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Background: The clinical and pathologic diversity of systemic lupus erythematosus (SLE) hinders diagnosis,
management, and treatment development. This study addresses heterogeneity in SLE through comprehen-
sive molecular phenotyping and machine learning clustering.
Methods: Adult SLE patients (n = 198) provided plasma, serum, and RNA. Disease activity was scored by mod-
ified SELENA-SLEDAI. Twenty-nine co-expression module scores were calculated from microarray gene-
expression data. Plasma soluble mediators (n = 23) and autoantibodies (n = 13) were assessed by multiplex
bead-based assays and ELISAs. Patient clusters were identified by machine learning combining K-means clus-
tering and random forest analysis of co-expression module scores and soluble mediators.
Findings: SLEDAI scores correlated with interferon, plasma cell, and select cell cycle modules, and with circu-
lating IFN-a, IP10, and IL-1a levels. Co-expression modules and soluble mediators differentiated seven clus-
ters of SLE patients with unique molecular phenotypes. Inflammation and interferon modules were elevated
in Clusters 1 (moderately) and 4 (strongly), with decreased T cell modules in Cluster 4. Monocyte, neutrophil,
plasmablast, B cell, and T cell modules distinguished the remaining clusters. Active clinical features were sim-
ilar across clusters. Clinical SLEDAI trended highest in Clusters 3 and 4, though Cluster 3 lacked strong inter-
feron and inflammation signatures. Renal activity was more frequent in Cluster 4, and rare in Clusters 2, 5,
and 7. Serology findings were lowest in Clusters 2 and 5. Musculoskeletal and mucocutaneous activity were
common in all clusters.
Interpretation:Molecular profiles distinguish SLE subsets that are not apparent from clinical information. Pro-
spective longitudinal studies of these profiles may help improve prognostic evaluation, clinical trial design,
and precision medicine approaches.
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1. Introduction

Systemic lupus erythematosus (SLE) is characterized by remark-
able clinical and pathogenic diversity, which hinders prompt diagno-
sis, accurate prognosis, and the optimization of therapies. Molecular
profiles could be used to better understand the underlying disease
processes of SLE, define features that are shared or unique in different
categorical subsets, and advance precision medicine approaches to
trial designs and clinical management.

Dozens of candidate molecules with robust scientific rationale
have been tested in either a broad range of SLE patients or in clini-
cally defined subsets, such as active nephritis or cutaneous lupus
patients [1]. These trials have almost universally failed to meet their
pre-specified primary outcomes. Although multiple factors contrib-
ute to the failure of lupus trials [2,3], many treatments have shown
efficacy in secondary endpoints or exploratory analyses [1]. More-
over, an exploratory analysis revealed differential effects of standard
of care medications on the expression of genes that represent the tar-
gets for treatments currently under development. These effects var-
ied, not only by the standard of care medication, but also by
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Research in context

Evidence before this study

Clinical and immunologic heterogeneity in systemic lupus eryth-
ematosus (SLE) hinders effective clinical trials and treatment
optimization. Recent studies have used autoantibody profiles,
whole blood gene expression profiles, or immunophenotyping
individually to group SLE patients into more homogenous sub-
sets. In a large, longitudinal cohort of pediatric SLE patients, Ban-
chereau and colleagues identified transcriptional modules that
change over time with disease activity and identify clinical sub-
sets of pediatric SLE patients. However, these approaches have
not yet been tested and confirmed in adult SLE patients, nor
have the intricacies of immune dysregulation been distilled into
a robust tool that can be readily applied in clinical trials or in
clinical care for individual patients.

Added value of this study

This study establishes an approach that identifies seven pheno-
typic clusters of adult SLE patients by incorporating multiple
types of immunologic data through machine learning. This
analysis leveraged a large, diverse, and carefully-characterized
cohort to support the application of these findings to a broader
population of adult patients. Disease activity and clinical mani-
festations varied between clusters, with certain clusters
enriched for more severe disease manifestations. Clinical fea-
tures that are often used to select patients for clinical trials,
such as arthritis or lupus nephritis, were present across multi-
ple clusters with distinct patterns of immune activation.

