(v1(E) + v2(E)x) w̃′(x) = H0(E)w̃(x), (2.41)

where w̃ is once more defined by (2.34) and where we have put

H0(E) = H(E) + μ0(E)I . (2.42)

For arbitrary k we can make (2.41) into an identity by choosing for i = 1, 2, . . . , k

w̃i (x) = xi−1 (2.43)

and the entries of the matrix H0(E)

(H0(E))i j =
⎧⎨
⎩

jv1(E) if j = i − 1,
( j − 1)v2(E) if j = i,
0 otherwise.

(2.44)

Again we can allow g to have an extra factor v0(x) since we can remove it by the
transformation from x to ζ defined by (2.39).

If instead of (2.40) we assume that

g(x, E) = v1(E) + v2(E)x + v3(E)x2 (2.45)

we can, as somewhat more complicated computations show, keep the w̃ specified in
(2.43), but adapt H0(E) slightly as follows:

(H0(E))i j = −(k − i)v3(E) if j = i + 1, (2.46)
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while keeping the entries for all other combinations of i and j as in (2.44). But in
addition we need to replace (2.31) by

μ(x, E) = γ0(x)g(x, E) + μ0(E) + (k − 1)v3(E)x, (2.47)

which, nota bene, involves k. So if we consider g and μ as given, there can be at most
one k for which this works. Again we can allow a factor v0(x) in g and work with ζ

defined by (2.39).
The main result of the present paper is that problem (2.30), with {w1, w2, . . . , wk}

linearly independent, admits no other solution than the ones described above.

3 Physiologically structured populationmodels

The formulation of a population model starts at the individual level with the specifica-
tion of the individual states (i-states for short) representing physiological conditions
that distinguish individuals from one another. The set of all admissible i-states is
denoted by Ω . In the present paper we restrict ourselves to the case of a finite dimen-
sionalΩ ⊂ R

n which we make a measurable space by equipping it with the σ -algebra
Σ of all Borel sets. This measurable space is called the individual state space (i-state
space). Our main results concern n = 1 withΩ an interval, possibly of infinite length.
In that case one may think of the i-state as, for example, the size of an individual and
we shall indeed often refer to the i-state as size.

The world in which individuals lead their lives has an impact on their development
and behaviour. We capture the relevant aspects of the external world in a variable
called the environmental condition denoted by E and taken from a set denoted by E .
One may think of E as a specification of food concentration, predation pressure and,
possibly, other quantities like temperature or humidity.

Dependence among individuals arises from a feedback loop: the individuals them-
selves exert an influence on the environmental condition, for instance, by consuming
food or serving as food for predators. As a rule, this feedback loop involves several
species. We refer to the paper by Diekmann et al. (2010) for a concrete example. Note,
however, that the example of cannibalism shows that this rule is not universal.

We consider the environmental condition as input and investigate how the input
leads to output that comprises the contribution to the (change of) the environmental
condition of the species itself, or other species, or any other quantity that we happen to
be interested in. By taking population outputs as inputs for other populations or inani-
mate resources, we can build a dynamical model of a community. The ultimate model
incorporates dependence among individuals and leads to nonlinear equations. But each
building block considers the environmental condition as a given input and computes
population output by summing the contributions by individuals. The present paper
focusses on the population state (p-state for short) linear (but otherwise nonlinear)
input–output map generated by a single building block.

The processes that have to be modelled are:

– i-state development (called growth for short),
– survival,
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– reproduction (how much offspring and with what i-state at birth).

We assume that, given the environmental condition, growth is deterministic.We further
assume that reproduction can be described by a per capita rate. We thus exclude, for
instance, cell fission occurring exactly when the mother cell reaches a threshold size
(see Example 8.5). Accordingly, and in line with Metz and Diekmann (1986) and de
Roos et al. (2013), we introduce the three key model ingredients:

– the growth rate g(x, E),
– the death rate μ(x, E),
– the reproduction rate β(x, E, ω), ω ∈ Σ .

Again we warn the readers that our use of the symbol ω for a measurable subset of Ω

differs from the notational convention in probability theory.
The reproduction rate β should be interpreted as follows: the rate at which an

individual of size x gives birth under environmental condition E is β(x, E,Ω) and
the state-at-birth of the offspring is distributed according to the Borel probability
measure β(x, E, ·)/β(x, E,Ω).

Once we have a model at the i-level, it is a matter of bookkeeping to lift it to
the p-level (Metz and Diekmann 1986; Diekmann and Metz 2010): Equating a p-
level fraction to an i-level probability one obtains the deterministic (that is, the large
population limit) link between the two levels. Still there are choices to be made for the
formalism to employ: it could be partial differential equations (Metz and Diekmann
1986; Perthame 2007; Gwiazda and Marciniak-Czochra 2010) or renewal equations
(RE) (Diekmann et al. 1998, 2001). Here we choose RE, albeit not in the most general
form, since reproduction is described by a per capita rate.

As a first step we build composite ingredients from the basic ingredients g, μ, and
β. We shall do so without specifying the nature of the environmental condition E , in
particular, without specifying the space E to which E belongs. Often we conceive of
the environmental condition as a given function of time. When E occurs as a subscript
to a function with argument (t, s) this entails that E(τ ) is given for τ ∈ [s, t].

We shall provide a constructive definition of the following quantities:

XE (t, s, x) := the i-state at time t, given survival and given the input

τ �→ E(τ ), of an individual that had i-state x ∈ Ω at time

s ≤ t,

FE (t, s, x) := the survival probability up to time t, given the input τ �→ E(τ ),

of an individual that had i-state x ∈ Ω at time

s ≤ t .

We assume that g and τ �→ E(τ ) are such that the initial value problem

dξ

dτ
(τ ) = g(ξ(τ ), E(τ )), ξ(s) = x (3.1)

has a unique solution ξ(τ ) on [s, t] and define

XE (t, s, x) := ξ(t). (3.2)
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We further assume that μ, g, and τ �→ E(τ ) are such that also the initial value
problem

d f

dτ
(τ ) = −μ(ξ(τ), E(τ )) f (τ ), f (s) = 1 (3.3)

has a unique solution f (τ ) on [s, t] and define

FE (t, s, x) := f (t). (3.4)

Let

u0E (t, s, x, ω) := probability that, given the input τ �→ E(τ ),

an individual that had i-state

x ∈ Ω at time s ≤ t is still alive at time

t and has i-state in the set ω ∈ Σ.

Then, since the growth of an individual is deterministic, we have

u0E (t, s, x, ω) = FE (t, s, x)δXE (t,s,x)(ω), (3.5)

that is, the (unless survival is guaranteed) defective probability distributionu0E (t, s, x, ·)
is a point measure concentrated at position XE (t, s, x) ∈ Ω of massFE (t, s, x). Let

β1
E (t, s, x, ω) := the rate at which, given the input τ �→ E(τ ),

an individual that had i-state

x ∈ Ω at time s ≤ t produces at time t

offspring with i-state-at-birth in the set ω ∈ Σ.

Then

β1
E (t, s, x, ω) = FE (t, s, x)β (XE (t, s, x), E(t), ω) . (3.6)

Lemma 3.1 Given the input τ �→ E(τ ) defined on [s, t], the relations

u0E (t, s, x, ω) =
∫

Ω

u0E (t, τ, y, ω)u0E (τ, s, x, dy), (3.7)

β1
E (t, s, x, ω) =

∫
Ω

β1
E (t, τ, y, ω)u0E (τ, s, x, dy)

= FE (τ, s, x)β1
E (t, τ, XE (τ, s, x), ω) (3.8)

hold for all τ ∈ (s, t) and all ω ∈ Σ .

123



226 O. Diekmann et al.

Relation (3.7) is the Chapman–Kolmogorov equation and (3.8) is a similar consistency
relation relating growth, survival and reproduction.

We omit the straightforward proof of Lemma 3.1, but note that, essentially, the
consistency relations reflect the uniqueness of solutions to Eqs. (3.1) and (3.3).

The composite ingredients u0E andβ1
E satisfying (3.7) and (3.8) are the starting point

for a next round of constructive definitions. They are examples of kernels parametrised
by the input (cf. Diekmann et al. 2001). Such a kernel φE assigns to each input
τ �→ E(τ ) defined on [s, t] a function φE (t, s, ·, ·) : Ω × Σ → R which is bounded
and measurable with respect to the first variable and countably additive with respect to
the second variable. This is to say that for fixedω ∈ Σ the function x �→ φE (t, s, x, ω)

is bounded and measurable while for fixed x ∈ Ω the map ω �→ φE (t, s, x, ω) is a
finite signed measure.

The product (φ�ψ)E of two kernels φE andψE parametrised by the input is defined
by

(φ�ψ)E (t, s, x, ω) =
∫ t

s

∫
Ω

φE (t, τ, y, ω)ψE (τ, s, x, dy)dτ. (3.9)

The �-product is associative.
For k ≥ 2 we define recursively

βk
E :=

(
β1�βk−1

)
E

(3.10)

The interpretation of βk
E is as follows: Given the input τ �→ E(τ ) defined on [s, t],

the quantity β2
E (t, s, x, ω) is the rate at which grandchildren to an individual that

had i-state x at time s are born at time t with i-state-at-birth in the set ω ∈ Σ .
The quantity β3

E (t, s, x, ω) has the same interpretation but for great-grandchildren
and βk

E (t, s, x, ω) for kth generation offspring. To get the combined birth rate of all
descendants of such an individual we sum up over all generations and define

βc
E :=

∞∑
k=1

βk
E , (3.11)

where the superscript c stands for clan.
Because every member of the clan is either a child of the ancestor or a child of a

member of the clan, or, alternatively, either a child of the ancestor or a member of
the clan of a child of the ancestor, we obtain a consistency relation in terms of the
following RE:

βc
E = β1

E +
(
β1�βc

)
E

= β1
E +

(
βc�β1

)
E

. (3.12)

Mathematically, (3.12) means that βc
E is the resolvent kernel of the kernel β1

E (cf.
Gripenberg et al. 1990).
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In order to incorporate both the founding ancestor and the development of the
descendants after birth, we finally define

ucE = u0E +
(
u0�βc

)
E

. (3.13)

For later use we note that

βc
E (s, s, x, ω) = β1

E (s, s, x, ω) = β(x, E(s), ω) (3.14)

and

ucE (s, s, x, ω) = u0E (s, s, x, ω) = δx (ω). (3.15)

The clan-kernels ucE and βc
E satisfy the same consistency relations as u0E and β1

E
of Lemma 3.1.

Theorem 3.2 Given the input τ �→ E(τ ) defined on [s, t], the relations

ucE (t, s, x, ω) =
∫

Ω

ucE (t, τ, y, ω)ucE (τ, s, x, dy), (3.16)

βc
E (t, s, x, ω) =

∫
Ω

βc
E (t, τ, y, ω)ucE (τ, s, x, dy) (3.17)

hold for all τ ∈ (s, t) and all ω ∈ Σ .

The proof of Theorem 3.2 proceeds by proving (3.17) first and next use this identity
to verify (3.16). The papers (Diekmann et al. 1998, 2001, 2003) contain a much
more detailed exposition of this constructive approach, including proofs of (3.16) and
(3.17) in a generalised form with the instantaneous rate β1

E replaced by cumulative
offspring production Λ, necessitating the use of the Stieltjes integral, which can be
avoided here since we assume that offspring are produced at a per capita rate, so with
some probability per unit of time. In our paper (Diekmann et al. 1998) we considered
general linear time dependent problems (the time dependence corresponding to fixing
an input). In the paper (Diekmann et al. 2001) we explicitly considered input, but
focussed on the feedback loop that captures dependence. As the notation of (Diekmann
et al. 2001) is not ideal for investigating the problem introduced in the next section,
we have adopted in the present exposition a different, more suitable notation, viz. the
use of the subscript E . In the paper (Diekmann et al. 2003) the main objective was to
characterise the steady states.

