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Abstract

We performed a pairwise epistatic interaction test using the chicken 60 K single nucleotide polymorphism (SNP) chip for the
11th generation of the Northeast Agricultural University broiler lines divergently selected for abdominal fat content. A linear
mixed model was used to test two dimensions of SNP interactions affecting abdominal fat weight. With a threshold of
P,1.2610211 by a Bonferroni 5% correction, 52 pairs of SNPs were detected, comprising 45 pairs showing an
Additive6Additive and seven pairs showing an Additive6Dominance epistatic effect. The contribution rates of significant
epistatic interactive SNPs ranged from 0.62% to 1.54%, with 47 pairs contributing more than 1%. The SNP-SNP network
affecting abdominal fat weight constructed using the significant SNP pairs was analyzed, estimated and annotated. On the
basis of the network’s features, SNPs Gga_rs14303341 and Gga_rs14988623 at the center of the subnet should be important
nodes, and an interaction between GGAZ and GGA8 was suggested. Twenty-two quantitative trait loci, 97 genes (including
nine non-coding genes), and 50 pathways were annotated on the epistatic interactive SNP-SNP network. The results of the
present study provide insights into the genetic architecture underlying broiler chicken abdominal fat weight.
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Introduction

Epistasis – the interactions between polymorphic loci, such as

SNPs, genes or quantitative trait loci (QTLs) – is a hot topic in

quantitative genetics [1]. Epistasis is a major factor that determines

variation in quantitative phenotypes [2]. Mapping the epistatic loci

affecting quantitative traits will advance our understanding of the

genetic architecture of these complex phenotypes for humans and

model organisms [2,3]. Recently, the study of epistasis among

genes, SNPs or QTLs has progressed rapidly [4–8], as has the

study of epistasis in biological experiments [9].

Much progress has been made using genome-wide association

studies (GWASs). Performing genome-wide SNPs interaction

analysis represents the next step for detecting the variations of

quantitative traits, because single-locus tests cannot identify the

interactions among SNPs, genes or other genetic or environmental

factors [10]. The markers detected by GWAS only explained a

fraction of the heritable variance [11–13]. Identifying markers that

show interactions would help to explain a higher proportion of the

heritable variance. From sequence to phenotype, the SNP-SNP

and gene-gene interactions can provide new insights into the

genetic basis of complex traits.

In chickens (Gallus gallus), it has been suggested that epistatic

interactions between genes (or QTLs) are important for quanti-

tative traits such as growth and fatness traits [14–16]. Abdominal

fat in meat-type chicken is a quantitative trait, and is an adverse

economic factor; therefore, many QTLs and SNPs affecting

fatness traits have been identified [17–21]. A previous study on

chicken abdominal fat traits identified epistatic interactions among

10 candidate genes, and constructed networks of the interacting

genes [15]. However, a large proportion of the effects of the

epistatic interactions between polymorphic loci on fatness traits

remain undetermined, and the whole genetic network is unclear.

Hence, it is essential to study the effects of interactions between

SNPs, genes and QTLs on fatness traits.

In this study, we aimed to determine the interactions between

polymorphic loci affecting chicken abdominal fat weight (AFW).

Pairwise epistatic interaction effects among genome-wide SNPs

were detected. A network of significant SNP pairs was analyzed

and annotated. The results provide further insight into the genetic

network controlling abdominal fat deposition in chickens.

Materials and Methods

Ethics Statement
All animal work was conducted according to the guidelines for

the care and use of experimental animals established by the

Ministry of Science and Technology of the People’s Republic of

China (Approval number: 2006–398) and was approved by the
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Laboratory Animal Management Committee of Northeast Agri-

cultural University.

Experimental Populations
The experimental chickens were from the Northeast Agricul-

tural University broiler lines divergently selected for abdominal fat

content (NEAUHLF) [22]. A total of 475 male individuals, 203 in

the lean line and 272 in the fat line, derived from the 11th

generation population of NEAUHLF, were used in this study.

SNP Genotyping
Genotyping was carried out using the Illumina Inc. (San Diego,

CA, USA) chicken 60 K SNP chip, which contains 57,636 SNPs.