Implications of all available evidence

Multi-dimensional molecular and immunological profiles dis-
tinguish unique subsets of SLE patients that are not apparent
based on clinical information, thus laying the foundation for
precision medicine in lupus treatment and clinical trials.
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underlying patient immune phenotype [4]. These observations sug-
gest that a systematic approach is needed to address lupus heteroge-
neity by subdividing patients into subsets with shared immunologic
and genomic characteristics.

Historical approaches to address heterogeneity have employed
autoantibody profiles [5�7], clinical patterns [8�10], whole blood
gene expression profiles [11�13], or immunophenotyping [14] indi-
vidually to group SLE patients into more homogenous subsets; how-
ever, these approaches individually have not yet been very useful in
sorting through the complex array of data acquired in clinical trials
[15�17] or in developing optimized clinical care. In a large, longitudi-
nal cohort of pediatric SLE patients, Banchereau and colleagues [18]
identified transcriptional modules that change over time with disease
activity and identify clinical subsets of pediatric SLE patients. In addi-
tion, our group has identified soluble mediators, including cytokines,
chemokines, adhesion molecules, and soluble receptors that associate
with risk of SLE disease flare [19,20]. Although the specific pathways
that distinguish an impending disease flare differ somewhat between
European American and African American cohorts and likely vary
between individual patients, an assay that simultaneously surveys
multiple immune pathways accurately identified SLE patients at
higher risk of future enhanced disease activity [19,20].

Together, these findings demonstrate the value of high-dimen-
sional data for understanding the diversity of pathogenic mecha-
nisms in SLE and the relevance of molecular phenotypes to clinical
studies and patient care. This cross-sectional study used machine
learning approaches to cluster adult SLE patients according to their
molecular phenotypes, and evaluated demographic and clinical fea-
tures enriched in each cluster.
2. Methods

2.1. Patients and samples

Study procedures followed were in accordance with the ethical
standards of the OMRF Institutional Review Board and with the
revised Helsinki Declaration of 2000. This study was approved by
the Institutional Review Board of the Oklahoma Medical Research
Foundation, and all participants provided written informed con-
sent prior to study-specific procedures. A subset of the Oklahoma
Cohort for Rheumatic Disease (OCRD) at the Oklahoma Medical
Research Foundation comprises 198 SLE patients meeting SLE clas-
sification by the 1997 update to the 1982 ACR criteria [21], with
recruitment beginning in 2001. This subset of SLE patients from
the OCRD had an average of 13 visits per subject (total cohort visits
2585, range 2�34 visits). Disease activity was measured at each
visit by the modified SELENA-SLE Disease Activity Index (mSE-
LENA-SLEDAI) [22]. SLEDAI scores �4 were considered high, and
SLEDAI scores <4 were considered low. Efforts were made to mini-
mize bias based upon concurrent medications by the elimination
of patients who had recently (within 1 year) taken rituximab,
cyclophosphamide, or pulse IV steroids. In addition, samples were
tested in a blinded fashion by technical personnel who were per-
forming and initially analyzing the data. The sample size was also
large enough to minimize bias. Non-autoimmune rheumatic dis-
ease controls from the Oklahoma Immune Cohort were cohort-
matched for age (within 5 years), race, gender, and time of sample
procurement, such that matched samples were stored at �80 °C
for the same length of time prior to the assays (n = 48) (see Supple-
mental Table 1 for demographics).