The central idea of the modelling and analysis methodology of physiologically
structured populations is that we view the population state as a measure m on Ω .
We use the kernel ucE to define operators Uc

E (t, s) that map the p-state at time s to
the p-state at time t as follows. Assuming that all individuals experience the same
environmental condition E , we can associate to each measure m a new measure

(
Uc

E (t, s)m
)
(ω) :=

∫
Ω

ucE (t, s, x, ω)m(dx) (3.18)
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and note that the Chapman–Kolmogorov relation (3.16) translates into the semigroup
property

Uc
E (t, s) = Uc

E (t, τ )Uc
E (τ, s), s < τ < t, (3.19)

while (3.15) yields

Uc
E (s, s) = I . (3.20)

Note that we may replace the superscript c in (3.18) by 0 and use (3.7) to deduce the
semigroup property for U 0

E . That U
0
E (s, s) = I follows again from (3.15). Families

of linear maps that satisfy the conditions (3.18) and (3.20) are called state-linear
dynamical systems with input.

In a previous paper (Diekmann et al. 2018) we have already considered what
amounts to population level conditions for ODE-reducibility, in this paper we concen-
trate on finding i-level ones.

4 Finite dimensional state representation

4.1 General considerations

Let Y be a vector space. We do not yet fix a topology for Y , but note that if Y ′ is a
separating vector space of linear functionals on Y , then the weakest topology on Y for
which all y′ ∈ Y ′ are continuous (the so-called w(Y ,Y ′)-topology) makes Y into a
locally convex space whose dual space is Y ′ (Rudin 1973; Theorem 3.10, p.62).

Let UE be a state-linear dynamical system with input τ �→ E(τ ), which at this
point has no connection yet with either U 0

E or Uc
E . This means that each UE (t, s) is a

linear operator on Y and

UE (s, s) = I , (4.1)

UE (t, s) = UE (t, τ )UE (τ, s), s < τ < t . (4.2)

If a vector topology has been chosen for Y we also require the operators UE (t, s) to
be continuous with respect to this topology.

We are interested in finding a finite dimensional exact reduction (or, lumping) of
UE (t, s).More precisely,wewant, if possible, to choose a separating vector spaceY ′ of
linear functionals on Y and construct a w(Y ,Y ′)-continuous linear map P : Y → R

k

and a k × k matrix K (E) such that

PUE (t, s) = ΦE (t, s)P, (4.3)

where ΦE (t, s) is the fundamental matrix solution of the k-dimensional ODE-system

dN

dτ
(τ ) = K (E(τ ))N (τ ). (4.4)
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The w(Y ,Y ′)-continuous linear map P can be represented by elements Wi ∈
Y ′, i = 1, 2, . . . , k as

(Py)i = 〈y,Wi 〉 . (4.5)

To avoid useless variables, P should be surjective or, equivalently, the functionals
W1,W2, . . . ,Wk should be linearly independent.

The adjoint of a forward evolutionary system characterised by (4.1)–(4.2) is a
backward evolutionary system (see Clément et al. 1988; Diekmann et al. 1995). For
these it is more natural to think of s as the dynamic variable with respect to which
we differentiate. Since the restriction of an evolutionary system to the diagonal in the
(t, s)-plane is the identity operator, the derivative with respect to t is simply minus the
derivative with respect to s at the diagonal. This observation suffices for our purpose
and we therefore do not elaborate the forward-backward duality here.

Let W denote the k-vector with components Wi . We may then rewrite (4.3) in the
form

(UE (t, s))∗ W = ΦE (t, s)W (4.6)

as a shorthand for

(UE (t, s))∗ Wi =
k∑
j=1

(ΦE (t, s))i j W j , i = 1, 2, . . . , k. (4.7)

Since the right hand side of (4.7) is differentiable, the same must be true for the left
hand side. By differentiation we obtain the following task:

TASKL: d

dt
(UE (t, s))∗ W∣∣t=s

= K (E(s))W .

Here the subscript L refers to lumpability and the task is to find k elements Wi ∈ Y ∗
such that

– the derivatives exist,
– the outcome is a linear combination, with input dependent coefficients, of the
elements Wi .

Assuming that the derivative exists, we may write

d

dt
(UE (t, s))∗ W∣∣t=s

= A(E(s))∗W (4.8)

and in Sects. 2.1 and 8 we employ the notation of the right hand side.
In this paper we accomplish TASKL for the state-linear dynamical systemU 0

E with
input introduced in Sect. 3. In fact, we characterise the growth rates g and the death
rates μ for which exact reduction is possible and we compute the corresponding W
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Y
Uc
E(t, s)

Y

P

R
k

ΦE(t, s)
R

k

P

O(E(t))

Q(E(t))

R
r

Fig. 2 Structure of models with output and finite dimensional reduction

and K (E). In order to explain the relevance of these results for the dynamical system
Uc

E we now widen the perspective by introducing output.
We return to (4.1) and (4.2) and complement them by aw(Y ,Y ′)-continuous linear

map

O(E) : Y → R
r . (4.9)

We call

O(E(t))UE (t, s)y (4.10)

the output at time t , given the state y at time s and the input τ �→ E(τ ) defined on
[s, t]. The idea is that the state itself is not observable, only the output can bemeasured.
We now ask the following question: can, in fact, the relation between the pair (initial
state, input) on the one hand and output on the other, alternatively and equivalently
be described in terms of a finite dimensional dynamical system? That is, when is the
diagram in Fig. 2 commutative for all inputs τ �→ E(τ ) defined on [s, t]?

More precisely, we again want to find an integer k and continuous linear maps P
and K (E), but in addition to (4.3) we now require

O(E(t))UE (t, s) = Q(E(t))ΦE (t, s)P, (4.11)

where the k × r matrix Q(E) is also to be determined. In other words, we require
that, given the state y at time s and the input τ �→ E(τ ) defined on [s, t], the output
at time t is obtained by applying Q(E(t)) to the solution at time t of (4.4) with initial
condition

N (s) = Py. (4.12)

We stress that, as far as the output is concerned, the reduction does not involve loss
of information. At the black box level we cannot distinguish between the true system
UE and its finite dimensional counterpart ΦE .

Remark 4.1 In principle we could allow P to depend on E and write the initial condi-
tion (4.12) as

N (s) = P(E(s))y. (4.13)
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But if we can choose E(s) without affecting UE (t, s), then, since also ΦE (t, s) is
insensitive to the precise value of E in s, it follows that after all, P cannot depend on
E . A similar observation was made for a related problem in Remark 7.3 of (Diekmann
et al. 2018).

Taking t = s in (4.11) we find that necessarily

O(E) = Q(E)P. (4.14)

This allows us to rewrite (4.11) as

Q(E(t)) (PUE (t, s) − ΦE (t, s)P) = 0. (4.15)

The aim is now to derive necessary and sufficient conditions on O(E) and UE for
the existence of P, Q(E), K (E) that make (4.15) a valid identity for aminimal value
of k. Note that for k > r the Eq. (4.15) allows for possibly redundant information in
(4.4). Indeed, adding components to N that are unobservable, in the sense that they
do not contribute directly or indirectly to future output, does not harm; by requiring
k to be minimal we avoid such redundancy. To derive the conditions, we follow an
iterative procedure that is well-known in systems theory.

Our starting point is the output map O(E). For (4.14) to be possible at all, the range
of O(E)∗ : Rr → Y ′ should be contained in a finite dimensional subspace which is
independent of E . Without loss of generality we can assume that this subspace has
dimension r . Indeed, if the dimension is less than r there is dependence among the
output components and by choosing suitable coordinates we can reduce r without
losing any information.

Let
{
W 0

1 ,W 0
2 , . . . ,W 0

r

} ⊂ Y ′ be a basis for the subspace of Y ′ that contains
the range of O(E)∗. Recall the representation (4.5) of P in terms of the elements
Wi ∈ Y ′, i = 1, 2, . . . , k. From (4.14) we conclude that for all i = 1, 2, . . . , r , the
element W 0

i belongs to the subspace spanned by {W1,W2, . . . ,Wk}. In particular,
k ≥ r . By a suitable choice of basis for Rk we can arrange things so that

Wi = W 0
i , i = 1, 2, . . . , r . (4.16)

Define P0 : Y → R
r by

(P0y)i =
〈
y,W 0

i

〉
, i = 1, 2, . . . , r . (4.17)

Then

O(E) = Q0(E)P0 (4.18)

with Q0(E) : Rr → R
r such that for all v ∈ R

r

O(E)v = 0 for all E ∈ E ⇒ v = 0 (4.19)
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because we have chosen r in the optimal way and
{
W 0

1 ,W 0
2 , . . . ,W 0

r

}
is a basis

for the range of O(E)∗. In the first step in the iterative procedure we try to find
K0(E) : Rr → R

r such that (4.15) in the guise of

Q0(E(t)) (P0UE (t, s) − ΦE (t, s)P0) = 0. (4.20)

holds, where ΦE (t, s) is now the fundamental matrix solution of the r -dimensional
system

dN

dτ
(τ ) = K0(E(τ ))N (τ ). (4.21)

On account of (4.19) we may reduce (4.20) to

P0UE (t, s) = ΦE (t, s)P0 (4.22)

if, as we assume, we can manipulate E(t) without changing P0UE (t, s).
One should compare (4.22) with (4.3), but there is an important difference: deter-

mining the map P or, equivalently, the elements Wi , i = 1, 2, . . . , k of Y ′ is part of
the task whereas the elementsW 0

i , i = 1, 2, . . . , r are known because O(E) is given.
So rather than a task, we now have the following test:

TEST0 : d

dt
(UE (t, s))∗W 0∣∣t=s

?= K0(E(s))W 0.

In more detail the test consists in answering the following questions:

– Does d
dt U

∗
E (t, s)W 0

i
∣∣t=s

exist for i = 1, 2, . . . , r?

– Is the outcome a linear combination, with input dependent coefficients, of the
elements W 0

1 ,W 0
2 , . . . ,W 0

r ?

If, for some index i , the derivative does not exist, finite dimensional state representation
is not possible. In contrast, there is still hope that a finite dimensional state representa-
tion might be possible if a derivative is not in the span of

{
W 0

1 ,W 0
2 , . . . ,W 0

r

}
. If that

is the case, we add the derivative to the basis and thus enlarge the subspace. Varying
both the index i and the value of E(s), we obtain a new subspace of Y ′ that may, or
may not, be finite dimensional. If it is finite dimensional we perform TEST1 which
is the analogue of TEST0, but with W 0 extended to W 1, a vector the components
of which span the new subspace. If necessary this procedure can be repeated. If the
process leads after a finite number of steps to a finite dimensional subspace, we are in
business. If the process does not terminate, finite dimensional state representation is
not possible.

In general, finding P and K (E) such that (4.3) holds, or, in other words, performing
TASKL, is hard since, literally, one does not know how to start. In contrast, for a given
output O(E), the tests TEST0, TEST1, . . . yield a constructive procedure.

If one does manage to characterise P and K (E) such that (4.3) holds, one can give
the output problem a twist: (4.11) holds for all outputs of the form (4.14). Below we
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shall follow this road while considering reproduction as part of the output. In this
manner we can focus on (4.3) for U 0

E and in the end still obtain results for Uc
E as

described in the next subsection.

4.2 Physiologically structured populationmodels

As explained in Sect. 3, it is natural to consider the p-state of a physiologically
structured population as a measure and therefore the p-state space should be a lin-
ear subspace Y of the vector space M(Ω) of all Borel measures on Ω . One reason for
not choosing thewholeM(Ω) as p-state space is that wemaywant to keep biologically
relevant quantities such as the total biomass finite. If in the one-dimensional i-state
space case x denotes the size of an individual, then

∫
Ω
xm(dx) represents the total

biomass and it is finite only for measures m in a proper subspace of M(Ω) if Ω is
an infinite interval. An other reason is that when we check whether a reduction of the
infinite dimensional model is ODE-reducible we construct aw(Y ,Y ′)-continuous lin-
ear map P : Y → R

k or, equivalently, linear functionals Wi ∈ Y ′, now representable
by locally bounded measurable functions wi on Ω via the pairing

(Pm)i = 〈m,Wi 〉 =
∫

Ω

wi (x)m(dx), (4.23)

and we may end up with functions wi for which the integral in (4.23) is not finite for
every m ∈ M(Ω). So we want these functions wi to represent elements in Y ′ and
consequently have to restrict Y to a suitably chosen subspace of M(Ω). The freedom
we have in choosing Y and Y ′ therefore comes in very handy.