Markers with minor allele frequencies less than 5% or monomor-

phic loci were filtered out. Individuals were removed who had 5%

or more missing SNP genotypes. Finally, 45,611 SNPs in 475

individuals were used for the pairwise interaction analyses. SNP

genotypes were provided by Zhang et al. [23].

Genome-wide Pairwise Interaction Analysis
The EPISNP3 module in epiSNP_v4.2_Windows software

package (Y. Da, Department of Animal Science, University of

Minnesota, USA, http://animalgene.umn.edu/episnp/download.

html) was used to test for epistatic effects [24].

The EPISNP’s statistical model for testing epistatic effects for

AFW is

y ~ mzSNP1zSNP2zSNP1|SNP2zFze ð1Þ

where y is the dependent variable (AFW), m is the population

mean, SNP1 and SNP2 are the two single-locus genotypic effects,

SNP16SNP2 is the two-locus interaction effect, F (family effect) is a

random effect, and e is the random error.

The two-locus interaction effect was partitioned into four

individual epistatic effects using the extended Kempthorne model,

which allows Hardy-Weinberg disequilibrium and linkage dis-

equilibrium (LD): Additive6Additive (AA), Additive6Dominant

(AD), Dominant6Additive (DA), and Dominant6Dominant (DD)

epistatic effects [24]. An F-test was used to test the significance of

the two-locus interaction effect.

The P-value of model (1) was adjusted by a Bonferroni

correction (4.166109; independent tests using the same data set,

with a significance threshold of P,0.05), and the significance

threshold of the test was determined as P,1.20610211.

Contribution Rate Calculation
The contribution rate of every significant epistatic interactive

SNP pair to phenotypic variation was calculated by the formula,

c ~
SSSNP1 | SNP2

VarP

|100%, ð2Þ

where SSSNP16SNP2 is the variance of the significant SNP16SNP2

interactive effect (AA, AD, DA or DD), and Varp is the phenotype

variance.

SNP-SNP Network
The figure showing the SNP-SNP network with significant

epistatic effects was drawn using the Cytoscape 2.8 software

package [25]. The interactive SNPs affecting AFW with a pairwise

interaction P-value of P,1.20610211 were loaded into Cytoscape

to visualize the network. Based on entropy theory [26], the

importance of the different subnets was evaluated by the formula,

w ~
Xn

i~1

{ log pið Þ|ci, ð3Þ

where w is the importance of the subnet, n is the edge number (i.e.

the number of SNP pairs), pi is the P-value of the interactive effect

being tested for the ith SNP pair, and ci is the contribution rate of

the ith SNP pair.

Annotation of SNP-SNP Network
The purpose of this step was to annotate significant SNPs and

mine QTLs or gene networks affecting abdominal fat traits. First,

the significant interactive SNPs were put into the Chicken QTL

database (http://www.animalgenome.org/cgi-bin/QTLdb/GG/

i-ndex), and mapped in terms of QTLs. Second, the network was

annotated with genes and pathways. A mean value of r2.0.8 [27]

was observed in pairwise distances of approximately 0.2 Mb, as

calculated by HAPLOVIEW v4.1 [28], and genes whose physical

distance to the significant SNP was smaller than 0.2 Mb were

selected. The positions of genes were acquired from UCSC

Genome Bioinformatic site (http://genome.ucsc.edu/). Genes in

the same network were put into the KEGG program (http://www.

genome.jp/kegg/) to identify pathways that might affect the traits.

Results

SNP Makers
A total of 45,005 SNPs on 28 autosomes, the Z chromosome,

linkage groups and 606 SNPs not assigned to any chromosomes in

chickens were included in this study (Table 1). These markers

covered 1026.23 Mb of the genome, with an average of 16.63 kb

between adjacent markers.