Blood was collected into PAXgene blood RNA tubes (PreAnalytiX,
Hombrechtikon, Switzerland) for gene expression profiling. On the
day of collection, the College of American Pathologists certified sam-
ple processing and biorepository core at OMRF (CAP# #9418302) iso-
lated undiluted plasma from heparin tubes and undiluted serum
from serum tubes, and froze aliquots at �80 °C. Assays were per-
formed on freshly thawed samples to maximize consistent detection
of analytes, even when present in the pg/mL range.
2.2. Gene expression profiling

Total cellular RNA was isolated and purified from PAXgene
tubes (PAXgene Blood RNA kit, Qiagen Inc, Valencia, CA). RNA qual-
ity and quantity were determined using the Agilent 2100 Bioana-
lyzer (Agilent Technologies, Santa Clara, CA, USA). After depletion
of globin mRNA and ribosomal RNAs (Globin-Zero Gold kit, Illu-
mina, San Diego, CA, USA), RNA was amplified, in vitro transcribed,
and labeled using the Illumina Bead-Expression Kit for Illumina
Human HT-12 v4¢0 whole genome expression chip, and cDNA was
hybridized to the chips. Chips were scanned using the Illumina
iScan system. Quality control of gene expression data was per-
formed with GenomeStudio Version 2011¢1 (Illumina) per manu-
facturer protocol. Background-subtracted expression data were
log2 transformed and normalized with the rank-invariant method
using the lumiR package [23]. System-based modular co-expres-
sion analysis was performed calculating the individual-level mod-
ular co-expression network scores (M1-M6) for each patient
relative to the aggregate of controls, using second generation mod-
ular frameworks as described [18,24�26]. These modular scores
were then used as individual variables in subsequent analyses
described below.
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2.3. Autoantibody detection

Serum antinuclear autoantibodies were measured by indirect
immunofluorescence against Hep-2 cells in the College of American
Pathologists -certified Morris Reichlin Clinical Immunology Labora-
tory at OMRF (CAP# 2036101) [27]. ANAs present at �1:120 dilution
were considered positive. Autoantibodies were also detected using
bead-based, multiplex assays on a Bio-Rad BioPlex 2200 platform
(Bio-Rad Technologies, Hercules, California, USA) as previously
described [28]. Antibodies against chromatin, ribosomal P, Sm,
SmRNP, nRNP composite (nRNP A and/or nRNP 68), Ro/SSA compos-
ite (52 kDa Ro and/or 60 kDa Ro), La/SSB, centromere B, Scl-70, and
Jo-1 were quantified as an antibody index (AI) value based on the
fluorescence intensity of each of the autoantibody specificities, with a
manufacturer-recommended positive cutoff of AI�1 (range 0�>8).
Anti-dsDNA was quantified in IU/mL with a manufacturer-recom-
mended positive cutoff of 10 IU/mL.

2.4. Soluble mediator detection

Plasma levels of B lymphocyte stimulator (BLyS) and a prolifera-
tion-inducing ligand (APRIL) were measured by enzyme linked
immunosorbent assays (ELISAs) per manufacturer protocol (Human
BAFF/BLyS/TNFSF13B Quantikine ELISA, R&D Systems, Minneapolis,
MN, USA; and Human TNFSF13/APRIL ELISA, eBioscience/Affymetrix,
San Diego, CA).

Plasma levels of other soluble mediators were assessed using a
custom, multiplex panel (ProcartaPlex, Thermo Fisher Scientific/Invi-
trogen) on the Bio-Rad Bioplex 200 Luminex xMAP plate reader (Bio-
Rad Technologies) as previously described [19]. This panel uses an
optimized and validated multiplex design and pre-purchase quality
controls to maximize assay specificity and sensitivity, particularly for
analytes present in low quantities. A bridge control serum sample
was included on each plate (Cellect human AB serum, Cat#2931949,
Lot#Q8823, MP Biomedicals, Solon, OH, USA) to control for plate-to-
plate variation of soluble mediator assays. The mean inter-assay coef-
ficient of variance (CV) of these assays (10¢5%) was within that previ-
ously shown for bead-based assays [29]. Limit of blank, limit of
detection, and limit of quantification were determined and used for
quality control as previously described [30]. Analytes with >60% of
samples below the limit of detection were excluded from subsequent
analyses. Analytes passing quality control included IFN-a, IFN-g ,
IP10, MCP-1, MIG, MIP-1a, MIP-1b, TRAIL, TWEAK, sCD-40 ligand,
TNFR I, TNFR II, IL-10, IL-17A, IL-2, IL-2RA, IL-12p70, IL-21, IL-1a,
ICAM-1, and SCF. Concentrations were interpolated from 5-parame-
ter logistic nonlinear regression standard curves, or assigned a value
of 0 if a sample was below the limit of detection.