We denote the Rk-valued function with components wi by w. Later we shall show
that when a finite dimensional state representation exists for the physiologically struc-
tured population model, the function w is actually continuous, but not necessarily
bounded, on Ω .

Consider the dynamical systems U 0
E and Uc

E with input of Sect. 3. The system U 0
E

represents a transport-degradation process (without reproduction)whileUc
E represents

a physiologically structured population model with reproduction.
Using (3.18), in its superscript 0 version, (3.13) and (3.5) we find that for the

transport-degradation case, (4.3) amounts to

FE (t, s, x)w(XE (t, s, x)) = ΦE (t, s)w(x), (4.24)

while for complete physiologically structured population models, it amounts to

FE (t, s, x)w(XE (t, s, x))

+
∫ t

s

∫
Ω

FE (t, τ, y)w(XE (t, τ, y))FE (τ, s, x)βc
E (τ, s, x, dy)dτ

= ΦE (t, s)w(x). (4.25)
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Using in addition (3.14) and (3.5) we can elaborate TASKL by taking the derivative
with respect to t of both sides of (4.25) and then putting t = s. Since t �→ XE (t, s, x)
is differentiable, the differentiability of the left hand side of (4.25) implies that the
function x �→ w(x) is differentiable, at least in certain directions. More precisely, for
x ∈ Ω the linear approximation of w(x + h) − w(x) exists as a map acting on the
space of vectors h spanned by g(x, ·). This map we call (Dw)(x). We therefore find
that necessarily

(Dw)(x)g(x, E) − μ(x, E)w(x) = K (E)w(x). (4.26)

for the transport-degradation model, and

(Dw)(x)g(x, E) − μ(x, E)w(x) +
∫

Ω

w(y)β(x, E, dy) = K (E)w(x). (4.27)

for the population model.
If the transport-degradationmodel isODE-reducible, that is, ifwe canfind a positive

integer k, linearly independent measurable functions {w1, w2, . . . , wk} and a k × k
matrix K (E) so that (4.26) holds, the physiologically structured population model is
alsoODE-reducible ifwe impose the following restriction on the reproduction process:
There exists a k × k matrix M(E) such that

∫
Ω

w(y)β(x, E, dy) = M(E)w(x). (4.28)

The reason is simply that when this is the case, we can write the Eqs. (4.26) and (4.27)
in a unified way as

(Dw)(x)g(x, E) = (H(E) + μ(x, E)I ) w(x), (4.29)

where H(E) = K (E) for the transport-degradation model and H(E) = K (E) −
M(E) for the population model.

Note that the restriction (4.28) is satisfied if reproduction is (part of the) output in
the following sense:

β(x, E, ·) =
k∑
j=1

β j (E, ·)w j (x), (4.30)

because then we can take M(E) to be the k × k matrix with entries

Mi j (E) =
∫

Ω

wi (y)β j (E, dy). (4.31)

But there are other situations in which (4.28) is satisfied. The simplest case is when
M(E) = 0. Note that this does not imply the absence of reproduction, merely that β
is annihilated by all wi or, in other words, that the functions wi measure properties
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of individuals that are preserved under reproduction (as a concrete example, think of
mass in cell-fission models).

Yet another case, viz. the one in which β has the form

β(x, E, ω) = β̃(x, E)β0(ω), (4.32)

will be briefly discussed in Sect. 8.
When n = 1, that is, when the i-state space is one-dimensional, (4.29) reduces to

the following equation:

g(x, E)w′(x) = (H(E) + μ(x, E)I )w(x). (4.33)

In Sect. 5 we address the following problem: list necessary and sufficient conditions
on g and μ for the existence of a measurable function w : Ω → R

k with a priori
unknown k such that there exists a k × k matrix H(E) for which (4.33) holds.

To solve the problem, we heavily use that (4.33) is a local equation in the x-
variable. For a fixed value E0 the solutionw of (4.33) is, essentially, given by a matrix
exponential. Once w has been determined, we can view (4.33) as a constraint for the
ways in which g, μ and H can depend on E .

5 A catalogue of models that admit a finite dimensional state
representation

In this section we present an explicit catalogue of all possible combinations of
model ingredients that allow a finite dimensional state representation for transport-
degradation models with Ω ⊂ R

1 an interval that may have infinite length. The
catalogue extends naturally to all physiologically structured population models in
which the submodel for reproduction is restricted by (4.28).

One should choose the individual state space Ω such that every point in it is reach-
able. The following assumption guarantees this. We shall also make use of it in the
proofs of our results.

Assumption 5.1 There exists a constant environmental condition E0 such that

g(x, E0) > 0 for all x ∈ Ω.

The catalogue consists of three families Fi , i = 1, 2, 3, of functions g and μ for
which we specify w and H(E) such that (4.33) holds. These families involve infinite
dimensional parameters in the form of functions γ0 : Ω → R, μ0 : E → R, v0 :
Ω → R, vi : E → R, i = 1, 2, 3. We do not claim that g, μ and w are biologically
meaningful for all choices of these parameters (in fact they are not). The catalogue
simply provides a precise description of the constraints on g and μ that enable an
equivalent, as far as the output map defined by w is concerned, finite dimensional
representation of the corresponding transport-degradation model.

A transformation of the i-state variable affects the death rate μ and the output func-
tion w in the usual manner. But since the growth rate needs to keep its interpretation,
we have to incorporate a transformation specific factor. If
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y = φ(x) (5.1)

and

dx

da
= g(x, E), (5.2)

then

dy

da
= φ′(x)dx

da
= φ′(x)g(x, E) = φ′ (φ−1(y)

)
g
(
φ−1(y), E

)

= 1(
φ−1

)′
(y)

g
(
φ−1(y), E

)
(5.3)

and accordingly

g̃(y, E) = 1(
φ−1

)′
(y)

g
(
φ−1(y), E

)
(5.4)

is the growth rate of the transformed i-state variable y.
Transformation of the i-state-variable induces a transformation of the parameters

in our families Fi . As we shall indicate below, the multiplicative factor highlighted by
(5.4) allows us to transform the i-state variable in such a way that the formula for the
growth rate becomes relatively simple.

Let L : Rk → R
k be linear and invertible. If (4.33) holds and we define

w̃ = Lw,

H̃ = LHL−1, (5.5)

then, by applying L to the identity (4.33), we obtain

g(x, E)w̃′(x) = (
H̃(E) + μ(x, E)I

)
w̃(x). (5.6)

So, if g and μ are given and (w, H) is a solution to (4.33), then (w̃, H̃) defined by
(5.5) is also a solution. As (5.5) defines an equivalence relation we see that solutions
(w, H) to (4.33) occur in equivalence classes. In our catalogue we choose w such that
H has a relatively simple form, but one should keep in mind that this choice yields a
representative of an equivalence class.

As a reference for integration we choose a reference point xb ∈ Ω . If all individuals
are born with the same i-state at birth, we choose this i-state as xb.

We are now ready to present our first family in the catalogue.
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F1: scalar representations

k k = 1
Parameters γ0 : Ω → R, μ0 : E → R

g No restriction
μ μ(x, E) = γ0(x)g(x, E) + μ0(E)

w w(x) = exp
(∫ x

xb
γ0(y)dy

)
H H(E) = −μ0(E)

The proof that (4.33) is an identity if F1 applies is straightforward and omitted.
In the rest of this section we assume that k ≥ 2 and we supplement (4.33) with the

non-degeneracy condition

(H1) w1, w2, . . . , wk are linearly independent as scalar functions of x ∈ Ω .

Among the parameters of the second family are a constant (that is, independent of
both x and E) k × k matrix Λ and a constant vector w(xb) ∈ R

k specifying the value
of w in xb. The identity (4.33) holds for all choices of Λ and w(xb). But (H1) has also
to be satisfied. Therefore we have to impose the condition

(H2) the eigenvalues of Λ have geometric multiplicity one

on the matrix Λ and the condition

(H3) if {θ1, θ2, . . . , θk} is a basis for Rk consisting of eigenvectors and generalised
eigenvectors of Λ and

w(xb) =
k∑
j=1

d jθ j ,

then d j �= 0 whenever θ j is a generalised eigenvector of highest rank

on the combination of Λ and w(xb).
We are now ready for the second family in our catalogue.

F2: physiological age

k k ≥ 2
Parameters γ0 : Ω → R, μ0 : E → R, v0 : Ω → R, v1 : E → R

Λ ∈ R
k×k and w(xb) ∈ R

k such that (H2) and (H3) hold.

ζ(x) := ∫ x
xb

dy
v0(y)

g g(x, E) = v0(x)v1(E)

μ μ(x, E) = γ0(x)g(x, E) + μ0(E)

w w(x) = exp
(∫ x

xb
γ0(y)dy

)
exp (ζ(x)Λ) w(xb)

H H(E) = v1(E)Λ − μ0(E)I

Note that we do not lose any generality by assuming that Λ is in Jordan normal

form. Apart from the common factor exp
(∫ x

xb
γ0(y)dy

)
the components of w are

therefore linear combinations of k building blocks of the form
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(ζ(x))m eλ j ζ(x), (5.7)

where j = 1, 2, . . . , r , m = 0, 1, . . . , k j − 1,
∑r

j=1 k j = k. The condition (H3)
guarantees that each and every building block (5.7) contributes to at least one com-
ponent of w. By choosing w(xb) such that d j = 1 whenever θ j is a generalised
eigenvector of highest rank and zero otherwise, the components are (because Λ is
assumed to be in Jordan normal form) precisely these building blocks.

We now present the third and last family of the catalogue.

F3: generalised von Bertalanffy growth

k k ≥ 2
Parameters γ0 : Ω → R, μ0 : E → R, v0 : Ω → R, v j : E → R, j = 1, 2, 3.

ζ(x) := ∫ x
xb

dy
v0(y)

g g(x, E) = v0(x)
(
v1(E) + v2(E)ζ(x) + v3(E)ζ(x)2

)
μ μ(x, E) = γ0(x)g(x, E) + μ0(E) + (k − 1)v3(E)ζ(x)

w w j (x) = exp
(∫ x

xb
γ0(y)dy

)
ζ(x) j−1, j = 1, 2, . . . , k.

H H(E) = H0(E) − μ0(E)I

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −(k − 1)v3 0 · · · 0
v1 v2 −(k − 2)v3 0
0 2v1 2v2 0
.
.
. 0 3v1 0

. . .

0 · · · · · · (k − 1)v1 (k − 1)v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is important to realise that the parametrisation is far from unique. For instance,
if we write

g = 1

ζ ′
(
v1 + v2ζ + v3ζ

2
)

it is not difficult to check that the linear fractional transformation

η = aζ + b

cζ + d

with ad − bc �= 0 yields the alternative form

g = 1

η′
(
ṽ1 + ṽ2η + ṽ3η

2
)

with

ṽ1 = a2v1 − abv2 + b2v3
ad − bc

,

123



Finite dimensional state representation of physiologically… 239

ṽ2 = −2acv1 + (ad + bc)v2 − 2bdv3

ad − bc
,

ṽ3 = c2v1 − cdv2 + d2v3
ad − bc

.

With a little bit more effort one can check that

μ = γ0g + μ0 + (k − 1)v3ζ

becomes

μ = γ̃0g + μ̃0 + (k − 1)̃v3η

with

γ̃0 = γ0 + c(k − 1)ζ ′

cζ + d
,

μ̃0 = μ0 − (k − 1)(acv1 − bcv2 + bdv3).

Note that

∫ x

xb
γ̃0(y)dy =

∫ x

xb
γ0(y)dy + (k − 1) log

(
cζ + d

d

)

and that, accordingly,

w̃ j (x) = exp

(∫ x

xb
γ̃0(y)dy

)
η(x) j−1

= exp

(∫ x

xb
γ0(y)dy

)(
1

d

)k−1

(aζ + b) j−1(cζ + d)k− j .