Pairwise Interaction Effects Analysis
EPISNP3 [24] was used to analyze the pairwise interaction

effects among genome-wide SNPs for AFW across both lines. Fifty-

two pairs of significant SNPs (Table 2), containing 45 pairs of AA

and seven pairs of AD epistatic effects, were detected. No DA or

DD epistatic effects were detected. The P-value of the epistatic

effect between SNP Gga_rs13569377 on GGA18 (Gallus gallus,

GGA) and Gga_rs14988623 on GGA13 reached 2.54610214,

which was the most significant effect detected. There were six pairs

of SNPs on the same chromosome (one pair on GGA2, four pairs

on GGA3 and one pair on GGA10). The other 46 pairs of SNPs

were distributed on different chromosomes. The contribution rate

of the significant epistatic interactive SNP pairs ranged from

0.62% to 1.54%, with 47 pairs having a contribution rate of more

than 1%. The 52 pairs of significant SNPs comprised 68 single

SNPs covering 18 chromosomes. The position of each SNP is

shown in Table S1. Many SNPs were detected to interact with the

same locus; for example, seven SNPs on GGA3 all had epistatic

interactions with Gga_rs14303341 on GGA27, and four SNPs on

GGA18 interacted with Gga_rs14988623 on GGA13. The SNP

pairs having the same SNPs are shown in Figure 1.

SNP-SNP Network Analysis
To investigate the complex mechanism of epistatic effects on

AFW, a network of SNPs having epistatic interaction affecting

AFW was constructed. SNP epistatic interaction subnets contain-

ing more than three nodes are shown in Figure 1.

The degree of nodes refers to the number of edges connecting it,

and an edge stands for a two-way interaction. For example, the

Epistatic Effects on Abdominal Fat in Chickens
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degree of SNP Gga_rs14988623 was 4, and the degree of SNP

Gga_rs14303341 was 7 (Figure 1). SNP Gga_rs14303341 on

GGA27 with the most two-way interactions, whose degree was the

maximum, could be seen as the hub site of subnet A in the network

of epistatic SNPs. SNP Gga_rs14988623 on GGA13 connected to

four SNPs on GGA18 in subnet E was also a hub site. Subnet C

contained eight edges, which was the maximum. The eight edges

all happened between GGAZ and GGA8, so subnet C implies that

that the interaction occurs between the two chromosomes.

Interactions between two chromosomes were also hinted at by

subnets A, D, E, F, G, and H. Interactions within the same

chromosome were suggested by subnet I. Subnet B contained SNP

pairs from four chromosomes, which was the largest number of

chromosomes in any subnet.

Interestingly, in some subnets, the SNPs were adjacent to one

another on the same chromosome. For example, in subnet A,

seven SNPs on GGA3 were physically close to one another. This

phenomenon was also observed for subnets C, D, E, G and H.

Thus, there seemed to be a concentration of adjacent SNPs in

these subnets. This indicated that the interaction takes place in the

corresponding regions, especially for subnet C.

The importance of the subnets, as evaluated by formula (3), is

shown in Table 3. The subnets with higher scores are more

important. According to formula (3), subnets should get higher

scores and be more important if they have more significant P-

values, larger contribution rates and more edges. That a subnet is

more important implied that the subnet contained more informa-

tion on the SNP epistatic effect affecting AFW.

SNP-SNP Network Annotation
First, the significant epistatic interactive SNPs were mapped to

QTLs affecting chicken AFW (Table S2). Twenty-four SNPs were

located in 22 QTLs; the other SNPs showed no associations with

any QTLs. Some of the 24 SNPs were located in the same QTL,

such as seven SNPs from GGA3 that mapped to QTL 9418, 1958,

and 11816; and three SNPs in GGAZ that mapped to QTL 2268

and 12633. The results for subnet A suggested that QTLs (9418,

1958, 11816) on GGA3 interacted with QTLs (11809, 11817) on

GGA27. QTL 3353 on GGA1 might interact with QTL 12630 on

GGA13, based on the result of subnet D.

Second, fragments of 0.4 Mb were defined, and the fragments’

centers were the 68 single SNPs in the significant epistatic

interactive SNP pairs. The distances between some SNPs were

small, and the fragments may overlap. A union set was used when

the fragments overlapped. Regions were determined according to

the fragments and union sets (Table 4). The 97 genes (including

nine non-coding genes) in these regions are listed in Table 4.

Information on protein coding genes is listed in Table S3.

Third, genes in every subnet were submitted to the KEGG

database. The 97 genes were located in 50 pathways (Table S4).

Some genes were located in the same pathway, for example GRB2,

PDPK1, PIK3CA and SOCS3 are in the insulin-signaling pathway;

and GRB2, PIK3CA, SOCS3 and IL21R are in the Jak-STAT-

signaling pathway.