2.5. Statistical analysis

Variables with <60% missing data were retained for univariate
analyses. Quantitative variables were compared by Kruskall Wallis
test, and categorical variables by Chi-square or Fisher’s exact test, as
appropriate, with Bonferroni adjustment for multiple corrections. No
imputation was performed. Instead, samples with missing data were
excluded from analyses requiring complete data, and retained for
other analyses. Additionally, four outlier samples were removed from
downstream clustering analyses. After these criteria, 290 samples
from 194 patients were used for final analyses of molecular clusters.
All variables including modular co-expression scores, autoantibody
and cytokine concentrations were used for univariate, Pearson corre-
lation and multivariate analysis in R 3¢3¢2.

To identify patient clusters using the informative molecular and
cytokine variables, clustering and regression were performed using
the unsupervised randomForest module (version 4¢6�12) in R
(https://cran.r-project.org/) with mtry = the square root of the
number of variables, ntree = 2000, and dissimilarity matrix defined
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�similarity

p
, where the similarity matrix was stabilized by

averaging similarities generated by 100 random forest unsupervised
clustering models. The dissimilarity matrix was then reduced to three
principle components using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) R package to minimize information loss com-
pared to conventional dimensional reduction analysis. The first two
principle components were used for K-mean clustering with n-max
of 20 using pamK R package.

2.6. Data sharing

Microarray data will be available through GEO (accession number
GSE138458). Other data generated during and/or analyzed during
the current study are available from the corresponding author upon
reasonable request.

3. Results

3.1. Characteristics of the study cohort

From the Oklahoma Cohort for Rheumatic Disease, this study
identified 196 unique SLE patients with at least one sample that
passed predefined quality control metrics for molecular phenotype
data. Of these, 98 patients provided samples at two visits, which
mainly had different disease activity scores (Supplemental Table 1).
Of the 196 participants in this study, 89¢8% were female. The racial
composition was 46¢9% European American, 23¢0% African American,
12¢2% American Indian, 11¢2% Hispanic, 5¢6% Asian, and the rest more
than one race (Supplemental Table 1). All patients in this study were
ANA positive by medical record review.

3.2. Correlations among co-expression module scores, soluble mediator
levels, and SLEDAI scores

Transcriptional co-expression module scores were calculated from
Illumina microarray gene expression data for previously defined
immune pathway related modules [24]. Module scores showed the
expected correlations (p-values <0¢05) with other modules and with
soluble mediator levels based on previously established immunological
pathways. For example, inflammation module scores significantly corre-
lated with each other and with the neutrophil module score. Interferon
modular scores strongly correlated with one another and with levels of
interferon associated soluble mediators, such as IFNa, IFNg , IP-10
(CXCL10), MIG, BLyS, and TNFRII. Interferon module scores also signifi-
cantly correlated with inflammation module scores, as well as with lev-
els of inflammatory mediators, such as MCP-1, MIP-1a, MIP-1b, IL-1a,
and other cytokines (e.g. IL-2RA, IL-21, IL-12p70, IL-2 and IL-10 (Supple-
mental Fig. 1). B cells module scores moderately correlated with TRAIL,
sCD-40 ligand, IL-21, and stem cell factor, but negatively correlated
with IL-10 and TNFRI (Supplemental Fig. 1).