So apart from the factor exp
(∫ x

xb
γ0(y)dy

)
the components w̃ j (x) are linear combi-

nations of the powers ζ �, � = 0, 1, . . . , k − 1. We conclude that the requirement that
{w1, w2, . . . , wk} and {w̃1, w̃2, . . . , w̃k} are equivalent systems of output functionals
is indeed satisfied.

A transformation y = φ(x) leaves the form of g invariant. Because of the extra
factor (recall (5.4)) we have to adapt γ0 by a factor, too. The net effect is that the
integral of γ0, and hence w, transforms in the standard manner.

By choosing y = ζ(x) as a new variable we eliminate the factor v0(x) and g
becomes a quadratic polynomial in the (transformed) i-state variable. If we subse-
quently take t = log ζ as the new i-state variable, we find that the growth rate of t has
the form

v1e
−t + v2 + v3e

t .
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If, alternatively, we take t = 2 arctan ζ as the new i-state variable, we can use the
identities

cos t = 1 − ζ 2

1 + ζ 2 ,

sin t = 2ζ

1 + ζ 2 ,

d

dζ
arctan ζ = 1

1 + ζ 2

to find that the growth rate of t now has the form

v1(1 + cos t) + v2 sin t + v3(1 − cos t).

We have presented the two transformations above for two reasons:

– they illustrate that appearances are deceptive (a growth rate may at first sight seem
to fail to fit into the catalogue, while in fact it does),

– they play a role in the proofs.

We are now ready to state our main results.

Theorem 5.2 If g, μ and w are of the form specified in either F2 or F3, then (4.33)
holds for the indicated matrix H(E) and w1, w2, . . . , wk are linearly independent
functions of x ∈ Ω .

Theorem 5.3 Assume that k ≥ 2 and that

(i) g, μ, w and H are such that (4.33) holds,
(ii) w1, w2, . . . , wk are linearly independent functions of x ∈ Ω .

Then necessarily g, μ and w can be brought into the form specified in either F2 or
F3 by a transformation of the i-state variable and a change of basis in Rk .

The proofs of these two theorems are given in the next section.

6 Proofs

6.1 Some spadework

As a prelude we recall some standard theory concerning linear ODE-systems (cf.
Hirsch and Smale 1974). Let Λ be a real k × k matrix. Then Λ defines a linear map
from C

k to C
k that leaves Rk , considered as the linear subspace of Ck consisting of

vectors with zero imaginary part, invariant. Let φ j,1, j = 1, 2, . . . , r be a maximal set
of linearly independent eigenvectors of Λ and let λ1, λ2, . . . , λr be the corresponding
eigenvalues. Thus the geometric multiplicity of an eigenvalue determines how many
times it is listed.Wechooseφ j,1 ∈ R

k ifλ j is real andφ j2,1 = φ j1,1 if (λ j1, λ j2) is a pair
of non-real complex conjugate eigenvalues. Let k1, k2, . . . , kr be the corresponding
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multiplicities, that is, k j is the length of the Jordan block generated by φ j,1. For
j = 1, 2, . . . , r and � = 1, 2, . . . , k j , let φ j,� be such that, with the convention
φ j,0 = 0,

Λφ j,� = λ jφ j,� + φ j,�−1 (6.1)

and, moreover, φ j,� ∈ R
k if λ j is real and φ j2,� = φ j1,� if (λ j1, λ j2) is a pair of

non-real complex conjugate eigenvalues. Then for the complex variable z we have

ezΛφ j,� = eλ j z

(
φ j,� +

�−1∑
m=1

zm

m!φ j,�−m

)
. (6.2)

The identity

r∑
j=1

k j = k (6.3)

holds and the set {φ j,�} is a basis forCk . So for any ψ(0) ∈ C
k there exist coefficients

c j,� ∈ C such that

ψ(0) =
∑
j,�

c j,�φ j,� (6.4)

and hence

ezΛψ(0) =
∑
j,�

c j,� e
λ j z

(
φ j,� +

�−1∑
m=1

zm

m!φ j,�−m

)
. (6.5)

When ψ(0) ∈ R
k we have c j,� ∈ R if λ j is real and c j2,� = c j1,� if (λ j1, λ j2) is a

pair of non-real complex conjugate eigenvalues. If we restrict the variable z to the real
axis we denote it by ξ . We have exp(ξΛ)ψ(0) ∈ R

k if ψ(0) ∈ R
k even though the

representation (6.5) possibly involves complex quantities. We want to determine con-
ditions on Λ and ψ(0) that guarantee that the components of exp(ξΛ)ψ(0), regarded
as real valued functions of the real variable ξ are linearly independent. To derive such
conditions we first investigate the complex setting.

A preliminary yet key observation is that the functions

z �→ zn1eλ1z and z �→ zn2eλ2z

are linearly dependent as complex functions if and only if λ1 = λ2 and n1 = n2. This is
obvious, because theWronskian determinant of the two functions vanishes identically
if and only if the latter condition is satisfied. By the same argument one obtains the
analogous results for a finite collection of functions of the form z �→ zn exp(λz). Recall
that for analytic functions the identical vanishing of the Wronskian is necessary and
sufficient for linear dependence (Bôcher 1900).

123



242 O. Diekmann et al.

Lemma 6.1 The components of

ψ(z) = ezΛψ(0) (6.6)

are linearly independent functions of the complex variable z if and only if the following
two conditions are met

(i) the eigenvalues of Λ have geometric multiplicity one,
(ii) c j,k j �= 0, j = 1, 2, . . . , r if ψ(0) is represented by (6.4).

Proof As (6.5) clearly shows, each component of ψ(z) is a linear combination of
building blocks of the form zm exp(λ j z). According to (6.3) there are exactly k build-
ing blocks. To make k linearly independent linear combinations we need k linearly
independent building blocks. It follows that the conditions (i) and (ii) are necessary.

By definition the components of ψ(z) are linearly independent if

d ∈ C
k, d · ψ(z) = 0 for all z ∈ C ⇒ d = 0. (6.7)

Since {φ j,�} is a basis for Ck , we have d = 0 if and only if d · φ j,� = 0 for j =
1, 2, . . . , r , � = 1, 2, . . . , k j . So we want to show that when (i) and (ii) hold, then

d · ψ(z) = 0 for all z ∈ C ⇒ d · φ j,� = 0 for all j, �. (6.8)

To do so, we deduce from (6.5) that

d · ψ(z) =
∑
j,�

c j,� e
λ j z

(
d · φ j,� +

�−1∑
m=1

zm

m!d · φ j,�−m

)
. (6.9)

Because of condition (i) the right hand side of (6.9) can be identically zero only if for
j = 1, 2, . . . , r

k j∑
�=1

c j,�

(
d · φ j,� +

�−1∑
m=1

zm

m!d · φ j,�−m

)
= 0 for all z ∈ C, (6.10)

or, equivalently,

k j−1∑
m=0

⎛
⎝

k j∑
�=m+1

c j,� d · φ j,�−m

⎞
⎠ zm

m! = 0 for all z ∈ C. (6.11)

Condition (6.11) in turn leads to

k j∑
�=m+1

c j,� d · φ j,�−m = 0, m = 0, 1, . . . , k j − 1. (6.12)
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Now assume that condition (ii) holds. Taking m = k j − 1 we find that necessarily
d ·φ j,1 = 0. Next, takingm = k j −2 and using d ·φ j,1 = 0, we find that d ·φ j,2 = 0.
Continuing in this way we prove (6.8) and consequently (6.7) holds. This completes
the sufficiency part of the proof. ��
Lemma 6.2 Let f j , j = 1, 2, . . . , k, be analytic functions defined in an open subset
A of C that contains an interval of R and assume that f j (A ∩ R) ⊂ R. Then the
functions f1, f2, . . . , fk are linearly independent as functions of a complex variable
if and only if their restrictions to A∩R are linearly independent as functions of a real
variable.

Proof This follows immediately from the fact that k analytic functions are linearly
dependent if and only if their Wronskian determinant vanishes identically (Bôcher
1900). ��
Corollary 6.3 Let Λ be a real k × k matrix and let ψ(0) ∈ R

k . The components of

ψ(ξ) = eξΛψ(0) (6.13)

are linearly independent functions of the real variable ξ if and only if the following
conditions are met

(i) the eigenvalues of Λ have geometric multiplicity one,
(ii) ifψ(0) is expressed as a linear combination of generalised eigenvectors ofΛ, then

the coefficients of generalized eigenvectors of highest rank are non-zero (cf. (6.4)
and condition (ii) of Lemma 6.1).

Let Λ and ψ(0) satisfy the conditions (i) and (ii) of Corollary 6.3. If we order
{ξm exp(λ jξ)} (say lexicographically) as {h�(ξ)}k�=1, then there exist coefficients d j�

such that

ψ j (ξ) =
k∑

�=1

d j�h�(ξ). (6.14)

Let c ∈ R
k . Then

c · ψ(ξ) =
k∑
j=1

c jψ j (ξ) =
k∑

�=1

⎛
⎝ k∑

j=1

c j d j�

⎞
⎠ h�(ξ). (6.15)

By the linear independence of {h�}k�=1 we have that c · ψ = 0 if and only if∑k
j=1 c j d j� = 0 for � = 1, 2, . . . , k. By Corollary 6.3 c · ψ = 0 implies c = 0.

This translates into

cD = 0 ⇒ c = 0, (6.16)
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where D is the k × k matrix with elements d j�. We conclude that D is invertible.
So when conditions (i) and (ii) of Corollary 6.3 hold, there exists an invertible trans-
formation D that relates the vector ψ(ξ) = exp(ξΛ)ψ(0) to the vector h(ξ) with
components h�(ξ).

Note that h�1 is complex valued if Im λ j1 �= 0, but that in that case there exists �2

such that h�2(ξ) = h�1(ξ) and, moreover, d j�2 = d j�2 .

6.2 Proof of Theorem 5.2

6.2.1 The model family F2

The proof that (4.33) holds for F2 amounts to a straightforward verification. The linear
independence of {w1, w2, . . . , wk} is guaranteed by Corollary 6.3. ��

6.2.2 The model family F3

Let g, μ,w, ζ be as specified in F3. Since

ζ(x) =
∫ x

xb

dy

v0(y)
,

ζ(x) is not constant and as a consequence the components

w j (x) = exp

(∫ x

xb
γ0(y)dy

)
ζ(x) j−1 (6.17)

of w are linearly independent functions of x .
To verify (4.33), which under F3 takes the form

g(x, E)
dw

dx
(x) = H0(E)w(x) + (μ(x, E) − μ0(E))w(x), (6.18)

note that

d

dx
(ζ(x)) j−1 = ( j − 1) (ζ(x)) j−2 1

v0(x)
(6.19)

and hence

g(x, E)
d

dx
(ζ(x)) j−1 = ( j − 1)

(
v1(E) (ζ(x)) j−2 + v2(E) (ζ(x)) j−1

+v3(E) (ζ(x)) j
)

. (6.20)

Differentiating (6.17) one obtains

d

dx
w j (x) = γ0(x)w j (x) + e

∫ x
xb

γ0(y)dy d

dx
(ζ(x)) j−1 (6.21)
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and multiplying (6.21) by g(x, E), taking (6.17), (6.19) and the form of μ(x, E)

specified in F3 into account, one obtains

g(x, E)
d

dx
w j (x) = γ0(x)g(x, E)w j (x)

+e
∫ x
xb

γ0(y)dy
( j − 1)

(
v1(E)ζ(x) j−2

+v2(E)ζ(x) j−1 + v3(E)ζ(x) j
)

= (μ(x, E) − μ0(E))w j (x)

+e
∫ x
xb

γ0(y)dy
(
( j − 1)v1(E)ζ(x) j−2 + ( j − 1)v2(E)ζ(x) j−1

−(k − j)v3(E)ζ(x) j
)

(6.22)

The j th component of the right hand side of (6.18) and the right hand side of (6.22)
contain the common term (μ(x, E) − μ0(E))w j (x). Thus to verify that (6.18) holds,
we only have to check that the j th component of the vector obtained by applying the

matrix H0(E) as specified in F3 to the vector
(
1 ζ(x) ζ(x)2 . . . ζ(x)k−1

)T
is

( j − 1)v1(E)ζ(x) j−2 + ( j − 1)v2(E)ζ(x) j−1 − (k − j)v3(E)ζ(x) j

and this is obviously the case. ��

6.3 Proof of Theorem 5.3

For k = 2 and for given H and w we may consider (4.33) as two linear equations in
the two unknowns g and μ. The solution has the form given in F3 with ζ, vi , γ0 and
μ0 expressed in terms of w and H . This computation provides a strong indication that
Theorem 5.3 is correct, but it does not yield a proof.