Discussion

Abdominal fatness traits in chickens are important quantitative

traits, and are under complex genetic control. Understanding the

molecular mechanisms underlying them will help efficient growth

selection in broiler chickens. In this study, analyses using genome-

wide SNPs were performed to examine the genetic contribution of

epistatic effects to the phenotypic variation of chicken abdominal

fatness traits.

GWASs have identified many significant association markers.

However, many studies showed that the identified markers explain

only a fraction of the heritable variance [11–13]. This discrepancy

has been ascribed to the insufficient power of GWAS to identify

gene–gene interactions [13]. Zuk et al. [29] showed that the

‘‘missing’’ heritability of Crohn’s disease is 62.8%, and that genetic

interactions could account for 80% of this missing heritability.

Recently, most genome-wide association analyses in chickens have

focused on individual SNP marker association analysis [20,30].

However, quantitative traits often arise from the combined effects

Table 1. Summary of genome-wide markers.

GGA SNPs’ number GGA length (Mb) Mean distance (kb) GGA SNPs’ number GGA length (Mb) Mean distance (kb)

1 7,143 200.95 28.13 17 844 10.61 12.57

2 5,299 154.46 29.15 18 845 10.89 12.89

3 4,081 113.65 27.85 19 804 9.89 12.30

4 3,314 94.16 28.41 20 1,460 13.92 9.53

5 2,172 62.23 28.65 21 726 6.88 9.48

6 1,714 35.84 20.91 22 295 3.89 13.19

7 1,770 38.17 21.56 23 577 6.02 10.43

8 1,394 30.62 21.97 24 676 6.23 9.22

9 1,168 24.02 20.57 25 170 2.02 11.88

10 1,297 22.42 17.29 26 617 5.03 8.15

11 1,196 21.87 18.29 27 472 4.84 10.25

12 1,324 20.45 15.45 28 563 4.46 7.92

13 1,128 18.32 16.24 LEG22 103 0.89 8.64

14 984 15.76 16.02 LEG64 2 0.005 2.27

15 1,010 12.93 12.80 Z 1,844 74.63 40.47

16 13 0.17 13.08 UN* 606 / /

*These SNPs were not assigned to any chromosomes.
doi:10.1371/journal.pone.0081520.t001
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Table 2. Genome-wide significant pairwise epistatic interactive SNP pairs for abdominal fat weight, P,1.20610211.

GGAF1 SNP1 name GGAS1 SNP2 name Epistatic effect type P-value c (%)