Total SLEDAI scores positively correlated with interferon (r>0¢2) and
plasma cell (r = 0¢25) module score in this adult lupus collection (Sup-
plemental Fig. 1). Levels of IFNa, IP-10, and IL-1a also correlated with
SLEDAI scores (Supplemental Fig. 1; p-value<0¢05; r range from 0¢11 to
0¢27). Together, these correlations demonstrate the internal validity of
these datasets, the expected coordinated regulation of the expression of
these markers, and correlation with clinical disease activity.

3.3. Expression modules and soluble mediators stratify SLE patients into
seven subsets

To enable more precise patient stratification for future clinical
studies, clinical trial designs, potential prognosis and improved clini-
cal care, seven patient subsets with distinct molecular phenotypes
were identified by k-means clustering with a t-SNE reduced random

https://cran.r-project.org/


Fig. 1. Gene expression modules and soluble mediators stratify SLE Patients into seven molecular phenotypic subsets. (A) Unique patterns of gene co-expression modules and solu-
ble mediators (SM) distinguished seven phenotypic clusters of SLE patients, indicated by colored numbers in the plot. X1 and X2 indicate the top two principal components defined
by tSNE on a random forest dissimilarity matrix. These components were used in k-means clustering to identify the seven clusters. (B) The heat map presents the informative gene
expression modules and soluble mediators used in clustering (see methods). Each row is a gene expression module or soluble mediator and each column is a patient. Colors indicate
row z-scores, from purple (low) to yellow (high). The seven clusters are color coded as in other figures, and the number of samples in each cluster are indicated.

4 J.M. Guthridge et al. / EClinicalMedicine 20 (2020) 100291
forest dissimilarity matrix of soluble mediators and previously
defined co-expression modules [18,24�26] (Fig. 1(A)). Three clusters
(Clusters 1, 4, and 6) demonstrated substantially higher IFN modular
scores compared to the other subgroups. Another three clusters
(Clusters 2, 3, and 5) demonstrated predominant lymphoid and
monocytoid modular scores. One cluster (Cluster 7) showed minimal
activation of interferon, lymphoid, neutrophilic and monocytoid
related modules. Demographics varied between the clusters (Table 1,
Supplemental Fig. 2). A higher percentage of European American
patients were in Cluster 5 (24¢4%) (Supplemental Fig. 2). African
American patients (n = 69) were most often in Cluster 7 (27¢5%) or
Cluster 3 (24¢6%), and were rarely in Cluster 1 (5¢8%). American Indian
patients had the highest frequency of patients in Cluster 1 (37¢1%).

Clusters 1 and 4 were characterized by significant elevation of
inflammation module scores, along with elevations in the interferon
Table 1
Participant demographics and medication usage by cluster.

Cluster Number 1 2

Total N* 47 39
Female, n (% of cluster) 41 (87¢2) 35 (89
Age in years, mean 38¢6 43¢1
Race, n (% of cluster)
European American 14 (29¢8) 24 (61
African American 4 (8¢5) 9 (23
American Indian 13 (27¢7) 3 (7¢
Asian 6 (12¢8) 0 (0)
Hispanic 8 (17) 3 (7¢
Mixed Race 2 (4¢3) 0 (0)

Medication use, n (% of cluster)
Hydroxychloroquine 30 (63¢8) 31 (79
Mycophenolate Mofetil 18 (38¢3) 5 (12
Azathioprine 9 (19¢1) 7 (17
Methotrexate 5 (10¢6) 9 (23
Cyclophosphamide 1 (2¢1) 0 (0)
Rituximab 1 (2¢1) 0 (0)
Steroids 27 (57¢4) 10 (25

