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Abstract

Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are 
at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options 
to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted 
reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs 
or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new 
reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities 
are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly 
describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an 
assessment of readiness for translation to the human fertility clinic.
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Introduction
Fertility preservation is a process to protect or preserve the 
ability of individuals to have their own biological children  
by freezing sperm, eggs, embryos, or gonadal tissues/cells1. Fer-
tility preservation is indicated in patients with reproductive 
potential who are at risk of infertility (for example, azoosper-
mia or premature ovarian insufficiency) or reduced fertility (oli-
gospermia or diminished ovarian reserve) due to their disease, 
gonadotoxic medical treatments, age, or other circumstances2–6.  
Patients at risk of infertility should be counseled about their 
risk and referred to reproductive specialists to discuss options 
for fertility preservation, which include both standard-of-care  
and experimental approaches2,5–11. We will briefly list the estab-
lished standard-of-care fertility preservation options and describe 

in more detail experimental options to preserve and restore 
the fertility of women, men, girls, and boys who are at risk  
of infertility.

Male
Sperm cryopreservation is the established standard-of-care 
approach to preserve reproductive potential in adolescent and 
adult male patients (Figure 1A)2,4–6. Sperm cryopreservation is 
not possible for prepubertal patients who are not producing sperm  
or transgender females receiving medical treatments to sup-
press testosterone. The only option to preserve the reproduc-
tive potential of those patients who are not producing sperm is 
testicular tissue cryopreservation, which is investigational and 
should be done under approved protocols (Figure 1B)2,4,5,12. 

Figure 1. Fertility preservation methods for male patients. Sperm cryopreservation (A) is a standard-of-care practice to preserve fertility in 
adult male patients. Although this option is not feasible in patients who do not have mature sperm, testicular tissue can be cryopreserved under 
experimental protocol (B). The downstream applications for cryopreserved testicular tissue include spermatogonial stem cell transplantation 
with or without spermatogonial stem cell culture, de novo testicular morphogenesis, testicular tissue grafting/xenografting, and testicular 
tissue organ culture. In vitro germ cell technologies in which germ cells or gametes are produced from patient somatic cells are in the early 
stages of development. Induced pluripotent stem cells (iPSCs), which are derived from a patient’s somatic cells (for example, skin fibroblasts), 
can be differentiated into primordial germ cell-like cells (PGCLCs), which can be transplanted into the seminiferous tubules to make sperm 
or differentiated to sperm in vitro (C). ICSI, intracyctoplasmic sperm injection; IUI, intrauterine insemination; IVF, in vitro fertilization; TESE, 
testicular extraction of sperm.
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In this section, we will focus on the investigational cell- and  
tissue-based methods to produce sperm or restore fertility in 
males who have cryopreserved testicular tissues (Figure 1B). 
The experimental method in which sperm are derived from 
somatic cells through induced pluripotent stem cells (iPSCs) and 
primordial germ cell-like cells (PGCLCs) (Figure 1C) will be  
covered separately at the end of this review.

Cell-based therapies
Spermatogonial stem cell transplantation
Cryopreserved immature testicular tissues contain spermato-
gonial stem cells (SSCs) with the potential to initiate sperma-
togenesis, the process that produces sperm. Those tissues can 
be thawed and digested with enzymes to produce a testicular  
cell suspension, which contains SSCs, and subsequently trans-
planted into the seminiferous tubules of the testes to regen-
erate spermatogenesis and potentially restore fertility. This  
technique was first described in mice by Brinster et al.13,14 and 
has since been translated to rats, dogs, goats, sheep, pigs, and 
monkeys. The studies reported sperm in dogs, cattle, pigs, and  
monkeys15–18; hatching blastocysts in monkeys19; and offspring 
in mice, rats, goats, and sheep20–27. Therefore, it may be pos-
sible that immature testicular tissues from prepubertal male 
patients can be cryopreserved prior to gonadotoxic medical 
treatments, thawed at a later date, and digested with enzymes to  
produce a testicular cell suspension that is transplanted to regen-
erate spermatogenesis and possibly restore fertility. Autologous  
transplantation of frozen and thawed testis cells was reported 
in seven adult survivors of Hodgkin’s lymphoma in 2003,  
but reproductive outcomes of that study have not been  
reported28. Testicular tissue cryopreservation has now been 
reported for patients worldwide29–38 and some of those patients 
may be ready to use their tissues to have biological children. 
SSC transplantation is a mature technology that may be ready 
for translation to the human clinic. All approaches to use cryo-
preserved testicular tissues for reproduction are experimental 
and should be conducted with ethical approval and full reporting  
of safety and reproductive outcomes.