0 GGaluGA194739 1 GGaluGA012915 AA 1.18610211 1.08

1 Gga_rs13866305 3 Gga_rs13717259 AD 4.90610212 0.68

1 Gga_rs13749637 13 Gga_rs16002106 AA 7.47610212 1.40

1 Gga_rs15227054 13 Gga_rs16002106 AA 8.52610212 1.38

1 Gga_rs13749637 13 GGaluGA097211 AA 1.02610211 1.44

1 Gga_rs13749637 13 GGaluGA097233 AA 7.50610213 1.54

1 Gga_rs15227054 13 GGaluGA097233 AA 8.57610213 1.51

1 GGaluGA060937 14 GGaluGA101229 AA 3.17610212 1.26

2 Gga_rs16026770 2 GGaluGA146662 AA 6.60610212 1.05

2 Gga_rs14214495 13 Gga_rs15683090 AA 9.31610212 1.14

3 Gga_rs14319575 3 Gga_rs14402423 AA 5.96610212 0.91

3 Gga_rs14380677 3 Gga_rs16306728 AA 8.25610212 1.10

3 Gga_rs16306728 3 GGaluGA231041 AA 1.09610211 1.07

3 Gga_rs14319575 3 GGaluGA236122 AA 5.96610212 0.91

3 Gga_rs14388313 5 Gga_rs14521876 AA 8.46610213 1.14

3 Gga_rs14368109 10 GGaluGA071224 AD 6.80610212 0.62

3 Gga_rs14368127 10 GGaluGA071224 AD 7.23610212 0.63

3 Gga_rs16228738 14 Gga_rs14075705 AA 8.12610213 1.42

3 Gga_rs16222762 20 Gga_rs14272866 AA 1.30610212 1.13

3 Gga_rs16228738 23 Gga_rs13622160 AA 7.99610212 1.20

3 Gga_rs16228738 23 GGaluGA188871 AA 9.80610212 1.15

3 Gga_rs14340790 27 Gga_rs14303341 AA 1.16610211 1.25

3 Gga_rs14341204 27 Gga_rs14303341 AA 1.42610212 1.29

3 Gga_rs14341224 27 Gga_rs14303341 AA 6.31610213 1.36

3 Gga_rs14341242 27 Gga_rs14303341 AA 5.68610213 1.38

3 Gga_rs14341255 27 Gga_rs14303341 AA 5.68610213 1.38

3 Gga_rs16254447 27 Gga_rs14303341 AA 6.31610213 1.36

3 GGaluGA216762 27 Gga_rs14303341 AA 1.36610212 1.31

4 Gga_rs15480969 20 Gga_rs14276105 AA 1.05610211 1.54

7 GGaluGA317680 14 Gga_rs15718248 AA 1.05610211 1.23

9 Gga_rs16674724 3 Gga_rs14319575 AA 1.05610212 1.01

10 Gga_rs15583507 6 Gga_rs13561344 AA 2.80610212 1.32

10 Gga_rs14009265 6 Gga_rs14560750 AA 5.35610213 1.18

10 Gga_rs15583507 6 Gga_rs14560750 AA 2.15610212 1.30

10 GGaluGA066690 10 GGaluGA066877 AA 4.66610213 1.27

10 GGaluGA069801 23 Gga_rs13622160 AA 5.56610212 1.15

10 GGaluGA069801 23 Gga_rs14290610 AA 4.64610212 1.26

14 Gga_rs14068999 23 GGaluGA188871 AA 3.29610212 1.12

14 Gga_rs15717370 23 GGaluGA188871 AA 3.29610212 1.12

18 Gga_rs10729280 13 Gga_rs14988623 AD 6.56610214 1.10

18 Gga_rs13569377 13 Gga_rs14988623 AD 2.54610214 1.14

18 Gga_rs14416916 13 Gga_rs14988623 AD 9.00610214 1.07

18 Gga_rs15469971 13 Gga_rs14988623 AD 2.92610214 1.10

Z Gga_rs14748835 8 Gga_rs14658668 AA 1.14610211 1.20

Z Gga_rs16094710 8 Gga_rs14658668 AA 1.14610211 1.20

Z Gga_rs16758057 8 Gga_rs14658668 AA 1.14610211 1.20

Z Gga_rs14748835 8 Gga_rs16650878 AA 1.11610211 1.20

Z Gga_rs16094710 8 Gga_rs16650878 AA 1.11610211 1.20

Z Gga_rs16758057 8 Gga_rs16650878 AA 1.11610211 1.20

Epistatic Effects on Abdominal Fat in Chickens
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of multiple loci [14–16]. In the present study, the contribution

rates of the significant epistatic interactive SNP pairs to AFW

ranged from 0.62% to 1.54%. Two SNP pairs showed the largest

contribution rate of 1.54%, and the contribution rates of 47 pairs

were more than 1%. In addition, we calculated the contribution

rates of single SNPs in the GWAS (Table S5). The single SNP

Gga_rs14276105, which was significant in GWAS (Table S5),

showed the largest contribution rate 1.46%. Comparing the results

showed that the contribution rates of significant SNP pairs was

larger than that of the single SNPs contained in the pairs.

Although the contribution rates of the significant epistatic

interactive SNP pairs might be overestimated for model (1), there

were no high dimension interactions; therefore, we concluded that

epistasis has an important effect on the phenotypic variance and

Table 2. Cont.

