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ABSTRACT

Genetic variants and de novo mutations in regu-
latory regions of the genome are typically discov-
ered by whole-genome sequencing (WGS), however
WGS is expensive and most WGS reads come from
non-regulatory regions. The Assay for Transposase-
Accessible Chromatin (ATAC-seq) generates reads
from regulatory sequences and could potentially be
used as a low-cost ‘capture’ method for regulatory
variant discovery, but its use for this purpose has
not been systematically evaluated. Here we apply
seven variant callers to bulk and single-cell ATAC-
seq data and evaluate their ability to identify single
nucleotide variants (SNVs) and insertions/deletions
(indels). In addition, we develop an ensemble classi-
fier, VarCA, which combines features from individual
variant callers to predict variants. The Genome Anal-
ysis Toolkit (GATK) is the best-performing individ-
ual caller with precision/recall on a bulk ATAC test
dataset of 0.92/0.97 for SNVs and 0.87/0.82 for in-
dels within ATAC-seq peak regions with at least 10
reads. On bulk ATAC-seq reads, VarCA achieves su-
perior performance with precision/recall of 0.99/0.95
for SNVs and 0.93/0.80 for indels. On single-cell
ATAC-seq reads, VarCA attains precision/recall of
0.98/0.94 for SNVs and 0.82/0.82 for indels. In sum-
mary, ATAC-seq reads can be used to accurately dis-
cover non-coding regulatory variants in the absence
of whole-genome sequencing data and our ensemble
method, VarCA, has the best overall performance.

INTRODUCTION

Rare genetic variants and somatic mutations in regulatory
regions are important for many human traits and diseases
(1), but typically require whole genome sequencing (WGS)
to discover since they are not captured by single-nucleotide
polymorphism (SNP) arrays and cannot be accurately im-
puted. WGS is expensive to perform on large panels of in-
dividuals, and the majority of sequencing reads come from
non-coding and non-regulatory regions of the genome that
are less likely to contain functional variants. While capture
panels can be designed to target regulatory regions, the posi-
tions of active regulatory regions differ substantially across
cell types, so very large or custom capture panels for each
cell type would be required to survey all variants in regula-
tory regions.

One way to overcome these challenges is to identify ge-
netic variants using data from the Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) (2).
ATAC-seq generates sequence reads from regulatory re-
gions of the genome and can potentially act like a low-cost
capture method for important non-coding sequences. Sev-
eral methods have been developed to genotype or call vari-
ants from chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) data (3–5). Previous research has eval-
uated the performance of single nucleotide variant detec-
tion methods applied to single-cell RNA-seq data (6). How-
ever, the performance of single nucleotide variant (SNV)
and insertion/deletion (indel) callers on bulk and single-cell
ATAC-seq data has not been systematically evaluated. Fur-
thermore, some features of ATAC-seq reads may diminish
the performance of standard tools for variant detection. For
example, ATAC-seq insert sizes are short and differ between
nucleosome-free and nucleosome-spanning sequence frag-
ments (2). This is likely to cause problems for indel callers
such as Manta (7), Pindel (8) and DELLY (9), which utilize
the distribution of insert sizes from mapped reads. Further-
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more, variant callers may fail to identify heterozygous vari-
ants when ATAC-seq reads originate primarily from one
allele.

Here, we compare the performance of several SNV and
indel callers on bulk and single-cell ATAC-seq reads, using
high quality genotypes from the Platinum Genomes project
as a ground truth dataset (10). We also develop an ensemble
method, called VarCA for ‘variants in chromatin accessi-
ble regions,’ which combines features from multiple callers.
VarCA uses a random forest to predict indels and SNVs and
achieves substantially better performance than any individ-
ual caller.