Prednisone dose (mg), median (interquartile range) 0 (0, 10) 0 (0,

* Number of samples; total of 290 samples from 194 individuals.
module scores (Figs. 1(B) and 2(A)). Cluster 4 also had the highest neu-
trophil module scores (Figs. 1(B) and 2(A)) and the highest levels of sol-
uble IP-10, MIG, APRIL, TNFRI/II, and IL-10 (Fig. 2(B)). Cluster 1
demonstrated only moderate levels of each of those variables, but had
the highest levels of IL-21, IL-17A, and MIP-1b (Fig. 2(B)). Cluster 6 had
the highest levels of IL-1a and IL-2RA. The distinguishing features based
on relative expression of the gene co-expression modules and soluble
mediators are shown in Fig. 2. Variations in the molecular phenotypes
among these clusters suggest that different groups of lupus patients
may have different active immune pathways at a given time point, or
different levels of activation of particular pathways. These differences
may be due to altered transcriptional regulation within cells, or differing
frequencies of certain cell populations. These results suggest that dis-
tinct directed therapeutics or combination treatments may be needed
to target both shared and cluster-specific immune dysregulation.
3 4 5 6 7

58 33 48 32 33
¢7) 54 (93¢1) 29 (87¢9) 46 (95¢8) 28 (87¢5) 30 (90¢9)

42¢5 44¢3 42¢9 41¢3 44¢7

¢5) 28 (48¢3) 15 (45¢5) 32 (66¢7) 9 (28¢1) 9 (27¢3)
¢1) 19 (32¢8) 6 (18¢2) 7 (14¢6) 7 (21¢9) 17 (51¢5)
7) 3 (5¢2) 3 (9¢1) 5 (10¢4) 5 (15¢6) 3 (9¢1)

5 (8¢6) 4 (12¢1) 1 (2¢1) 3 (9¢4) 0 (0)
7) 3 (5¢2) 5 (15¢2) 3 (6¢3) 8 (25) 4 (12¢1)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

¢5) 40 (69) 19 (57¢6) 37 (77¢1) 22 (68¢8) 21 (63¢6)
¢8) 3 (5¢2) 4 (12¢1) 4 (8¢3) 3 (9¢4) 4 (12¢1)
¢9) 10 (17¢2) 4 (12¢1) 4 (8¢3) 7 (21¢9) 5 (15¢2)
¢1) 8 (13¢8) 7 (21¢2) 12 (25) 1 (3¢1) 4 (12¢1)

0 (0) 4 (12¢1) 0 (0) 0 (0) 0 (0)
0 (0) 1 (3) 2 (4¢2) 0 (0) 0 (0)

¢6) 22 (37¢9) 27 (81¢8) 16 (33¢3) 14 (43¢8) 15 (45¢5)
0) 0 (0, 0) 10 (5, 25) 0 (0, 0) 0 (0, 5) 0 (0, 10)



Fig. 2. Molecular profiles of seven SLE patient clusters. Radar plots show modified z-scores of relative gene expression module scores (A) and plasma soluble mediator levels (B) in
each of the molecularly-defined patient clusters, indicated by colored lines as shown in the legend at bottom right. Modules and soluble mediators are grouped by function, indi-
cated by colored arcs around each plot and labeled with the co-expression module name (A) or with the soluble mediator tested (B).
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3.4. Clinical features of molecularly defined patient clusters

Every cluster included patients with higher disease activity, as
well as patients with less active disease. Although there were trends
towards increased SLEDAI scores in Clusters 1 and 4, there were no
statistically significant differences between clusters (Fig. 3(A)). Clini-
cal SLEDAI scores, calculated without the complement and DNA bind-
ing components, were also not statistically significant between
clusters, but trended higher in Clusters 3 and 4 (Supplemental Table
2 and Supplemental Fig. 3). Furthermore, patients grouped by anti-
dsDNA and complement status show substantial variability in expres-
sion modules and soluble mediators (Supplemental Fig. 4). When
considering SLEDAI organ systems, each system was active in
patients from multiple molecular clusters (Fig. 3(B), Supplemental
Fig. 5). For example, patients with renal involvement were evenly
divided between the molecularly distinct Cluster 1 (n = 5; 25% of
renal patients), Cluster 3 (n = 6, 30%), and Cluster 4 (n = 6, 30%), with
additional patients from Clusters 2 and 4 (Fig. 3(B)). Among the SLE-
DAI components, low complement was significantly more common
in Cluster 1 than in Clusters 2 or 5 (Bonferroni-corrected p<0¢0021)
(Fig. 3(C), Supplemental Table 3). Increased DNA binding was signifi-
cantly more common in Clusters 1 and 4 than in Cluster 2 (Bonfer-
roni-corrected p = 0¢042 for both) (Fig. 3(C), Supplemental Table 3).
Anti-dsDNA positivity and low complement levels trended higher in
Clusters 1, 3, 4, and 6 (Supplemental Table 3). Other active lupus
manifestations that commonly drive the selection of patients for clin-
ical trials, such as musculoskeletal and mucocutaneous manifesta-
tions, occurred in nearly equal frequencies across all seven clusters
(Fig. 3(C); Bonferroni-corrected p>0¢05) (Supplemental Table 3).