GGAF1 SNP1 name GGAS1 SNP2 name Epistatic effect type P-value c (%)

Z Gga_rs14748835 8 GGaluGA333545 AA 1.14610211 1.20

Z Gga_rs16094710 8 GGaluGA333545 AA 1.14610211 1.20

Z Gga_rs15991936 10 Gga_rs15589655 AA 8.33610212 1.28

1GGA F = The first chromosome in the pairwise epistasis analysis; GGA S = The second chromosome in the pairwise epistasis analysis; AA = Additive6Additive effect,
AD = Additive6Dominance effect, DA = Dominance6Additive effect, DD = Dominance6Dominance effect; P-value = P-value of the effect being tested; c = The
contribution rate (%) of every significant epistatic interactive SNP pair.
doi:10.1371/journal.pone.0081520.t002

Figure 1. Epistatic network among SNPs affecting abdominal fat weight (AFW) in NEAUHLF. A node represents a SNP. The chromosome
in which the SNP is located is shown in the circle. A pair of SNPs connected by an edge has a significant effect. The colors of the nodes represent P-
values of the interaction (P,1610213 = red; P,1610212 = blue; P,1610211 = green; P,1610210 = white). The color of the edge indicates the
epistatic effect type (AA = red; AD = purple).
doi:10.1371/journal.pone.0081520.g001

Epistatic Effects on Abdominal Fat in Chickens
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cannot be ignored. Our results also showed that Gga_rs14276105

was the only SNP that was significant in an association study

among the significantly interacting SNPs (Table S5). Wu et al.

[31] also demonstrated that the majority of significantly interact-

ing SNPs did not show marginal association in their data. This

suggested that testing interactions of SNPs with only one

significant locus association would lose the majority of interactions.

The features of scale-free networks are several nodes with large

degrees and many nodes with few connections. Further, the nodes

with large degrees should be the hub sites of the network. Our

SNP-SNP network displayed the features of a scale-free network.

The degree of one node was 7, and of another was 4; and 47 nodes

had a degree of 1 in our SNP–SNP network. Thus, the nodes

(Gga_rs14988623 and Gga_rs14303341) with larger degrees

should be the important ones. Scale-free behavior has been

demonstrated in many biological interaction networks, such as

protein or gene interaction networks [32].

The formula for evaluating the importance of subnets proposed

in the present study was based on the entropy theory [26]. The

evaluation indices comprised the edge number, P-value and the

contribution rate of every SNP pair in the subnets. The

importance evaluation score stands for the information quantity

of a subnet. A subnet containing more information would be more

important. We suggested that subnets A and C are the most

important; as they received the top two importance evaluation

scores (Table 3).

Subnet A was radial, with seven SNPs connecting the center. A

previous study concluded that many significant epistatic effects

involving one locus were less likely to be random than was a single

epistatic effect [33]; i.e., the network is less likely to be random.

Combined with the results of the scale-free network analysis, we

identified Gga_rs14303341 as the important SNP. The annotated

information indicated that Gga_rs14303341 maps to QTLs

(11809, 11817) [34], and the genes GOSR2, GJC1, CCDC43,

WNT3, NSF and EFTUD2 are within the defined 0.4 Mb region.

These QTLs and genes should receive attention in a future study.

Subnet C was a loop graph, and contained six SNPs: three on

GGAZ and three on GGA8. Between the two chromosomes, nine

(363) pairs of SNP interactions were obtained, and eight of these

interactions were significant. In addition, the SNPs were adjacent

to one another on GGAZ and GGA8. The result indicated that

the interaction occurs between the two regions on GGAZ

(59,561,642–60,090,315) and GGA8 (28,415,409–28,925,822).

The epistatic interactions of SNPs might provide the basis for

identifying interactions among genes, QTLs, or even pathways;

therefore, we annotated the network. The result showed that 35%

(24/68) of the SNP markers are located in regions containing 22

QTLs associated with chicken AFW (Table S2). The radial

network based on subnet A suggested interactions between QTLs.

A QTLs network with a similar topological structure was found in

a study of chicken growth traits by Carlborg et al. [16]. They

identified five significant epistatic QTL pairs that also formed a

radial network and that accounted for a significant amount of the

phenotypic variance.

Gene-by-gene interaction plays a major role in genetic studies of

quantitative traits; however, the detection of gene–gene interaction

has been traditionally assessed by SNP interactions. Single SNPs

cannot capture the total variation of a gene; therefore, SNP

interactions cannot represent gene–gene interactions. Thus, Cui

et al. [35] and Li et al. [36] extended the idea of single SNP

interactions to haplotype interactions, and proposed a novel

statistical approach for capturing variations in genes and potential

interactions between two genes. In the present study, we found an

interesting phenomenon in some subnets, in which SNPs on the

circumference were very near in physical distance. Therefore, we

believe that the definition of block interaction may provide

additional biological insights, compared with the analysis of SNP

interactions.