MATERIALS AND METHODS

VarCA method overview

VarCA is an ensemble classifier which uses a random forest
model to combine features from individual variant callers
to predict variants. VarCA is implemented as a Snakemake
(11) pipeline with two components, which we refer to as
the prepare and classify subworkflows (Figure 1). The pre-
pare subworkflow runs multiple variant callers on aligned
ATAC-seq reads and gathers the output of these callers to-
gether into a single dataset in variant call format (VCF). The
classify subworkflow uses the output from the prepare sub-
workflow to predict variants within ATAC-seq peaks and
outputs a new VCF file containing the predictions. In addi-
tion to the predicted variants, this VCF file contains recal-
ibrated quality scores and the names of the variant callers
that predicted each variant. By default, the two subwork-
flows are executed together in a master Snakefile, with the
output of the first passed directly to the second, however,
for more advanced usage, they can be executed separately.
This allows the user to alter the output of the prepare sub-
workflow before it is used by the classify subworkflow, or to
use the output of the classify subworkflow to evaluate the
performance of the variant calling methods. The pipeline
is highly configurable and allows the user to easily include
additional variant callers.

ATAC-seq data processing

The prepare subworkflow first aligns paired-end reads to
a specified reference genome using BWA-MEM (version
0.7.15-r1140) (12) with default parameters. Reads are fil-
tered with samtools (version = 1.9) (13) and non-duplicated
reads with high mapping quality (MAPQ ≥ 20) are retained.
If the user desires, these steps of the pipeline can be skipped
by providing pre-existing read alignments in BAM file for-
mat. In this study, we used the GRCh37 reference genome
for analyzing reads from the GM12878 cell line and the
hg38 reference for all other bulk ATAC-seq data.

VarCA identifies ATAC-seq peaks using MACS2 (ver-
sion 2.1.0.20150731) (14) with the following parameters ‘–
nomodel –extsize 200 –slocal 1000 –qvalue 0.05 -g hs’. This
set of peak-calling arguments is more permissive and yields
broader peaks than the ATAC-seq standard adopted by the
ENCODE project. We use this peak definition because a
more permissive peak definition is desirable for calling as
many relevant variants as possible. The user may also pro-

vide their own peak definitions by providing a BED file, in
which case the peak-calling step of the pipeline is skipped.

Single cell ATAC-seq data processing

Single cell ATAC-seq reads from a mixture of human
GM12878 and mouse A20 cells were obtained from the
10x Genomics website (15). We used this mixture dataset,
as it was a publicly-available single-cell dataset that could
be used to assess caller performance on the GM12878
cell line. Reads were aligned to the hg19/mm10 reference
genome and clustered according to the 10x Single Cell
ATAC pipeline. Reads for each of the clusters were ex-
tracted to separate BAM files. Read pairs aligning to the
mm10 reference genome were discarded with samtools (ver-
sion = 1.9) (13). Alternative alignment locations mapping
to the mm10 reference were also discarded using pysam
(13). Peak-calling for each cluster was performed identically
to the bulk cell ATAC-seq. For analysis with VarCA and
other variant callers, we only retained cell clusters where the
vast majority of reads aligned to the human genome rather
than the mouse genome. This ensured that only GM12878
cells were used for performance evaluation.

Running indel and SNV callers

To call SNVs in the prepare subworkflow, VarCA runs
the Genome Analysis Toolkit (GATK) (16), VarDict (17),
and VarScan 2 (18). To call indels, VarCA uses the same
callers, and additionally uses Manta (7), Strelka2 (19), Pin-
del (8) and DELLY (9). The command line arguments and
software versions for these callers are summarized in Sup-
plementary Table S1. Wherever possible, alleles from each
caller are standardized by left-alignment and normalization
using bcftools (20), such that indels start at the same posi-
tion and their alleles are represented identically amongst all
of the variant callers. When callers do not output values for
a site, VarCA uses appropriate defaults specified in a sepa-
rate configuration file. VarCA combines the output from the
callers into a large feature table where each row represents
a single genome position, and the columns (or features) are
fields from the VCF output of each variant caller. For SNV
callers, examples of the most important features are geno-
type quality (GQ), phred-scaled P-value for exact test of ex-
cess heterozygosity (ExcessHet), and quality by depth (QD)
(Supplementary Table S2). For indel callers, examples of the
most important features are quality by depth (QD), phred-
scaled P-value for exact test of excess heterozygosity (Ex-
cessHet), and genotype quality (GQ) (Supplementary Table
S3). As additional features, VarCA adds columns to the ta-
ble with the depth of reads overlapping each position as well
as Bayesian estimates of the proportion of reads with inser-
tions and deletions (see Supplementary Note S1). Columns
are also added to label the variants predicted by the callers
as ‘INS’, ‘DEL’, ‘SNV’ or ‘.’ (for no variant) based on the
reference and alternate alleles output by each caller (Sup-
plementary Figure S1).