The tissue biopsies from young patients are usually small and 
may not contain a sufficient number of SSCs to produce robust 
spermatogenesis after transplantation. Thus, it may be neces-
sary to expand SSC numbers in culture before transplantation.  
SSC culture has been firmly established in rodents39–44, including  
development of conditions that do not require supporting  
feeder cells45,46, which may be an important consideration  
for clinical application. SSC culture has been extended to 
rats, hamsters, and rabbits41,47,48, but extension to larger ani-
mal species has been a challenge and this is perhaps due to  
species-specific differences in SSC regulation49–51. Many labo-
ratories have described protocols for human SSC culture32,52–68,  
but definitive evidence of long-term SSC expansion in higher 
primates is lacking, and no methods have been independ-
ently replicated among laboratories61,69,70. The slow cell cycle 
of SSCs in higher primates may partially explain the difficulty  
expanding those cells in culture71.

De novo testicular morphogenesis
De novo testicular morphogenesis is another cell-based therapy 
to regenerate spermatogenesis from testicular cell suspensions.  
Testicular cell suspensions consist of germ cells and somatic 
cells such as Sertoli cells, Leydig cells, peritubular myoid cells, 
endothelial cells, immune cells, and fibroblasts. Testicular cell 
suspensions from neonatal or fetal animals can reorganize to form 
seminiferous tubule-like structures when put under the skin of 
immune-deficient mice (de novo testicular morphogenesis)72–75.  
De novo morphogenesis has been reported to produce elon-
gated spermatids in pig and sheep74,75 and round spermatids that 
resulted in live-born offspring in mice73. There have been no 
reports of de novo testicular morphogenesis from human testis  
cells to date.

Tissue-based therapies
Autologous testicular tissue grafting
Testicular tissue grafting is an alternative to SSC transplantation. 
In this approach, SSCs are maintained in their cognate seminif-
erous tubule niches in intact pieces of testicular tissue. Homolo-
gous species testicular tissue grafting was pioneered in mice, 
demonstrating that immature mouse testicular tissues could  
be grafted under the back skin of recipient mice and matured to 
produce complete spermatogenesis76–78. Graft-derived sperm were 
competent to fertilize mouse eggs and produce healthy mouse  
offspring77,78.

Four studies have reported autologous and/or homologous 
grafting of immature nonhuman primate testicular tissues79–82,  
including studies that demonstrated the production of sperm80–82  
and a healthy baby82 from cryopreserved tissues. Therefore, 
autologous grafting of cryopreserved prepubertal testicular tis-
sues is a mature technology that may be ready for translation  
to the human clinic.

Testicular tissue xenografting
Autologous testicular tissue grafting may not be appropri-
ate for patients who harbor malignant cells in their testicular 
tissues (for example, leukemia or testicular cancer) or trans-
gender females who do not want to experience male puberty, 
including testosterone production that is required to mature tes-
ticular tissues and produce sperm. Xenografting of immature  
testicular tissues to an animal host may provide an alterna-
tive to produce sperm outside the patient’s body. Immature 
testicular tissues from pigs, goats, rabbits, hamsters, dogs, 
cats, horses, cattle, and monkeys have been grafted under 
the back skin of immune-deficient nude mice and matured to  
produce spermatids or sperm (reviewed in 83). Xenograft-
derived sperm recovered from mouse hosts have been used 
to fertilize and produce embryos or offspring in rabbits, pigs,  
and monkeys77,84–86. Xenografting of immature human tes-
ticular tissues has failed to produce sperm to date87–92 and this 
approach may raise concerns about transmission of xenobiot-
ics if used in the clinic. However, if proven effective, testicular  
tissue xenografting may be an approach to circumvent cancer 
contamination problems or for transgender individuals who will 
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not go through male puberty and cannot mature testicular tissues  
inside their own bodies.