Our strategy is to focus first on the fixed value E0 of E such that g(x, E0) > 0
for all x ∈ Ω . The existence of such an E0 is guaranteed by Assumption 5.1. This
enables us to show that w is a transformed version of a matrix exponential and hence
consists of building blocks of the form ξm exp(λξ). After that we consider general E
and investigate the consequences for (4.33).

Define

V (x) := exp

(
−
∫ x

xb

μ(y, E0)

g(y, E0)
dy

)
w(x). (6.23)

Then (4.33) is equivalent to

g(x, E)V ′(x) = (H(E) + μ̃(x, E)) V (x) (6.24)
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with

μ̃(x, E) := μ(x, E) − g(x, E)

g(x, E0)
μ(x, E0) (6.25)

and hence

μ̃(x, E0) = 0 for all x ∈ Ω. (6.26)

Next define

τ(x) :=
∫ x

xb

dy

g(y, E0)
(6.27)

and

Φ(t) := V
(
τ−1(t)

)
. (6.28)

Then (6.24) is equivalent to

g̃(t, E)Φ ′(t) =
(
H(E) + μ̃

(
τ−1(t), E

))
Φ(t) (6.29)

with

g̃(t, E) = g
(
τ−1(t), E

)
g
(
τ−1(t), E0

) (6.30)

and hence

g̃(t, E0) = 1 for all t ∈ τ(Ω). (6.31)

It follows that

Φ(t) = etH(E0)Φ(0) (6.32)

and hence necessarily H(E0) and Φ(0) satisfy the conditions (i) and (ii) of Corollary
6.3 (as otherwise w would not consist of k linearly independent functions of x).

Letλ1, λ2, . . . , λr denote the eigenvalues ofH(E0)withmultiplicities k1, k2, . . . , kr
such that

∑r
p=1 kp = k. If we order {tm exp(λpt)} lexicographically as {h�(t)}k�=1,

the analogue of (6.14) reads

Φ(t) = DX(t). (6.33)

Applying the matrix D−1 to (6.29) we find

g̃(t, E)X ′(t) − μ̃
(
τ−1(t), E

)
X(t) = D−1H(E)DX(t). (6.34)
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Every component of the right hand side of (6.34) is a linear combination, with E-
dependent coefficients, of the building blocks

h�(t) = tmeλpt . (6.35)

The �th component of the left hand side of (6.34) reads

g̃(t, E)
(
mtm−1 + λpt

m
)
eλpt − μ̃

(
τ−1(t), E

)
tmeλpt .

Hence (6.34) implies that for p = 1, 2, . . . , r , m = 0, 1, . . . , kp − 1 one has

(
mtm−1 + λpt

m
)
g̃(t, E) − tmμ̃

(
τ−1(t), E

)
=

r∑
j=1

k j−1∑
�=0

c j�t
�e(λ j−λp)t ,

(6.36)

where the coefficients c j� depend on E, m and p.
Apart from g̃, μ̃ and powers of t , the identity (6.36) involves exponential functions

with exponents from the set

Up := {
λ j − λp : j = 1, 2, . . . , r

}
. (6.37)

Since (6.36) should hold for p = 1, 2, . . . , r , we are particularly interested in a
characterisation of

r⋂
p=1

Up.

As already observed above, we know that necessarily

λ j �= λ� if j �= �. (6.38)

Lemma 6.4 Let r ≥ 2. Then

r⋂
p=1

Up = {0} .

Proof Let α ∈ ⋂r
p=1Up and assume that α �= 0. Since α ∈ Uj there exists an

m = m( j) such that

λm = λ j + α. (6.39)

Because of (6.38), there is at most one m for which (6.39) holds. We write m =
s( j), with s standing for “successor”, and thus define a map s : {1, 2, . . . , r} →
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{1, 2, . . . , r}. The sequence 1, s(1), s2(1), . . . takes values in a finite set so necessarily
some value is taken at least twice. This implies that

s�( j) = j (6.40)

for some j and � ≥ 1. But (6.40) means that

λ j = λ j + �α (6.41)

so after all, α = 0. ��
Suppose that, with appropriate numbering of the eigenvalues of H(E0), we have

λ j = λ1 + ( j − 1)α. (6.42)

Then

Up = {( j − p)α : j = 1, 2, . . . , r} (6.43)

and hence

r⋂
p=2

Up = {−α, 0}. (6.44)

We now show that the existence of a non-zero element −α in
⋂r

p=2Up implies that
(6.42) holds, or, in other words, that (6.42) and (6.44) are equivalent.

Lemma 6.5 Let r ≥ 2. Either
⋂r

p=2Up = {0} or, possibly after renumbering the λ’s,
(6.42) holds.

Proof Let −α ∈ ⋂r
p=2Up and assume that α �= 0. As in the proof of Lemma 6.4 we

define the successor map s. But now s is defined on {2, 3, . . . , r} while taking values
in {1, 2, . . . , r}. If the sequence j, s( j), s2( j), . . . takes values only in {2, 3, . . . , r},
it necessarily becomes periodic and again we conclude that actually α = 0. Hence
α �= 0 requires that the sequence hits 1 after finitely many steps, implying that

λ1 = λ j − m( j)α

which with appropriate numbering of the λ’s amounts to (6.42). ��
In our analysis of (6.36) we shall also subtract the identity with p = p1 from the

identity with p = p2. This motivates us to consider the intersection of all unions
Up1

⋃
Up2 with p1 �= p2.

Lemma 6.6 If

α ∈
⋂

p1 �=p2

(
Up1

⋃
Up2

)
\{0} (6.45)
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then, with appropriate numbering of the λ’s, (6.42) holds and

⋂
p1 �=p2

(
Up1

⋃
Up2

)
= {−α, 0, α}. (6.46)

Proof Assume (6.45).We claim that there can be atmost one index p such thatα /∈ Up,
that is,

α �= λ j − λp for j = 1, 2, . . . , r . (6.47)

Indeed, if (6.47) would hold for p = q1 as well as for p = q2, with q1 �= q2, then

α /∈ Uq1

⋃
Uq2

and hence certainly

α /∈
⋂

p1 �=p2

(
Up1

⋃
Up2

)
.

Lemma 6.4 implies that at least one index p must exist such that α /∈ Up. So there
exists a unique index p such that α /∈ Up. Let us call it the exceptional index.

Renumber the λ’s such that the exceptional index is 1. Then α ∈ ⋂r
p=2Up and we

can apply Lemma 6.5 to deduce that (6.42) holds. It follows that elements of
⋂

p1 �=p2

(
Up1

⋃
Up2

)

are of the form mα with 1 − r ≤ m ≤ r − 1. The number 0 belongs to Up for all p,
the number α for all p �= r , and the number −α for all p �= 1. So the right hand side
of (6.46) is a subset of the left hand side. If m ≥ 2, the number mα does not belong
to Up for p = r − 1, r and if m ≤ −2 it does not belong to Up for p = 1, 2. We
conclude that (6.46) holds. ��
Lemma 6.7 Let r ≥ 2 and assume that

⋂
p1 �=p2

(
Up1

⋃
Up2

)
= {0}. (6.48)

Then both t �→ g̃(t, E) and t �→ μ̃
(
τ−1(t), E

)
are constant functions.

Proof Consider (6.36) with m = 0 for p = p1 and for p = p2. By subtraction we
find

(
λp2 − λp1

)
g̃(t, E) =

r∑
j=1

k j−1∑
�=0

(
c j�(p2)e

(
λ j−λp2

)
t − c j�(p1)e

(
λ j−λp1

)
t
)
t�.

(6.49)
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The identity (6.49) holds for all p1 and p2 with p1 �= p2 (and of course trivially
for p1 = p2). It therefore follows from (6.48) that all exponentials with non-zero
exponent in (6.49) must have coefficient zero, that is, necessarily

c j�(pm) = 0 if j �= pm .

It follows that the map t �→ g̃(t, E) is a polynomial of degree d1 ≤ max{kp} − 1.
Returning to (6.36) with m = 0, we express μ̃ in terms of λpg̃ and the sum at

the right hand side. From the arbitrariness of p and Lemma 6.4 we deduce that the
map t �→ μ̃

(
τ−1(t), E

)
, too, is a polynomial and that its degree d2 does not exceed

max{kp} − 1. Hence the map

t �→
(
λpg̃(t, E) − μ̃

(
τ−1(t), E

))
tm + mtm−1g̃(t, E)

is a polynomial of degree d3 = max{d1, d2} + m (unless λpg̃ − μ̃ = 0, but this can
be the case for at most one value of p).

The right hand side of (6.36) is a polynomial in t if and only if c j�(p) = 0 for
j �= p and, if it is, the degree is at most kp − 1. We conclude that

max{d1, d2} + m ≤ kp − 1

and consequently, by taking m = kp − 1, that

max{d1, d2} = 0.

��
Corollary 6.8 Let r ≥ 2 and assume that (6.48) holds. Then g, μ, w and H are of the
form specified in F2 with

v0(x) = g(x, E0),

v1(E) = g̃(τ (x), E),

γ0(x) = μ(x, E0)

g(x, E0)
,

μ0(E) = μ̃(x, E),

ζ(x) = τ(x) =
∫ x

xb

dy

g(y, E0)
,

Λ = H(E0).

Proof From (6.30) we know that

g(x, E) = g(x, E0)g̃(τ (x), E) (6.50)

and by Lemma 6.7 the second factor on the right hand side of (6.50) is constant as a
function of its first argument, so with the given definitions of v0 and v1, the function
g is indeed of the form specified in F2.
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Likewise it follows from (6.25) that

μ(x, E) = μ(x, E0)

g(x, E0)
g(x, E) + μ̃(x, E). (6.51)

The last term on the right hand side of (6.51) is, by Lemma 6.7, constant as a function
of its first argument and hence μ, too, is of the form specified in F2 with γ0 and μ0 as
listed.

From (6.23), (6.28) and (6.32) we deduce that

w(x) = e
∫ x
xb

γ0(y)dy
Φ((τ(x)) = e

∫ x
xb

γ0(y)dyeτ(x)H(E0)Φ(0), (6.52)

where τ(x) is defined by (6.27). Now recall (6.31) and translate it into v1(E0) = 1. It
follows that

τ(x) =
∫ x

xb

dy

g(y, E0)
=
∫ x

xb

dy

v0(y)
(6.53)

Substituting (6.53) into (6.52) and taking into account that Λ = H(E0) because
v1(E0) = 1 and μ0(E0) = 0 by (6.26), we see that w is of the form specified in F2. ��
Lemma 6.9 Let r = 1, k ≥ 2. Then necessarily

g̃(t, E) = v1(E) + v2(E)t + v3(E)t2, (6.54)

μ̃
(
τ−1(t), E

)
= λg̃(t, E) + μ0(E) + (k − 1)v3(E)t . (6.55)

Proof Because we assume that r = 1, we can write (6.36) as

(
λg̃(t, E) − μ̃

(
τ−1(t), E

))
tm + mtm−1g̃(t, E) =

k−1∑
�=0

c�t
�, (6.56)

with c� depending on E and m. We make the dependence on m explicit by writing
c�(m).

If we take m = 0 and multiply (6.56) by t we obtain

(
λg̃(t, E) − μ̃

(
τ−1(t), E

))
t =

k−1∑
�=0

c�(0)t
�+1 (6.57)

while for m = 1, (6.56) takes the form

(
λg̃(t, E) − μ̃

(
τ−1(t), E

))
t + g̃(t, E) =

k−1∑
�=0

c�(1)t
�. (6.58)

Subtracting (6.57) from (6.58) we find that g̃(t, E) is a polynomial in t .
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Next we observe that (6.56) with m = k − 2 and multiplied by t becomes

(
λg̃(t, E) − μ̃

(
τ−1(t), E

))
tk−1 + (k − 2)tk−2 g̃(t, E) =

k−1∑
�=0

c�t
�+1 (6.59)

and that for m = k − 1 the identity (6.56) reads

(
λg̃(t, E) − μ̃

(
τ−1(t), E

))
tk−1 + (k − 1)tk−2 g̃(t, E) =

k−1∑
�=0

c�t
�. (6.60)

If we subtract (6.60) from (6.59), we find that tk−2g̃(t, E) is a polynomial in t of
degree at most k. Since g̃(t, E) itself is a polynomial in t , we conclude that its degree
is at most 2, that is, (6.54) must hold.