Training/test data

To create a ground truth dataset of known variants in
ATAC-seq peaks, we downloaded high-quality genotype
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Figure 1. Schematic of the VarCA pipeline. The pipeline consists of the prepare (red) and classify (green) subworkflows. The prepare subworkflow runs a
set of variant callers on the provided ATAC-seq data and extracts specific features from their VCF output. These are aggregated into a single dataset and
prepared as input for the classify subworkflow, which uses a trained ensemble classifier (orange) to predict the existence of variants. The final output of the
pipeline is a VCF file containing the variants predicted by VarCA (yellow).

calls for the GM12878 cell line from the Platinum Genomes
project (10), and downloaded bulk ATAC-seq data from
the same cell line (2). We aligned the ATAC-seq reads to
the genome using the prepare subworkflow described above
and labeled sites within ATAC-seq peaks (with read depth
greater than 10) as ‘INS’, ‘DEL’, ‘SNV’ or ‘.’ (for no vari-
ant) (Supplementary Figure S1). Called variants were eval-
uated for concordance with the truth set according to their
starting positions. For example, if an indel did not have the
same starting position as an indel in the truth set, it was
labeled as a false positive. An indel was labeled as a true
positive if there was an indel in the truth set at the same
position, even if the alleles differed. In total, the feature ta-
ble for the GM12878 cell line consisted of 4 866 073 sites
within ATAC-seq peaks with a read depth >10 (Supplemen-
tary Figure S2). We partitioned the feature table into train-
ing and test sets by dividing it into odd- and even-numbered
chromosomes, respectively. We excluded the X, Y and mito-
chondrial chromosomes when training and testing the clas-
sifier. Chromosome Y is not present in GM12878 and Plat-
inum Genomes does not provide variant calls for the mito-
chondrial chromosome that could be used for performance
evaluation. The final trained classifier provided for down-
load was trained on chromosomes 1–22 and X.

VarCA training

VarCA’s classify subworkflow uses a random forest (RF) to
predict whether a genome site contains a variant. Specif-
ically, VarCA utilizes the ranger fast RF implementation
(21) from within the mlr package (22). The RF has several
hyperparameters that control the structure of the trained
RF: num.trees (number of trees to grow), mtry (number of
variables to possibly split at each node in each tree) and
min.node.size (the minimum number of observations to re-
tain in terminal nodes, which controls the depth of the
trees). We set num.trees to 500 and estimated the other hy-
perparameters by testing 35 parameter combinations and
performing 5-fold cross validation on the training dataset
(Supplementary Figures S3 and S4). We selected the param-
eter values that yielded the highest F-beta score, although
we note that the performance was relatively insensitive to
the choice of these parameters. To compute F-beta, we used
a beta value of 0.5 to give precision a higher weight than
recall. We trained separate RFs to classify indels from non-
indels and SNVs from non-SNVs. In total we used 39 fea-
tures from 3 callers to predict SNVs and 65 features from
seven callers to predict indels (Supplementary Tables S2
and S3).
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VarCA output

VarCA’s final output is a set of predicted variants in the
variant call format (VCF). The RF used by VarCA provides
probabilities that a variant exists but does not provide the
alternate allele. VarCA obtains the alternate allele from one
of the individual callers that predicted the existence of the
variant. Since the predicted alternate allele may occasion-
ally differ between callers, VarCA takes the first alternate
allele that is predicted by a caller, with the ordering of the
callers specified in a configuration file. Currently, we priori-
tize callers based on their individual F-beta scores, which we
term ‘priority rule’ (Supplementary Tables S4 and S5). We
also tested an approach where the alternative allele was de-
termined by ‘majority rule’. Both rules provided similar pre-
dictions, with priority rule providing slightly higher accu-
racy on our test dataset (Supplementary Figure S5). VarCA
indicates the callers used to determine the alternate allele for
each variant within the VCF output file.