Testicular organ culture
In 2011, Sato et al. demonstrated in mice that fresh or cryopre-
served neonatal testicular tissues could be matured in organ cul-
ture on an island of agar at the air–liquid interface to produce 
mature sperm93. Sperm from fresh tissues were tested func-
tionally by fertilization and with the production of offspring93.  
The same group later showed that cryopreserved testicular  
tissues could be matured to produce sperm and offspring; 
this has important implications for adult survivors of child-
hood cancers who have cryopreserved their testicular tissues94. 
This approach to mature testicular tissues outside the body also  
has important implications for transgender females who are 
not producing testosterone and will not be able to mature tes-
ticular tissues inside their bodies. Long-term tissue survival 
was not observed using the initial agar-island culture system, so  
Komeya et al. developed a pump-driven microfluidic device 
that maintained tissues for at least 6 months with production 
of sperm and offspring from fresh tissues95. The same group 
later introduced a simpler pumpless microfluidic device that  
eliminated the dependence on pumps and tubes and supported 
testicular tissue maturation and sperm production for at least  
4 months96. Offspring were not produced from cryopreserved 
tissues using either the pump-driven or pumpless device. 
These results have not been replicated in any higher animal 
models where sperm function could be tested by fertiliza-
tion and production of offspring. Human testicular tissues have 
been cultured with results ranging from tissue survival with  
spermatogonia97–99 or spermatocytes100 or round spermatids101 as  
the most advanced stage. Functional validation of haploid germ 
cells from human tissues is difficult or impossible because 
of ethical, legal and/or funding restrictions. Therefore, stud-
ies in large animal models are necessary to demonstrate fea-
sibility and safety before translation to the clinic should be  
considered.

Female
Standard-of-care fertility preservation options for women 
include (1) embryo cryopreservation, (2) mature oocyte cryo-
preservation, and (3) ovarian shielding or transposition in 
patients undergoing radiotherapy (Figure 2A)2,12. Ovarian tissue  
cryopreservation is an option for prepubertal girls who are not 
producing mature oocytes or women who cannot undergo con-
trolled ovarian stimulation for oocyte collection because of 
time constraints or other concerns (Figure 2B)2,3,5,9,102. The 
American Society of Reproductive Medicine has advised that 
the experimental label can be removed from ovarian tissue  
cryopreservation12 on the basis of the growing number of live 
offspring that have been reported after transplantation of ovar-
ian tissue3. Other investigational methods, including in vitro 
maturation (IVM) of immature oocytes, in vitro growth of pri-
mordial/primary follicles, non-antral/small antral follicles, and 
artificial ovary, will also be reviewed in the following sections  
(Figure 1B). The experimental methods regarding in vitro gam-
etes from pluripotent stem cells (Figure 2C) will be reviewed 

in the last section (‘In vitro gametes from pluripotent stem  
cells’).

Ovarian tissue cryopreservation and autologous tissue 
grafting
Ovarian tissue cryopreservation is the only option for prepu-
bertal female patients with cancer or for adult women with 
estrogen-sensitive cancer or those whose cancer treatment  
cannot be delayed2,3,5,9,102. Cryopreserved ovarian tissues can 
be reimplanted to the patients, either in the pelvic cavity or 
on the ovarian medulla (orthotopic transplantation) or outside 
the peritoneal cavity (heterotopic transplantation), if the risk 
of transferring cancer is low9,102,103. Orthotopic reimplantation 
of cryopreserved ovarian tissues performed in human patients 
restored ovarian function in more than 90% of cases104,105. The  
duration of ovarian activity ranged from 4 to 7 years after reim-
plantation104,106. The pregnancy rate is 18 to 35% of transplanted 
cases, and the live birth rate is 13.6 to 25% of transplanted  
cases107–109. The reimplantation outcome may be improved by 
enhancing graft revascularization by angiogenic and antiap-
optotic factors3. Ovarian tissue transplantation is available at 
only a few centers worldwide. The hormonal and live birth out-
comes from transplanted ovarian tissues are encouraging and 
may justify wider implementation in centers with the knowl-
edge, expertise, and infrastructure to conduct the procedure  
safely and with the appropriate regulatory approval.