It follows from (6.54) and (6.60) that

(
λg̃(t, E) − μ̃

(
τ−1(t), E

))
tk−1

is a polynomial of degree at most k and hence

λg̃(t, E) − μ̃
(
τ−1(t), E

)
= −μ0(E) − μ1(E)t . (6.61)

Substituting (6.61) into (6.60) shows that necessarily

μ1(E) = (k − 1)v3(E).

This yields (6.55). ��
We say that a square matrix is in subdiagonal Jordan form if the entries on the main

diagonal equal λ and the entries on the subdiagonal (that is, the entries immediately
under the diagonal) equal 1 and all other entries equal 0.

Corollary 6.10 Let r = 1, k ≥ 2. Assume that H(E0) is in subdiagonal Jordan form
and let Φ(0) = (1 0 · · · 0)T . Then g, μ, w and H are as specified in F3.

Proof Because H(E0) is in subdiagonal Jordan form and Φ(0) = (1 0 · · · 0)T , we
have

Φ(t) = eλt

⎛
⎜⎜⎜⎝

1
t
...

tk−1

⎞
⎟⎟⎟⎠ . (6.62)

Combining (6.30) and (6.54) we find that g has the form specified in F3 with

v0(x) = g(x, E0)
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and hence

ζ(x) = τ(x),

where τ(x) is defined by (6.27). Combining (6.25) and (6.55) we find that μ is of the
form specified in F3 with

γ0(x) = μ(x, E0) + λ

g(x, E0)
.

Combining (6.23), (6.28) and (6.62) and taking (6.27) into account, we see that w is
of the form specified in F3.

Finally we deduce the form of H(E) by substituting what we know about g, μ and
w into (4.33). ��
Lemma 6.11 Let r ≥ 2 and assume that

α ∈
⋂

p1 �=p2

(
Up1

⋃
Up2

)
\{0}.

Then necessarily k j = 1 for j = 1, 2, . . . , r and hence r = k and, moreover, there
exist u j (E), j = 1, 2, 3, 4 such that

g̃(t, E) = u1(E)e−αt + u2(E) + u3(E)eαt , (6.63)

μ̃
(
τ−1(t), E

)
= λ1u1(E)e−αt + u4(E) + λku3(E)eαt , (6.64)

where the λ’s are numbered such that (6.42) holds. One has

u1(E0) = 0, u2(E0) = 1, u3(E0) = 0, u4(E0) = 0. (6.65)

Proof Recall that in Lemma 6.6 we established that, with appropriate numbering,
(6.42) holds and that

⋂
p1 �=p2

(
Up1

⋃
Up2

)
= {−α, 0, α}.

From (6.49) we now deduce that

g̃(t, E) = P−(t, E)e−αt + P0(t, E) + P+(t, E)eαt ,

where P−, P0 and P+ are all polynomials in t of degree at most max{kp} − 1. Next
(6.36) with m = 0 and Lemma 6.4 imply that

μ̃
(
τ−1(t), E

)
= Q−(t, E)e−αt + Q0(t, E) + Q+(t, E)eαt ,
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where, likewise, Q−, Q0 and Q+ are polynomials in t of degree at most max{kp}−1.
We rewrite (6.36) with p = 1 and m ≤ k1 − 1 as

tm
(
(λ1P−(t, E) − Q−(t, E))e−αt + λ1P0(t, E) − Q0(t, E)

+(λ1P+(t, E) − Q+(t, E))eαt)
+mtm−1 (P−(t, E)e−αt + P0(t, E) + P+(t, E)eαt)

=
r∑
j=1

k j−1∑
�=0

c j�t
�e( j−1)αt . (6.66)

At the right hand side we have terms with factors eαt , e2αt , . . ., but not with e−αt . So
necessarily

(i) λ1P−(t, E) − Q−(t, E) = 0,
(ii) if k1 > 1, then P−(t, E) = 0.

By considering the analogue of (6.66) for p = r , we similarly find

(iii) λr P+(t, E) − Q+(t, E) = 0,
(iv) if kr > 1, then P+(t, E) = 0.

Nextwe consider the analogue of (6.66) for p = 2 and concentrate on the termswith
factor e−αt . At the right hand side e−αt is multiplied by a polynomial of degree k1 −1
while at the left hand side m might go up to k2 − 1 and λ2P−(t, E) − Q−(t, E) �≡ 0
unless both P− and Q− are identically equal to zero. So if P− and Q− are nontrivial,
k1 = 1 implies k2 = 1. Likewise we may go down from r to r − 1 and concentrate
on terms with factor eαt . We find that if P+ and Q+ are nontrivial, kr = 1 implies
kr−1 = 1. Continuing in this way we conclude that, unless P−, Q−, P+ and Q+
are all identically equal to zero, necessarily all ki ’s are equal to 1. It follows that
P−, Q−, P0, Q0, P+ and Q+ all have degree zero, that is, they are constant functions
of t .

Finally (6.65) follows from (6.26) and (6.31). ��
So far it has been tacitly understood that g, μ and w are real valued functions and

that the matrix H(E0) has real entries. But the fact that H(E0) is a real matrix does
not preclude complex eigenvalues, it only implies that non-real eigenvalues occur in
complex conjugate pairs. If we allow α to be complex, the relation (6.42) tells us that
the eigenvalues lie on a straight line in the complex plane. This is compatible with the
requirement of eigenvalues occurring in complex conjugate pairs if and only if either α
is real or α = iβ for some real β. We conclude that either α is real and all eigenvalues
are real or α = iβ and the eigenvalues lie on a line parallel to the imaginary axis.

Corollary 6.12 Let r ≥ 2. If

⋂
p1 �=p2

(
Up1

⋃
Up2

)

contains an α ∈ R\{0}, then g, μ, w and H have the form specified in F3.
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Proof Combining (6.30) with Lemma 6.11 we find that

g(x, E) = g(x, E0)
(
u1(E)e−ατ(x) + u2(E) + u3(E)eατ(x)

)

= 1

α
g(x, E0)e

−ατ(x)
(

αu1(E) + αu2(E)eατ(x) + αu3(E)
(
eατ(x)

)2)

and thus g has the form specified in F3 with

v0(x) = 1

α
g(x, E0)e

−ατ(x),

vi (E) = αui (E), i = 1, 2, 3,

ζ(x) = eατ(x). (6.67)

Note that by (6.27)

ζ ′(x) = α
1

g(x, E0)
eατ(x) = 1

v0(x)
,

so

ζ(x) =
∫ x

xb

dy

v0(y)

as it should.
From (6.25) and (6.64) it follows that

μ(x, E) = μ(x, E0)

g(x, E0)
g(x, E) + λ1

(
u1(E)e−ατ(x) + u3(E)eατ(x)

)

+u4(E) + (k − 1)αu3(E)eατ(x)

= γ0(x)g(x, E) + μ0(E) + (k − 1)v3(E)ζ(x),

where, in addition to (6.67), we have defined

γ0(x) = μ(x, E0) + λ1

g(x, E0)
,

μ0(E) = u4(E) − λ1u2(E).

Now recall (6.32) and (6.42). Since all eigenvalues of H(E0) have multiplicity one,
we can choose for H(E0) the diagonal matrix with the eigenvalues on the diagonal.
With the choice Φ j (0) = 1, j = 1, 2, . . . , k, we have

Φ j (t) = eλ1t e( j−1)αt .
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A combination of (6.23) and (6.28) next yields

w(x) = e
∫ x
xb

μ(y,E0)

g(y,E0)
dy

Φ(τ(x)) (6.68)

and the definitions of ζ, γ0 andΦ j guarantee that (6.68) is exactly of the form specified
in F3.

Plugging in the information we now have about g, μ and w into (4.33), we find
that H(E) has the form specified in F3. Note that (6.65) of Lemma 6.11 implies that
v1(E0) = αu1(E0) = 0, v2(E0) = αu2(E0) = α and v3(E0) = αu3(E0) = 0 which
shows that H(E0) is indeed the diagonal matrix specified above. ��

When

⋂
p1 �=p2

(
Up1

⋃
Up2

)

contains a purely imaginary number α = iβ (β real and β �= 0), we have λk = λ1
and hence Im λ1 = − k−1

2 β. It follows that

λ j = Re λ1 +
(
j − k + 1

2

)
iβ. (6.69)

In (6.63) we now allow u1(E) to be complex while requiring u3(E) = u1(E).
Using (6.30) we find

g(x, E) = g(x, E0)
(
u1(E)e−iβτ(x) + u2(E) + u1(E)eiβτ(x)

)

= g(x, E0) (c1(E) cosβτ(x) + c2(E) sin βτ(x) + u2(E)) , (6.70)

where

c1(E) := 2Re u1(E),

c2(E) := 2 Im u1(E). (6.71)

The well-known trigonometric identities

cos θ = cos2
1

2
θ − sin2

1

2
θ

sin θ = 2 sin
1

2
θ cos

1

2
θ

1 = cos2
1

2
θ + sin2

1

2
θ

d

dθ
tan θ = 1

cos2 θ
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allow us to rewrite (6.70) as

g(x, E) = g(x, E0)
cos2 1

2βτ(x)
1
2β

(1
2
β(u2(E) + c1(E))

+βc2(E) tan
1

2
βτ(x) + 1

2
β(u2(E) − c1(E))

(
tan

1

2
βτ(x)

)2)
,

(6.72)

which is of the form specified in F3 with

ζ(x) = tan
1

2
βτ(x) (6.73)

because

ζ ′(x) =
1
2βτ ′(x)

cos2 1
2βτ(x)

=
1
2β

g(x, E0) cos2 1
2βτ(x)

.

Using α = iβ and (6.69) we rewrite (6.64) as

μ̃
(
τ−1(t), E

)
= d1(E) cosβt + d2(E) sin βt + u5(E) + Re λ1g̃(t, E)

with

u5(E) := u4(E) − Re λ1u2(E),

d1(E) := k − 1

2
βc2(E),

d2(E) := −k − 1

2
βc1(E). (6.74)

Equivalently we can write

μ̃
(
τ−1(t), E

)

= cos2
1

2
βt

(
u5(E) + d1(E) + 2d2(E) tan

1

2
βt

+(u5(E) − d1(E))

(
tan

1

2
βt

)2
)

+Re λ1g̃(t, E),

which, in combination with (6.25) and (6.30) yields

μ (x, E) = μ(x, E0) + Re λ1

g(x, E0)
g(x, E)
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+ 1

1 + ζ(x)2
(u5(E) + d1(E) + 2d2(E)ζ(x)

+(u5(E) − d1(E))ζ(x)2
)

, (6.75)

where ζ is defined in (6.73). Thus our task is find γ0(x) and μ0(E) such that

μ(x, E) = γ0(x)g(x, E) + μ0(E) + (k − 1)
1

2
β(u2(E) − c1(E))ζ(x). (6.76)

The right hand sides of (6.75) and (6.76) are equal if and only

1

1 + ζ(x)2

(
u5(E) + d1(E) + 2d2(E)ζ(x) + (u5(E) − d1(E))ζ(x)2

)

= γ̃0(x)

1 + ζ(x)2

(
1

2
β(u2(E) + c1(E)) + βc2(E)ζ(x)

+1

2
β(u2(E) − c1(E))ζ(x)2

)

+μ0(E) + (k − 1)
1

2
β(u2(E) − c1(E))ζ(x), (6.77)

where we have replaced the unknown function γ0 by a new unknown function γ̃0 via
the relation

γ0(x) = μ(x, E0) + Re λ1

g(x, E0)
+

1
2βγ̃0(x)

g(x, E0)
(6.78)

and where we used (6.72), (6.73) and the identity
(
1 + ζ(x)2

)
cos2 1

2βτ(x) = 1.
We rewrite the left hand side of (6.77) as

u5(E) + d1(E) + 2ζ(x)

1 + ζ(x)2
(d2(E) − d1(E)ζ(x))

and choose μ0(E) = u5(E) + d1(E). This leaves us with

2ζ(x)

1 + ζ(x)2
(d2(E) − d1(E)ζ(x))

= γ̃0(x)

1 + ζ(x)2

(
1

2
β(u2(E) + c1(E)) + βc2(E)ζ(x) + 1

2
β(u2(E) − c1(E))ζ(x)2

)

+(k − 1)
1

2
β(u2(E) − c1(E))ζ(x).