Using the classification probabilities output by the ran-
dom forest, we also calculate a recalibrated quality score
for every variant in the VCF. This score is the phred-scaled
probability that the variant was correctly classified (i.e. that
an alternate allele exists at this position). We calculated the
quality scores by binning sites in the test dataset by their
RF classification probabilities and fitting a linear model be-
tween the phred-scaled RF classification probabilities and
empirical precision of each bin (Supplementary Figure S6).
VarCA uses this model to calculate the final quality scores
for every variant in the VCF.

ATAC-seq experiments

To test whether VarCA can detect known mutations using
ATAC-seq data, we performed ATAC-seq experiments for
the Jurkat, MOLT-4, CCRF-CEM, RPMI-8402 and K-562
cell lines using the Omni-ATAC-seq method (23), with mi-
nor modifications. In each experiment, 1 × 105 cells were
centrifuged at 1000 × g for 10 min at 4 ºC. Following as-
piration, a cell count of the supernatant was performed,
the remaining cell number was calculated, and all further
reagents in the protocol were titrated to this cell number.
For every 5 × 104 cells, nuclei were isolated in 50 �l cold
ATAC-Resuspension Buffer (RSB) (10 mM Tris–HCl pH
7.4, 10 mM NaCl, 3 mM MgCl2) containing 0.1% NP40,
0.1% Tween-20 and 0.01% Digitonin, and pipet-mixed up-
and-down at least five times. Nuclei isolation mix was in-
cubated on ice for exactly 3 minutes, washed in 1 ml of
cold ATAC-RSB containing 0.1% Tween-20 (but no NP40
or Digitonin) and centrifuged at 1000 × g for 10 min at
4ºC. Nuclear DNA was tagmented in 50 �l Transposition
mix (25 �l 2× TD buffer, 2.5 �l transposase (100 nM fi-
nal), 0.5 �l 1% digitonin, 0.5 �l 10% Tween-20, 16.5 �l PBS
and 5 �l diH2O), and incubated in a thermomixer at 37 ◦C,
1000 rpm for 30 min. Tagmented DNA was purified with
Zymo DNA Clean and Concentrator-5 Kit (cat# D4014).
Library amplification was performed using custom index-
ing Nextera primers from IDT in a 50 �l Kapa Hi Fi Hot
Start PCR reaction (cat# KK2602). Following 3 initial cy-
cles, 1 �l of PCR reaction was used in a quantitative PCR
(Kapa qPCR Library Quantitation Kit cat# KK4824) to
calculate the optimum number of final amplification cycles.

Library amplification was followed by SPRI size selection
with Kapa Pure Beads (cat# KK8002) to retain only frag-
ments between 80 and 1200 bp. Library size was obtained
on an Aglient Bio-Analyzer or TapeStation using a High
Sensitivity DNA kit and factored into final Kapa qPCR re-
sults to calculate the final size-adjusted molarity of each
library. Libraries were pooled and sequenced on an Illu-
mina NextSeq500 in Paired-End 42 base pair configura-
tion at the Salk Next Generation Sequencing Core. ATAC-
seq data quality was assessed by computing the fraction of
reads within peaks (FRiP) (Supplementary Table S6).

RESULTS

Assessing variant caller performance

To evaluate the performance of variant callers on ATAC-
seq data, we considered all sites within ATAC-seq peaks
with read depth >10 and used Platinum Genomes variant
calls to label classifications as false positives, true positives,
false negatives or true negatives. Since most variant callers
only provide output for sites that they classify as variants,
we used the variants output from each caller as predicted
positives and the remaining sites as predicted negatives. Us-
ing this approach, we obtained point estimates of precision,
recall and other performance metrics for each variant caller
(Figure 2; Supplementary Tables S4 and S5).

We also generated precision-recall (PR) curves for the
variant callers that provided scores that could be used to
rank predictions. For example, for GATK we computed a
PR curve using QD as the score (phred-scaled variant call
confidence normalized by allele depth), for VarScan2 we
used (1 – P-value) as the score, and for VarDict, Manta, and
Strelka, we used QUAL as the score (unnormalized phred-
scaled variant call confidence). For each caller, we assigned
unscored sites a value that was lower than all of the scored
sites (the transition from scored to un-scored sites is visible
as a sharp drop in precision in the PR plots). Some callers,
such as Pindel and DELLY, do not output scores, so their
performance is represented only by a single point on the PR
plot. To assess the overall performance of each method we
also computed the average precision over each curve, the
area under the receiver operating characteristic curve (AU-
ROC), and the F-beta score (using a beta value of 0.5) (Sup-
plementary Tables S4 and S5).