In vitro maturation of immature follicles
Although the ovarian tissue cryopreservation coupled with trans-
plantation is successful in humans, it may not be appropriate 
in cases where there is a risk of malignant contamination110,111,  
such as patients with ovarian cancers, blood-borne malignan-
cies, cancers with potential to metastasize to the ovaries, or a 
genetic predisposition to ovarian cancer9,112. In addition, ovarian  
tissue transplantation may not be appropriate for transgender 
males because of estrogen production associated with follicle  
development. IVM may allow maturing of unstimulated or 
minimally stimulated oocytes from antral/germinal vesicle  
follicles to fertilization-competent metaphase II oocytes  
in vitro11,113,114, hence decreasing the chance of reintroducing  
cancer115. Additionally, immature follicles can be collected 
with minimal or no ovarian stimulation which is beneficial in 
the cancer patients whose cancer is hormone-sensitive, patients 
who cannot delay chemotherapy, prepubertal patients who 
are not sexually mature, and patients with polycystic ovar-
ian syndrome (PCOS) to avoid ovarian hyperstimulation  
syndrome11,116. Immature follicles can be harvested directly 
by aspiration from the ovary, in situ or after oophorectomy in 
patients with ovarian cancer, or during processing of ovarian  
cortex for ovarian tissue freezing11,117–120.

Obstetrics outcomes of IVM were reported among differ-
ent disease status patients, such as PCOS or PCO-like patients, 
patients with cancer, or infertile women with no underlying  
diseases, regardless of whether they had been treated with a 
hormonal priming regimen prior to oocyte retrieval (reviewed  
in 11,114,116,121). Studies from six centers reported about  
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400 live births with no increase in birth anomalies when  
compared with conventional in vitro fertilization (IVF)122–128.

In vitro growth of primordial follicles by multistep culture 
technique
About 90% of the follicles in ovarian tissue biopsies are pri-
mordial follicles, which cannot survive or be matured when 
cultured under regular IVM conditions129. To address this 
problem, a dynamic multistep culture technique for in vitro  
growth of oocytes was developed for growing primordial folli-
cles to the stage that can be matured by IVM technique. Dynamic 

multistep culture mimics follicular development in vivo and is 
generally composed of three steps: (1) activation of primordial 
follicles to small preantral follicles, (2) in vitro growth of small 
preantral follicles to antral follicles where cumulus–oocyte  
complexes (COCs) can be isolated for (3) IVM130–132.

In vitro growth of primordial follicles was shown in mice to 
produce liveborn offspring133,134. In humans, culturing oocytes 
in situ with the ovarian tissue was shown to support primor-
dial follicle activation followed by in vitro growth of small 
preantral follicles to antral follicles in which COCs can be 

Figure 2. Fertility preservation methods in female patients. Standard practice recommended by the American Society of Clinical Oncology 
and the American Society for Reproductive Medicine for female patients with cancer is to cryopreserve embryos or mature oocytes in some 
cases (A). Ovarian tissue cryopreservation or immature oocyte cryopreservation (or both) for in vitro maturation are investigational methods for 
prepubertal girls or patients whose cancer treatment cannot be delayed (B). Downstream utilization of cryopreserved ovarian tissues includes 
autologous tissue grafting, ovarian tissue culture for in vitro growth and in vitro maturation of primordial/primary follicles, and artificial ovary 
implantation. Derivation of oocytes from induced pluripotent stem cells (iPSCs) is in the early stages of development (C). COS, controlled 
ovarian stimulation; ICSI, intracyctoplasmic sperm injection; IVF, in vitro fertilization; PGCLC, primordial germ cell-like cell.
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used for IVM, resulting in metaphase II mature oocyte all  
in vitro132,135,136. These multistep culture techniques therefore may 
broaden the utility of cryopreserved ovarian tissue.