Hence we should have

1

ζ(x)
γ̃0(x) = 2d2(E) − 2d1(E)ζ(x) − (k − 1) 12β(u2(E) − c1(E))

(
1 + ζ(x)2

)
1
2β(u2(E) + c1(E)) + βc2(E)ζ(x) + 1

2β(u2(E) − c1(E))ζ(x)2
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= 2d2(E) − (k − 1) 12β(u2(E) − c1(E)) − 2d1(E)ζ(x)
1
2β(u2(E) + c1(E)) + βc2(E)ζ(x) + 1

2β(u2(E) − c1(E))ζ(x)2

+ −(k − 1) 12β(u2(E) − c1(E))ζ(x)2

1
2β(u2(E) + c1(E)) + βc2(E)ζ(x) + 1

2β(u2(E) − c1(E))ζ(x)2

= −(k − 1),

where the last equality is a consequence of (6.74). We conclude that μ is of the form
specified in F3 with

μ0(E) = u5(E) + d1(E)

γ0(x) = μ(x, E0) + Re λ1 − 1
2β(k − 1)ζ(x)

g(x, E0)
. (6.79)

The next task is to specify a realmatrix H(E0)with eigenvalues λ j given by (6.69).
From (6.72) we deduce that necessarily c1(E0) = c2(E0) = 0 and u2(E0) = 1. This
translates into v2(E0) = 0, v1(E0) = v3(E0) = 1

2β for the parameters vi , i = 1, 2, 3
in F3. So if we put H(E0) = H0(E0) − Re λ1 I , then the formulation of F3 suggests
to consider

H0(E0) = 1

2
βM, (6.80)

where M is the k × k-matrix with entries

M� j =
⎧⎨
⎩

−(k − �) if j = � + 1,
j if � = j + 1,
0 otherwise.

(6.81)

In the present context the key point is to find a solution to the linear ODE system
corresponding to M . The result is given in the following lemma.

Lemma 6.13 Define the k-vector Φ̃(t) by

Φ̃ j (t) = sin j−1 t cosk− j t, j = 1, 2, . . . , k. (6.82)

Then

d

dt
Φ̃(t) = MΦ̃(t). (6.83)

Proof The j th component of both sides equals

( j − 1)Φ̃ j−1(t) − (k − j)Φ̃ j+1(t)

(with the convention that zero times the undefined Φ̃0 or Φ̃k+1 equals zero). ��
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In order to determine the eigenvalues of M we shall relate M to the Kac-Sylvester
matrix K defined by

K� j =
⎧⎨
⎩

� if j = � + 1,
k − j if � = j + 1,
0 otherwise.

(6.84)

It is known (Taussky and Todd 1991) that the eigenvalues of K are given by

λK
j = 2 j − k − 1, j = 1, 2, . . . , k. (6.85)

In fact much more is known and we recommend the reader to have a look at the paper
by Taussky and Todd (1991).

Lemma 6.14 Let S be the k × k diagonal matrix with complex diagonal entries

S j j = i j−1, j = 1, 2, . . . , k. (6.86)

Then

SMS−1 = i K T . (6.87)

Proof S−1 is the diagonal matrix with entries

(
S−1

)
j j

= (−i) j−1

and hence

(
SMS−1

)
� j

=
k∑

m=1

S�m

k∑
n=1

Mmn

(
S−1

)
nj

= i�−1M� j (−i) j−1.

If j = � + 1, then i�−1(−i) j−1 = i−1 = −i and accordingly

(
SMS−1

)
� j

= i(k − �) = i K j�.

If � = j + 1, then i�−1(−i) j−1 = (−i)−1 = i and in this case

(
SMS−1

)
� j

= i j = i K j�.

��
Corollary 6.15 The eigenvalues of M are given by

λM
j = (2 j − k − 1)i, j = 1, 2, . . . , k. (6.88)
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Motivated by (6.69), (6.80) and Lemma 6.13 we now choose

H(E0) = H0(E0) + Re λ1 I = 1

2
βM + Re λ1 I (6.89)

and

Φ(t) = Φ̃

(
1

2
βt

)
eRe λ1t . (6.90)

Combining (6.90) with (6.23) and (6.28) we obtain

w(x) = e
∫ x
xb

μ(y,E0)

g(y,E0)
dy

Φ̃

(
1

2
βτ(x)

)
eRe λ1τ(x). (6.91)

Since v2(E0) = 0 and v1(E0) = v3(E0) = 1
2β we have

g(x, E0) = v0(x)
1

2
β
(
1 + ζ(x)2

)
= 1

2
β
1 + ζ(x)2

ζ ′(x)
.

To see that

μ(x, E0) = γ0(x)g(x, E0) − Re λ1 + 1

2
β(k − 1)ζ(x)

we first deduce from (6.79) that

μ0(E0) = u5(E0) + d1(E0).

next from (6.74) that d1(E0) = 0 and

u5(E0) = u4(E0) − Re λ1u2(E0)

and from (6.64) and (6.26) that u4(E0) = 0 and, as above, from (6.72) that u2(E0) = 1.
So

∫ x

xb

μ(y, E0)

g(y, E0)
dy =

∫ x

xb
γ0(y)dy +

∫ x

xb

−Re λ1 + 1
2β(k − 1)ζ(y)

1
2β (1 + ζ(y))2

ζ ′(y)dy

=
∫ x

xb
γ0(y)dy − Re λ1τ(x) + k − 1

2
log

(
1 + ζ(x)2

)
,

where we have used the fact that, on account of (6.73),

ζ ′(y)
1 + ζ(y)2

= 1

2
βτ ′(y)
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and that

ζ(y)ζ ′(y)
1 + ζ(y)2

= d

dy

1

2
log

(
1 + ζ(y)2

)
.

Hence (6.91) can be written in the form

w(x) = e
∫ x
xb

γ0(y)dy
(
1 + ζ(x)2

) k−1
2

Φ̃

(
1

2
βτ(x)

)

and, using (6.73) once more, as

w(x) = e
∫ x
xb

γ0(y)dy 1

cosk−1 1
2βτ(x)

Φ̃

(
1

2
βτ(x)

)
.

Recalling (6.82) we conclude that

w j (x) = e
∫ x
xb

γ0(y)dy
(
tan

1

2
βτ(x)

) j−1

(6.92)

exactly as specified in F3 when ζ is given by (6.73).
Finally we observe that once g(x, E), μ(x, E) and w(x) have been determined,

we choose H(E) such that (4.33) is indeed an identity. This leads to the matrix H(E)

as specified in F3.
We have thus reached the end of the proof of Theorem 5.3.

7 Applications to age- and stage-structured populationmodels

In this section we illustrate our general results by giving a characterisation of ODE-
reducible age-structuredmodels and by giving conditions for when theODE-reduction
of a structuredmodel could be interpreted biologically in terms of physiological stages.

Age is a peculiar i-state. It is characterised by two properties: age advances equally
with time, so the growth rate g is identically equal to 1, and all individuals are born
with the same i-state xb = 0. The latter property means that the reproduction rate has
the form

β(x, E, ·) = β̃(x, E)δ0, (7.1)

that is, its range in the space of measures is the one-dimensional subspace spanned by
δ0.

Incidentally, please note that these two properties guarantee that the p-state has a
density n(t, ·) at time t > s if it has a density at time s and that the evolution in time
of this density is governed by the PDE

∂

∂t
n(t, x) + ∂

∂x
n(t, x) = −μ(x, E(t))n(t, x) (7.2)
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with boundary condition

n(t, 0) =
∫ ∞

0
β̃(x, E(t))n(t, x)dx . (7.3)

So here we are, in the spirit of Gurtin andMacCamy (1974, 1979a, b), Murphy (1983)
and many others, classifying when the problem (7.2) and (7.3) reduces to a system of
ODEs, but with two additional features:

– we consider explicitly output, that is, we specify what properties of the solutions
matter;

– we want to derive conditions that are not only sufficient, but in fact necessary if
reproduction is part of the output.

As explained in Sect. 4, the structured population model is ODE-reducible if the
transport-degradation model is ODE-reducible and the reproduction process is such
that there is a k × k matrix M(E) such that (4.28) holds. The one-dimensional range
property leads to simplifications, which we will now describe.

With (7.1) the restriction (4.28) becomes

β̃(x, E)w(0) = M(E)w(x), (7.4)

or written out for each row i = 1, 2, . . . , k,

β̃(x, E)wi (0) = Mi1(E)w1(x) + Mi2(E)w2(x) + · · · + Mik(E)wk(x). (7.5)

It follows that

β̃(x, E) =
k∑
j=1

β̃ j (E)w j (x) (7.6)

with

β̃ j (E) = Mi j (E)

wi (0)
(7.7)

independent of i , that is, the elements Mi j (E) of the matrix M(E) are

Mi j (E) = wi (0)β̃ j (E) (7.8)

and thus M(E), too, has one-dimensional range (namely the subspace spanned by
(w1(0), w2(0), . . . , wk(0))T ).

Next we show that for age structured models the family F3 is included in family
F2.

Because g = 1 in age-structured models, the entries for g in the families F2 and F3
imply that the functions v1, v2 and v3 are constants. In the case of family F2 it follows
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that also v0 is a constant, which we without loss of generality take equal to 1 and so

ζ(x) =
∫ x

0

dy

v0(y)
= x . (7.9)

On the other hand, in the case of family F3, the entry for g and the fact that ζ ′(x) =
1/v0(x) and g = 1 imply that ζ(x) is the unique solution of the initial value problem

ζ ′(x) = v1 + v2ζ(x) + v3ζ(x)2, ζ(0) = 0. (7.10)

We nowdeduce from the entries forμ that in all three families the death rateμ(x, E)

is a sum of two functions, one depending only on x and the other depending only on
E :

μ(x, E) = γ0(x) + μ0(E), (7.11)

in the case of family F2 and

μ(x, E) = (γ̃0(x) + (k − 1)v3ζ(x)) + μ0(E), (7.12)

in the case of family F3. In (7.12) we have added a tilde to the γ0 parameter in family
F3. The reason for this will become clear soon.

The next lemma gives the relationship between the families F2 and F3.

Lemma 7.1 The F2 member with g = 1, ζ(x) = x,Λ = H0 and μ(x, E) given by
(7.11) coincides with the F3 member with g = 1, ζ the solution of (7.10) and μ(x, E)

given by (7.12) with

γ̃0(x) = γ0(x) − (k − 1)v3ζ(x). (7.13)

Proof Take w from the family F3:

w j (x) = e
∫ x
0 γ̃0(y)dyζ(x) j−1, j = 1, 2, . . . , k.