Among the individual variant callers, GATK had the best
performance for SNV discovery, as measured by F-beta, fol-
lowed by VarScan2 and VarDict (Figure 2; Supplementary
Tables S4 and S5). GATK also exhibited the best perfor-
mance for indels followed by VarScan 2, Manta and Var-
Dict. The remaining indel callers all had poor performance,
likely due to their reliance on features, such as insert size,
that have different characteristics in ATAC-seq reads.

VarCA, our ensemble classification method, had substan-
tially better performance than the individual variant callers
for both SNVs and indels, as measured by F-beta and had
higher precision across all recall thresholds (Figure 2; Sup-
plementary Tables S4 and S5). When run on SNVs for bulk
cell ATAC-seq, VarCA had excellent performance with a
precision of 0.99 and a recall of 0.95 (Supplementary Table
S4) compared to a precision of 0.92 and recall of 0.97 for
GATK. When run on indels for bulk cell ATAC-seq, VarCA
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Figure 2. Performance of methods for detecting single nucleotide variants (SNVs) and indels on bulk ATAC-seq. (A) Precision recall (PR) curves for SNV
detection (B) PR curves for indel detection. VarCA is our ensemble prediction method that combines information from individual variant callers. Overall
precision and recall values for each caller, using all variant calls reported significant, are also indicated as single points. Callers that do not output a score
that can be used for ranking only have a single point. The point for VarCA corresponds to a score of 0.50, which we use as a significance threshold. For each
caller, sites that were not output/scored were assumed to be classified as non-variant and given a score lower than all output sites. The point for VarScan is
substantially better than its precision recall curve because VarScan uses several metrics to decide which variants are significant and our VarScan ranking
is based on a single metric (1 – P-value). (C) Inset plot of the SNV PR curve to show the region where precision and recall are >0.75. (D) Inset plot of the
indel PR curve to show the region where precision and recall are >0.75.

had a precision of 0.93 and a recall of 0.80 compared to
a precision of 0.87 and recall of 0.82 for GATK (Supple-
mentary Table S5). In summary, by combining information
from multiple variant callers, VarCA achieves substantially
higher precision than GATK and all other variant callers,
which can greatly reduce the number of false positive vari-
ant calls. For example, in our test dataset, VarCA reported
2983 true positive SNVs and only 46 false positive SNVs. In
the same dataset GATK found 1.02 times more true posi-
tives than VarCA (3052) but at the cost of 4.8 times more
false positives (268).

VarCA is designed to discover variants within high-
coverage ATAC-seq peaks, however we also evaluated
VarCA’s variant detection rate (recall) both genome-wide
and within lower-coverage regions inside ATAC-seq peaks
(Supplementary Figure S7). As expected, VarCA’s genome-
wide recall is low because ATAC-seq reads are concentrated
in a small fraction of the genome.

We evaluated the performance of VarCA on different
read lengths and insert sizes. We simulated changes to the
insert size by rerunning VarCA on nucleosome-free, mono-
nucleosome, and dinucleosome fractions corresponding to
fragment lengths described in Buenrostro et al. (2). In all
cases, the precision for SNVs remained near 0.98, while the
recall suffered slightly and ranged from 0.81 (dinucleosome)
to 0.94 (nucleosome-free) (Supplementary Table S7). This
was also seen in indels, where the precision remained near
0.93, while the recall ranged from 0.65 (dinucleosome) to
0.74 (nucleosome-free). We also reran VarCA on reads of
varying lengths using read trimming software (24). Again,
precision remained near 0.99 for SNVs and slightly above
0.93 for indels, while recall increased with longer reads from
0.86 (read length 30) to 0.93 (read length 40) for SNVs and

from 0.45 (read length 30) to 0.67 (read length 40) for indels
(Supplementary Table S7).