Artificial ovary implantation
An alternative approach for the cases with a higher risk of trans-
ferring cancer is to extract primordial follicles from cryopre-
served ovarian tissues, put them on a supporting scaffold, and 
graft back to the patients or immunocompromised mice. These  
techniques have been shown to produce offspring in mice and  
supported short-term growth of preantral follicles after  
xenografting of human primordial follicles into severe com-
bined immunodeficient (SCID) mice137–142. This technique is 
another way of using cryopreserved ovarian tissue without 
reintroducing the whole tissue and potentially cancerous cells  
back to the patients.

In vitro gametes from pluripotent stem cells
Counseling, consenting, and freezing of gonadal tissues for  
fertility preservation should be carried out before treatment or 
early in treatment before the oogenic or spermatogenic poten-
tial of the ovaries or testes is permanently destroyed. Parenthood  
is important to cancer survivors143–145. However, despite the best 
intentions of patients, families, and medical professionals, fer-
tility preservation can be difficult to accomplish in the com-
pressed and stressful time frame between diagnosis and initiation  
of treatment30,37,38,105,146–149.

In the future, it may not be necessary to cryopreserve gonadal 
tissues before treatment because it will be possible to pro-
duce eggs, sperm, or their precursors from skin cells or other  
somatic cells of the body. In this short review, it is impossi-
ble to detail all of the outstanding studies that laid the foun-
dation for the emerging discipline of “in vitro germ cells” or  
“in vitro gametogenesis”, but references are provided here. This 
field emerged from early observations that germ cells some-
times spontaneously arise from pluripotent embryonic stem 
cells (ESCs) or iPSCs in two-dimensional or three-dimensional  
cultures after removal of leukemia inhibitory factor (LIF) from 
the culture medium150–161. Those events were rare and stochas-
tic. Studies on Bmp4-deficient embryos and cultures of mouse 
epiblasts or epiblast stem cells provided initial clues about 
early germ cell markers as well as growth factors, signaling  
pathways, and transcription factors that were important for 
germ cell specification162–169. That knowledge was subsequently 
exploited to induce germ cell differentiation from pluripotent  
cells, as described above.

Hayashi et al. provided the proof of principle for this approach 
in mice by demonstrating that ESCs or iPSCs could be differ-
entiated into epiblast-like cells and then to PGCLCs that were 
transplanted to the ovaries or testes to produce eggs, sperm, and  
live offspring170–172. In subsequent studies, PGCLCs were dif-
ferentiated to haploid eggs or spermatids entirely in vitro. The 
resulting eggs and sperm were fertilization-competent and pro-
duced offspring173,174. Germ cells have also been produced from 
monkey and human pluripotent stem cells169,175–179. Monkey and 

human PGCLCs are transplantable (produce clusters of sperma-
togonia or oogonia) but so far there is no evidence that they can 
differentiate to produce fertilization-competent gametes, in vivo  
or in vitro177,178,180–182. This may be more a reflection of experimen-
tal limitations than actual limitations of PGCLC developmental  
potential in higher primates.

Concluding remarks
Assisted reproductive technologies enable fertility preserva-
tion for adolescent or adult patients who are able to produce 
eggs or sperm. Gonadal tissue cryopreservation is an investiga-
tional option to preserve the reproductive potential of patients  
who cannot produce eggs or sperm. Gonadal tissue freez-
ing has been performed for thousands of patients worldwide, 
demonstrating that the methods to obtain tissues are safe and  
feasible29,30,183,184. However, access to gonadal tissue freezing is 
limited primarily to academic centers and is performed under 
institutionally approved experimental protocols. A few cent-
ers are addressing the geographical access-to-care challenge by 
providing centralized tissue processing and freezing services. 
This allows patients to have surgery performed at their local 
institutions and have tissue express-shipped to a center with 
the infrastructure, expertise, and capacity to process, freeze,  
and store tissues30,185,186. Access to care is also limited because 
costs for these experimental fertility preservation options are 
typically paid out of pocket. The experimental designation is 
because there is limited evidence that cryopreserved immature  
gonadal tissues can be used for reproduction.