Cumulative ACR criteria, representing a history of organ activity,
were also compared across the clusters (Supplemental Figure 6). Over-
all, cumulative criteria were quite similar across all of the clusters, with
each criterion being represented in each cluster. Immunologic criteria
were found in 75% or more of patients across all clusters, whereas renal
disorder trended to more frequent in Clusters 1 and 4.

Medication use also differed somewhat between certain clusters
(overall p = 0¢0001). Frequency of steroid use was highest in Cluster 4
(Table 1). Prednisone dose was highest in Cluster 4 (all Bonferroni-
corrected p � 0¢0092 vs. each cluster, by Kruskall�Wallis); higher in
Cluster 1 than in Clusters 2, 3, and 5 (Bonferroni-corrected
p = 0¢0216, 0¢0050, and 0¢0289, respectively), and higher in Cluster 7
than Cluster 3 (Bonferroni-corrected p = 0¢0428) (Table 1, Supple-
mental Table 4, and Supplemental Table 5). Rates of mycophenolate
mofetil use were approximately three times higher in Cluster 1 (38%)
than any other cluster (5¢2%�13%). Hydroxychloroquine use was
common across all clusters, but highest in Clusters 2 (79¢5%) and 5
(77¢1%) and lowest in Cluster 4 (57�6%).

3.5. Autoantibody profiles in molecularly defined SLE patients clusters

Autoantibody profiles were compared by autoantibodies against
common lupus RNA- and DNA-binding proteins, such as chromatin,
nRNP, Sm and Ro (Supplemental Fig. 7). Each autoantibody was pres-
ent in patients across multiple clusters. For example, anti-dsDNA and
anti-RNA-binding protein autoantibodies were found in clusters 1, 4,
6, and 7, which are molecularly quite different. Further, the levels of
anti-dsDNA were nearly equivalent between these clusters. Clusters
2 and 5 had the lowest levels of all autoantibodies compared to the
other clusters. Anti-ribosomal P autoantibodies were infrequent, but
when present were most common in Cluster 4. Cluster 6 had the
highest frequencies of anti-Ro and anti-La specificities (Supplemental
Fig. 7).

4. Discussion

Lack of understanding of the molecular heterogeneity of SLE
remains a major deterrent to optimized individualized therapy, novel
target identification, therapeutic development, and clinical trial suc-
cess. Indeed, dissection of disease heterogeneity has been considered
one of the ten most important contemporary challenges in SLE man-
agement [31] and is highlighted as a key obstacle for development of
novel treatments [2]. Three decades of failed clinical trials and limited
evidence to guide the selection of standard of care treatments hinder
optimal care for individual SLE patients [1]. Key roadblocks in the
development of new lupus treatments include incomplete under-
standing of the underlying molecular mechanisms of disease, the het-
erogeneity of disease across poorly defined clusters of patients, high
placebo response rates, the cacophony of background therapies, and
other factors [2,3]. This study set forth to address the heterogeneity
of lupus by applying machine learning approaches to extensive gene
expression, soluble mediator, autoantibody, and clinical information
in a large cohort of carefully clinically-characterized patients. These