We next ran the individual variant callers and VarCA
on single-cell ATAC-seq data, applying the methods sepa-
rately to each cluster of cells. The overall performance of the
methods on single-cell data was comparable to bulk data,
and VarCA consistently had the highest precision (Figure
3; Supplementary Figure S8). For example, when applied
to the reads from cells in ‘cluster 12’, VarCA had a preci-
sion of 0.98 and recall of 0.94 for SNVs and a precision of
0.83 and a recall of 0.83 for indels (Supplementary Tables S8
and S9). This precision is higher compared to all other SNV
and indel callers (Supplementary Tables S8 and S9) and is
consistent across the different cell clusters (Figure 3C).

VarCA feature importance

The RF classifier can evaluate how useful each feature is for
predicting variants, using a metric known as importance.
The importance of a feature is the decrease in the Gini im-
purity resulting from the use of that feature at the nodes in
the trees where it is applied. We used importance to evalu-
ate which features from each caller are most useful for SNV
or indel prediction (Figure 4A and B and Supplementary
Tables S2 and S3). For calling either type of variant, the
most important feature was GATK’s QD, followed by GQ
(Genotype Quality), however features from other callers
also had high importance. To summarize the overall con-
tribution from each caller, we computed a summed impor-
tance across each caller’s features. For SNVs, GATK had
the highest summed feature importance, followed by Var-
Dict and VarScan2 (Supplementary Figure S9). For indels,
GATK again had the highest summed feature importance



Nucleic Acids Research, 2021, Vol. 49, No. 14 7991

Figure 3. Performance of methods for detecting single nucleotide variants (SNVs) and indels on single-cell ATAC-seq. (A) Precision recall (PR) curves for
SNV detection on reads obtained from cells that are part of single cell ‘cluster 12’. Overall precision and recall values for each caller, using all variant calls
reported significant, are also indicated as single points. Callers that do not output a score that can be used for ranking only have a single point. The point
for VarCA corresponds to a score of 0.50, which we use as a significance threshold. (B) PR curves for indel detection on cluster 12. (C) Inset plot of the
SNV PR curve showing the region where precision and recall are greater than 0.75. (D) Inset plot zoom of the indel PR curve showing the region where
precision is greater than 0.75 and recall is greater than 0.70. (E) Average precision for VarCA on the six different clusters of human cells. VarCA is our
ensemble prediction method that combines information from individual variant callers.

Figure 4. Importance of the features used by the VarCA random forest for variant classification. Colors indicate the variant caller that each feature was
obtained for. These values are also provided in Supplementary Tables S2 and S3. The ‘Alignment’ category refers to features that are extracted from read
alignments by VarCA (see Supplementary Note S1) (A) Feature importance for single nucleotide variants. (B) Feature importance for insertions/deletions.

followed by VarDict, Strelka 2, and VarScan2 (Supplemen-
tary Figure S10).

Streamlined ensemble method

Some of the variant callers did not provide features that
contributed substantially to the classification accuracy, as
indicated by the summed feature importances described
above (Supplementary Figures S9 and S10). We therefore
considered whether these callers could be omitted from
the VarCA pipeline to increase speed without sacrificing
accuracy. We re-evaluated the performance of VarCA, af-
ter training on features obtained from only the top callers

and found that the overall accuracy remained the same (or
even improved slightly) after dropping the callers with the
lowest summed feature importance (Supplementary Figure
S10; Supplementary Table S10). We therefore modified the
VarCA pipeline so that by default it only uses a subset
of callers: GATK, VarDict, and VarScan2 for SNVs; and
GATK, VarDict, Strelka 2, VarScan 2 and Pindel for indels.

Detecting known mutations

To demonstrate the utility of VarCA for the detection of
de novo mutations, we applied it to ATAC-seq data that we
collected from four T-cell acute lymphoblastic leukemia cell
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Figure 5. VarCA detects insertions that are known to create oncogenic enhancers upstream of TAL1 in the Jurkat and MOLT-4 cell lines using ATAC-seq
reads. The VarCA significance threshold is 0.50, and the CCGTTTCCTAAC insertion in the Jurkat cell line was detected with a VarCA score of 0.64. The
AC insertion in the MOLT-4 cell line was detected with a VarCA score of 0.91.