This review describes several methods in the research pipe-
line to mature gonadal tissues by transplantation or by IVM 
to produce fertilization-competent eggs or sperm. Ovarian  
tissue transplantation was introduced to the clinic in 2004 and 
has led to over 130 live births to date3,187,188. Those live birth 
outcomes prompted the American Society for Reproductive  
Medicine to recommend that the experimental label could be 
removed from ovarian tissue cryopreservation12, which may 
open the door to insurance coverage in some locations. Nota-
bly, however, it was not always possible to unequivocally  
document that pregnancies resulted from the transplanted tissue 
versus endogenous cells, and there is only one published report  
of a birth from ovarian tissue that was frozen during childhood189.

SSC transplantation and testicular tissue grafting for males 
are mature technologies that may be ready for translation to 
the human clinic19,82. There are no human live births from fro-
zen/thawed testicular tissues, so the fertility restoration option 
remains experimental in the United States. Testicular tissues, in 
contrast to ovarian tissues that are cryopreserved for adult women  
and prepubertal girls, are cryopreserved almost exclusively 
for prepubertal boys. That means it could be many years 
before the first males return to use their cryopreserved tes-
ticular tissues. How many more years and how many births will 
be required to remove the experimental label from testicular  
tissue freezing? If a man produces sperm or offspring (or both)  
after autologous transplantation of SSCs, how will we know 
whether sperm were from transplanted or endogenous cells? 
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The Danish experience may be instructive. In 1998, the Danish 
Minister of Health concluded that there were no restrictions 
on freezing ovarian tissues or testicular tissues as long as only 
autologous transplantation was considered. This liberal rul-
ing placed gonadal tissue freezing in the context of normal  
medical practice183.

In vitro germ cells or in vitro gametogenesis are emerging 
technologies that could eliminate the need to cryopreserve 
gonadal tissues prior to treatment. Pioneering results in mice 
are promising, but it is important to acknowledge that there 
has been limited independent replication of the original fertile  
outcomes170–174 in mice and, to our knowledge, no replication  
in higher animal models. Several labs have reported the produc-
tion of transplantable PGCLCs from monkey or human pluripo-
tent stem cells, but there is no evidence to date that those cells 
can produce functional gametes, in vivo or in vitro177,180–182,190.  
The gold standard to prove the gametogenic potential of PGCLCs 
is to demonstrate that PGCLC-derived gametes can fertilize 
and produce healthy offspring. Those endpoints are nearly inac-
cessible under current regulatory and funding restrictions for 
human embryo research in the US. Producing human embryos 
for research is illegal in our state (Pennsylvania). Circum-
stances in other states or countries may be more permissive191.  
Nonhuman primate studies are a good preclinical surrogate to 
establish safety and feasibility but are expensive and acces-
sible to only a few researchers. Nonetheless, more basic and 
translational research, including research in higher primates, is 
needed to demonstrate the safety, feasibility, and reproducibility  
of in vitro germ cell technologies.

In vitro germ cell technologies may also bring a higher regu-
latory burden. The US Food and Drug Administration guid-
ance for transplantation of human cells, tissues, and cellular 
and tissue-based products (HCT/Ps) stipulates that HCT/Ps that 
meet specific criteria or fall within detailed exceptions do not 
require premarket review and approval. To qualify for exception,  

the HCT/Ps must be minimally manipulated, be intended for 
homologous use (same function), and be for autologous or 
reproductive use or both. The in vitro reprogramming and step-
wise differentiation required to convert a somatic cell to a 
germ cell or gamete may exceed the definition of homologous 
use and minimal manipulation, thus requiring regulation as a  
drug, device and/or biological product.

It is an exciting time in reproductive biology and reproductive 
medicine. The technology that produced the word’s first IVF 
baby, Louise Brown (born July 25, 1978), has now produced 
millions of babies worldwide. Louise was possible because 
her mother could produce eggs and her father could produce 
sperm that were combined in the IVF laboratory of Drs. Steptoe  
(surgeon) and Edwards (researcher) at Oldham General  
Hospital in the UK192. This review describes a next generation 
of reproductive technologies that may enable patients with  
the most difficult infertility diagnoses (no eggs, no sperm) to 
have biologically related children. Development of these tech-
nologies, like that of IVF, will require the coordinated efforts of 
researchers and physicians and must be deployed in a transpar-
ent manner with regulatory oversight and with input from key  
stakeholders.
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