Fig. 3. Clinical phenotypes of molecularly defined SLE patient clusters, based on SLE-
DAI variables. (A) Mean § SEM SLEDAI scores in each cluster. Comparison is not signifi-
cant (p>0�05) by Kruskall�Wallis. (B) Each bar represents 100% of patients who have
active manifestations in the given organ system, with colored segments indicating the
percentage of patients from each cluster. Activity in an organ system is defined as
activity in at least one of the corresponding individual components (e.g., thrombocyto-
penia or leukopenia in the hematologic domain; low complement or increased DNA
binding in the serologic domain, etc.). (C) Frequency of SLEDAI components in each
cluster. SLEDAI components not present in any patients are not shown (seizure, psy-
chosis, organic brain, visual, cranial nerve, lupus headache, CVA, myositis, pericarditis).
A pie chart showing a single line indicates 0%.
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approaches identified seven phenotypic clusters of adult SLE patients
that were not apparent from clinical information.

Subsetting of lupus patients has been attempted both in trials and
in prognostic studies based on clinical features (such as nephritis vs.
no nephritis) or based on autoantibodies and complement. All of
these approaches have taught us something, but it has long been sus-
pected that these distinctions are somewhat incomplete, and that the
next step must be to examine a more comprehensive set of immune
variables. Our work and others who have utilized gene co-expression
module signatures with or without the integration of soluble media-
tors [13,30,32,33] confirms that many features that can somewhat
define patient subsets, such as autoantibodies or nephritis, are found
in immunologically distinct patients who may benefit more or less
from given combinations of immune modulating treatments.

Although molecular subsetting alone will not resolve every prob-
lem in the design and interpretation of lupus trials, these results may
help reduce the confusion of heterogeneity in lupus based on seven
characteristic patterns of gene expression and soluble mediator pro-
files. Important implications for treatment development are sug-
gested, including better identification of promising treatment targets
in rationally defined patient subsets, improved study of pharmacody-
namic effects by sorting through their impact on molecularly similar
patients, and the potential development of diagnostic tests suitable
for selecting optimal treatments and monitoring individual responses
based on better characterized pathologic mechanisms.

Strengths of this study include the large population of racially
diverse, adult lupus patients who have donated samples when dis-
ease was both active and inactive. In addition, this project begins to
integrate soluble mediators, autoantibodies, gene co-expression
modules, demographic, and clinical information. The application of
machine learning approaches generated seven robust clusters with
strong internal validity. For example anti-dsDNA antibodies, known
to be associated with nephritis, are enriched in modules that are
associated with other features of nephritis.

Limitations of this study suggest major opportunities for further
research. Modules evaluated were associated with a limited set of
immunologic pathways. Significant additional gene expression data
information is available, and novel modules within this dataset may
exist which are important in adult lupus pathogenesis. The modeling
being examined now might also be improved by further inclusion of
genetics, epigenetics, metabolomics, lipidomics, immunophenotyp-
ing, microbiome/other environmental information, or other evolving
technologies. Evaluation of larger numbers of prospectively-col-
lected, protocolized samples across time would also be helpful to
establish the stability or movement of patients between various clus-
ters with changes in disease activity, clinical manifestations, thera-
peutic interventions, hormonal changes with estrus or menopause,
or variation with aging. Closely related clusters, like Clusters 1 and 4,
may represent two unique pathotypes, or the higher frequency of
MMF use in Cluster 1 may partially suppress signatures that would
otherwise be assigned to Cluster 4. Resolving this question will
require studies designed to directly test the impact of therapeutics
during treatment and/or disease, especially with respect to downre-
gulation of interferon and inflammatory markers and upregulation of
other pertinent immune modulators.

Synthesizing and simplifying these algorithms to a limited num-
ber of analytes may allow individual patients to be more precisely
diagnosed and treated. Refinements over time will be expected, but
should not delay the implementation of a good disease model which
could serve clinical trial designs and future studies that will be neces-
sary to fully integrate disparate SLE pathophysiology with prognosis
for individual patients.
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