lines (Jurkat, MOLT-4, CCRF-CEM and RPMI-8402) and
one myelogenous leukemia cell line (K562). Two of these
cell lines (Jurkat and MOLT-4) are known to harbor slightly
different oncogenic insertions 8kb upstream of the TAL1
gene (25) and VarCA successfully detects both of them with
scores of 0.64 in Jurkat and 0.91 in MOLT-4 (Figure 5). In
addition, we verify that VarCA detects an insertion associ-
ated with allele-specific expression of the LMO2 oncogene
(4) in MOLT-4 cells with a score of 0.86 (Supplementary
Figure S11). The other cell lines lacked sufficient ATAC-seq
coverage to call variants at these positions, except for the
Jurkat and RPMI-8402 cell lines at the LMO2 locus. For
these latter cell lines, the absence of the insertion was con-
firmed by very low VarCA scores (Supplementary Figure
S11). These results demonstrate the utility of VarCA for dis-
covering important mutations in regulatory regions of the
genome.

DISCUSSION

Using VarCA, variants can be called from ATAC-seq data
in the absence of whole-genome sequencing data. By using
an ensemble of variant callers, we found that SNVs and
indels can be called with high accuracy within accessible
chromatin regions using ATAC-seq reads. Of the individ-
ual variant callers we tested on ATAC-seq data, GATK
had the highest overall performance. However, VarCA,
achieves substantially better performance than any individ-
ual method and its recalibrated quality scores can be used
to filter for high confidence variants.

The plots and tables presented in our results are automat-
ically produced by the classify subworkflow of the pipeline.
Therefore, VarCA can also be used to evaluate the perfor-
mance of variant callers on ATAC-seq data in addition to
those we have investigated here. Because VarCA is imple-
mented with Snakefiles, it is easy to install, configure, and
execute in a variety of Unix/Linux environments, includ-
ing high-performance computing clusters. VarCA is also de-
signed to make it easy to add and test new variant callers.
The logic for executing each caller is isolated to caller scripts
which can be registered with the pipeline via its configura-
tion. In addition, the exact versions of each variant caller
are specified in a YAML file, parsed by Snakemake upon
execution and used for installing these callers from their
conda distributions. Updates to the versions and packages
in the YAML file are detected automatically. The process of
adding new caller scripts, altering existing callers, or updat-
ing the versions of each caller is detailed in the caller-specific
documentation.

VarCA has a few limitations. First, it expects that ATAC-
seq reads will be paired-end and cannot currently be used
for single-end datasets. Second, VarCA currently only sup-
ports calling of SNVs and indels, and does not detect events
such as copy number alterations or inversions. Another lim-
itation is we did not evaluate our performance in the MHC
region. Most variant callers are limited by the complexity of
this region, and since VarCA is an ensemble method, it has
the same limitations. Finally, a limitation of calling variants
from ATAC-seq reads is that only a small fraction of the
genome is covered by a sufficient number of reads and thus
ATAC-seq reads cannot be used for variant calling in clini-
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cal settings or other applications where broader coverage of
variants in the genome is required. In the GM12878 ATAC-
seq dataset, we called variants in ATAC-seq peaks that were
covered by at least 10 sequencing reads, resulting in 4.87
MB of the genome within callable regions. While these re-
gions of the genome are the most likely to harbor regula-
tory variants, mutations or variants within regulatory ele-
ments may not be detectable if they completely disrupt the
regulatory region resulting in the loss of open chromatin.
Nonetheless, we have found that within the GM12878 lym-
phoblastoid cell line the vast majority of SNVs and indels
within ATAC-seq peaks are detectable with high precision
using just ATAC-seq reads.

In conclusion, we performed the first systematic evalua-
tion of variant calling methods applied to ATAC-seq reads
and found that SNVs and indels can be called with high ac-
curacy within accessible chromatin regions for both bulk
and single-cell ATAC-seq reads. Our ensemble method,
VarCA, uses features output by other variant calling meth-
ods to achieve better performance than any individual
method. The VarCA pipeline can also be used to evaluate
the performance of any other variant callers on ATAC-seq
reads. We anticipate that VarCA will be useful for the dis-
covery of rare variants and regulatory mutations in large
panels of samples that have ATAC-seq data in the absence
of whole-genome sequencing (26). Furthermore, applica-
tion of VarCA to single-cell ATAC-seq datasets could po-
tentially reveal the presence of somatic mutations that are
present in only some subsets of cells.
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The source code for VarCA is released under an MIT open
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