Then

w′
j (x) = γ̃0(x)w j (x) + ( j − 1)w j−1(x)ζ

′(x)
= γ0(x)w j (x) + ( j − 1)w j−1(x)(v1 + v2ζ(x))

−(k − 1)v3ζ(x)w j (x) + ( j − 1)v3w j−1(x)ζ(x)2. (7.14)

Now note that

ζ(x)w j (x) = ζ(x)2w j−1(x)
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and that this quantity equals w j+1(x) if j ≤ k − 1. For j = k the last two terms of
(7.14) cancel. This shows that w satisfies the equation

w′(x) = (γ0(x)I + H0) w(x),

that is, w is from family F2 with Λ = H0. ��
By Lemma 7.1 it suffices to concentrate on family F2 of the catalogue (the scalar

representation of family F1 is a very special case of this).We have the following result:

Theorem 7.2 Under the restriction that the birth rate is of the form (7.6), an age-
structured population model is ODE-reducible if and only if the death rate can be
written as (7.11) and the w occurring in (7.6) has the form

w(x) = e
∫ x
0 γ0(y)dyexΛw(0) (7.15)

for some k × k matrix Λ and w(0) satisfying (H2) and (H3).
When this is the case,

N (t) =
∫ ∞

0
w(x)m(t, dx) =

∫ ∞

0
w(x)n(t, x)dx (7.16)

satisfies the ODE

d

dt
N (t) = (M(E(t)) + Λ − μ0(E(t))) N (t), (7.17)

with M(E) defined by (7.8).
Once N has been solved from (7.17), the population density is recovered from the

explicit formula

n(t, x) = e− ∫ x
0 γ0(y)dye− ∫ tt−x μ0(E(τ ))dτ

k∑
j=1

β̃ j (E(t − x))N j (t − x), x < t .

(7.18)

Age-structuredmodels can also bewritten directly as scalar renewal equations (with
input dependent kernel) for the population birth rate. In an earlier paper (Diekmann
et al. 2018) we derived necessary and sufficient conditions for ODE-reducibility of
such renewal equations. When applied to age-structured models the results of the two
papers are of course the same.

Let us point out that theODE(7.17) resulting from the reductiondoes not necessarily
have any biological interpretation. But if Λ is a transition matrix, then the indices of
N could be interpreted as discrete states. In particular, if Λ has negative entries on the
diagonal and corresponding positive entries on the subdiagonal, then the states form
a linear chain and the states can be interpreted as stages (Nisbet and Gurney 1983;
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Nisbet et al. 1985, 1986; Thieme 2003) if, in addition, w j (0) = 0 for j ≥ 2, which
means that all newborns have stage j = 1. This explains why MacDonald (1978,
1989) called ODE-reduction the linear chain trick. The classical example of such
linear chain trickery is obtained by choosing γ0 = 0, and w j the Erlang distribution
(a special case of the gamma distribution)

w j (x) = α j

( j − 1)! x
j−1e−αx , (7.19)

and Λ a matrix with diagonal elements −α and subdiagonal elements +α. The ODE
(7.17) then becomes

d

dt
N1(t) = α

k∑
j=1

β̃ j (E)N j − (α + μ0(E))N1, (7.20)

d

dt
Ni (t) = αNi−1 − (α + μ0(E))Ni , i = 2, 3, . . . , k, (7.21)

clearly showing the stage structure (Gyllenberg 2007).

8 Discussion

Our focus should be on the biological problem: when is a physiologically structured
model ODE representable? That is the question that matters, both practically and foun-
dationally, for community modelling. In the wake of an answer we can re-examine the
community models that are directly formulated in terms of ODE in order to determine
what i-level physiological processes are, or are not, incorporated.

If we are prepared to specify beforehand a set of k0 linearly independent output
functionals P0

i that should be computable from the ODE variables, we can perform
a test. The test was explained in Sects. 2.1.4 and 4.1, but we repeat it here while
employing, exactly as in (2.18), the short hand of an abstract ODE

d

dt
n(t) = A(E(t))n(t) (8.1)

rather than the constructively defined evolutionary system Uc
E (t, s) of Sect. 3. Note

that now we do not use the decomposition A(E) = A0(E) + B(E).
TEST: Let w0

i be the element of the dual space representing P0
i . A first condition

for ODE representability is that w0
i belongs to the domain of A(E)∗ for all E in E . If

A(E)∗w0
i belongs to the subspace spanned by {w0

1, w
0
2 . . . , w0

k0
} for all i and all E ,

the family A(E) is ODE-reducible. If the subspace spanned by {w0
1, w

0
2 . . . , w0

k0
} and

the A(E)∗w0
i for all i and all E is infinite dimensional, the family A(E) is not ODE-

reducible. In case this subspace has dimension k1, with k1 finite but larger than k0,
choose a basis consisting of w1

i with i = 1, . . . , k1 and w1
i = w0

i for i = 1, 2, . . . , k0
and repeat this procedure with the superscript 0 replaced by the 1. The procedure can
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be repeated. If the procedure terminates after a finite number of steps with a finite
dimensional subspace, the family A(E) is ODE-reducible.

Whenever biological knowledge and interest suggest ameaningful collection ofw0
i ,

one should perform this test. Clearly this requires context specific information and does
not lead to an explicit catalogue. In this paper we concentrated on a special subclass
of physiologically structured models for which we could obtain detailed results. The
description of the subclass is based on the decomposition A(E) = A0(E) + B(E),
with A0(E) capturing transport and degradation and B(E) capturing reproduction.
Our main result provides a complete catalogue of ODE reducible families A0(E). The
catalogue lists conditions on the growth rate g and the mortality rate μ and provides
explicit expressions for the functionals that define the components of the ODE. Once
these functionals are known, one can test whether or not the subspace that they span
is left invariant by B(E)∗ for all E in E . If the subspace is invariant, the family A(E)

is ODE-reducible. Moreover, the asymptotic population dynamics is in that case fully
determined by the ODE (recall (2.27) and Proposition 7.2).

So the catalogue is complete for a restricted class of structured population models.
We now provide some examples of biologically relevant ODE-reducible models that
do not belong to that particular restricted class, because the reproduction process does
not satisfy condition (4.28). Our first example shows how the simplemodel of Example
1.1 can be treated.

Example 8.1 Assume a one-dimensional i-state space and that β is of the form (4.32).
Equation (4.27) then becomes

g(x, E)w′(x) − μ(x, E)w(x) + β̃(x, E)

∫
Ω

w(y)β0(dy) = K (E)w(x). (8.2)

For definiteness, we normalise β0 by

∫
Ω

β0(dy) = 1. (8.3)

If we are seeking a scalar representation (w is a scalar valued function), then the
condition (8.2) transforms into

g(x, E)w′(x) + β̃(x, E)
∫
Ω

w(y)β0(dy)

w(x)
− μ(x, E) = K (E). (8.4)

If the output is the total population, then w(x) = 1 and (8.4) becomes

β̃(x, E) − μ(x, E) = K (E). (8.5)

If the output is total biomass, then w(x) = x and (8.4) becomes

g(x, E) + β̃(x, E)
∫
Ω
yβ0(dy)

x
− μ(x, E) = K (E). (8.6)
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Note that the scalar factor
∫
Ω
yβ0(dy) is the average weight of a newborn. In the case

of one fixed size xb at birth, β0 = δxb and (8.6) becomes the same as condition (1.1).

We now provide some other examples that are ODE-reducible, but do not satisfy
the restrictions of the present paper.

Example 8.2 Let Ω be a subset of the positive cone R2+ and let

g(x, E) =
(
a(E) + b(E)x1

c(E)

)
. (8.7)

Then

(Dw)(x)g(x, E) = L(E)w(x) (8.8)

for the choice

L(E) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
a(E) b(E) 0 0 0 0
0 2a(E) 2b(E) 0 0 0
0 0 0 −κc(E) 0 0
0 0 0 a(E) b(E) − κc(E) 0
0 0 0 0 2a(E) 2b(E) − κc(E)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.9)

and

w(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
x1
x21

e−κx2

x1e−κx2

x21e
−κx2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.10)

So if

μ(x, E) = μ0(E) (8.11)

and

β(x, E, ω) = f (E)
(
1 − e−κx2

)
x21mb(ω) (8.12)

with mb a probability measure on Ω , then

(Dw(x))g(x, E) − μ(x, E)w(x) +
∫

Ω

w(y)β(x, E, dy)

= L(E)w(x) − μ0(E)w(x) + f (E)(w3(x) − w6(x))
∫

Ω

w(y)mb(dy)

(8.13)
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and hence (4.27) is satisfied with

K (E) = L(E) − μ0(E)I + f (E)M, (8.14)

where M is the 6 × 6 matrix with entries

Mi j :=
∫

Ω

wi (y)mb(dy)
(
δ3 j − δ6 j

)
. (8.15)

Here δ is the Kronecker δ, that is, δi j = 1 if i = j and zero otherwise. In words: M is
the matrix with only two non-zero columns, the third and the sixth, and on the i th row
the element equals

∫
Ω

wi (y)mb(dy) in column 3 and − ∫
Ω

wi (y)mb(dy) in column
6.

The biological interest of Example 8.2 is that if we let the measure mb be concen-
trated on the axis x2 = 0, we may interpret x1 as size and x2 as physiological age. The
rate of giving birth is proportional to the square of the individual’s size with the pro-
portionality coefficient a function of physiological age that increases monotonically
from zero at zero to a finite limit depending on the environmental condition.

The next two examples are not biologically motivated, but are intended to illustrate
that, even after scaling of the i-state variable, the growth rate is not restricted to a linear
dependence on the i-state components (recall that in our catalogue only F3 allows for
a quadratic dependence on the i-state variable, but only so if the death rate μ contains
a k-specific compensating term).

Example 8.3 Let Ω ⊂ R
2 and let

g(x, E) =
(
a(E) + b(E)x1

c(E)x21

)
. (8.16)

Then (8.8) holds for the choice

L(E) =

⎛
⎜⎜⎝

0 0 0 0
a(E) b(E) 0 0
0 2a(E) 2b(E) 0
0 0 c(E) 0

⎞
⎟⎟⎠ (8.17)

and

w(x) =

⎛
⎜⎜⎝

1
x1
x21
x2

⎞
⎟⎟⎠ . (8.18)

Example 8.4 Let Ω ⊂ R
3 and let

g(x, E) =
⎛
⎝ a1(E)

a2(E)

c1(E)eκ1x1 + c2(E)eκ2x2 + c3(E)eκ1x1+κ2x2

⎞
⎠ . (8.19)
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Then (8.8) holds for the choice

L(E) =

⎛
⎜⎜⎝

κ1a1(E) 0 0 0
0 κ2a2(E) 0 0
0 0 κ1a1(E) + κ2a2(E) 0

c1(E) c2(E) c3(E) 0

⎞
⎟⎟⎠ (8.20)

and

w(x) =

⎛
⎜⎜⎝

eκ1x1

eκ2x2

eκ1x1+κ2x2

x3

⎞
⎟⎟⎠ . (8.21)

Example 8.5 Consider cells that split into two equal parts upon reaching a size xmax.
Assume that g(x, E) = f (E)x and that μ(x, E) = μ0(E). Then the total mass B
satisfies the ODE

dB

dt
= f (E)B − μ0(E)B.

If we start with a cohort (a Dirac mass in a point somewhere in the interval
( 12 xmax, xmax)), the distribution remains a cohort for all time, but the cohort jumps
from xmax to 1

2 xmax every now and then, with the number of individuals in the cohort
doubling whenever such a jump occurs (Huyer 1997). Note that when we change
the reproduction rule and allow the two daughters to have slightly different sizes, the
number of cohorts increases.

In an earlier paper (Diekmann et al. 2018) we gave a characterisation of ODE-
reducibility for renewal equations of the form

b(t) =
∫ t

−∞
KE (t, s)b(s)ds, (8.22)

where the unknown b is an Rp valued function and the input-dependent kernel KE is
a p × p matrix valued function. The result is that the renewal Eq. (8.22) with input is
ODE-reducible if and only

KE (t, s) = U (E(t))TΦE (t, s)V (E(s)), (8.23)

where ΦE (t, s) is the fundamental matrix solution for the linear non-autonomous
system of ordinary differential equations

d

dτ
Z(τ ) = H(E(τ ))Z(τ ) (8.24)

for some matrix valued functions H ,U and V . It should, however, be noted that in
the earlier paper the requirement that the solution b(t) of the renewal Eq. (8.22) could
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be recovered from the solution Z(t) of the finite dimensional system (8.24) was built
into the notion of ODE-reducibility, whereas we in the current paper only require that
the outputs can be recovered (recall Fig. 2). More recently we have taken the abstract
variant of (8.22) as the starting point for a discussion of ODE-reducibility. In the paper
(Diekmann et al. 2019) we provide new examples, recap the present paper and explain
the usefulness of asymptotic ODE-reducibility.
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