In this study, we detected 26 regions on 12 chromosomes.

Ninety-seven genes (including nine non-coding genes), including

BMPR1A, GIPR, GRB2, LITAF, SOCS3, WNT3 and PDPK1, were

identified in these regions. Based on the literature, some genes are

associated with obesity; for example, BMPR1A is associated with

human obesity [37]. GIPR on GGA18 is associated with fat droplet

formation [38]. LITAF plays an important role in the regulation of

tumor necrosis factor alpha (TNF-a), which is important in

adipose tissue [39,40]. WNT3 is part of the Wnt-signaling

pathway, which is one of the pathways operating in fat cells

[41]. PDPK1 affects the fat-pad mass in mice [42]. We identified

50 pathways related to AFW, according to gene annotation

analysis (Table S4). Some of the pathways are related to obesity,

such as the Jak-STAT-signaling pathway and the insulin-signaling

pathway [43,44].

Table 3. Description of SNPs epistatic interaction network.

Subnet Importance Node number Edge number The greatest degree1 Structure2 GGA3

Subnet A 1.115 8 7 7 Tree graph 3, 27

Subnet B 0.961 8 7 3 Tree graph 3, 10, 14, 23

Subnet C 1.051 6 8 3 Loop graph 8, Z

Subnet D 0.837 5 5 3 Loop graph 1, 13

Subnet E 0.589 5 4 4 Tree graph 13, 18

Subnet F 0.325 4 3 3 Tree graph 3, 9

Subnet G 0.450 4 3 2 Tree graph 6, 10

Subnet H 0.139 3 2 2 Tree graph 3, 10

Subnet I 0.239 3 2 2 Tree graph 3

1The greatest degree = The greatest number of nodes in the subnet;
2Structure = Topological structure of the subnet;
3Chromosomes = Chromosomes contained in the subnet.
doi:10.1371/journal.pone.0081520.t003
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Conclusions

Fifty-two pairs of significant epistatic interactive SNPs and their

epistatic networks were determined. Two important SNPs and

their interaction regions were proposed based on the network of

significant epistatic interactive pairs. Relevant genes, pathways

and QTLs were annotated. The results advanced our understand-

ing of the genetic architecture of abdominal fatness traits, hinted at

Table 4. Regions and genes of the subnets shown in Figure 1.

Subnet GGA Start1 End2 SNP Set Gene Set

Gene Non-coding gene

A 27 911875 1311875 Gga_rs14303341 GOSR2, GJC1, CCDC43, WNT3, NSF,
EFTUD2

Blank

3 34826541 35226541 Gga_rs14340790 PLD5, PIGM MIR1784

3 35348152 35919953 Gga_rs16254447,
Gga_rs14341204,
Gga_rs14341224,
Gga_rs14341242,
Gga_rs14341255,
GGaluGA216762

RGS7, CHRM3

B 3 5408301 5808301 Gga_rs16228738 OTOR Blank

10 11303758 11703758 GGaluGA069801 TMC3, IL16 Blank

14 622937 1033997 Gga_rs15717370,
Gga_rs14068999

PARN, PLA2G10, LITAF, EIF2AK1, CCZ1,
OCM

MIR193B, MIR365-1

14 7120547 7520547 Gga_rs14075705 PDPK1, UBE2I IL21R Blank

23 2694945 3094945 Gga_rs13622160 PTPRU MIR1724

23 3181182 3832163 GGaluGA188871,
Gga_rs14290610

PAQR7, RRAGC, POU3F1, MTF1, MEAF6,
STMN1

Blank

C 8 28415409 28925822 GGaluGA333545,
Gga_rs14658668,
Gga_rs16650878

FPGT, TNNI3K, CRYZ, LHX8, CCDC101 Blank

Z 59561642 60090315 Gga_rs14748835,
Gga_rs16094710,
Gga_rs16758057

Blank Blank

D 1 31828151 32246400 Gga_rs13749637,
Gga_rs15227054

SLC16A7 Blank

13 14586787 15071343 Gga_rs16002106,
GGaluGA097211,
GGaluGA097233

CXCL14, NEUROG1, H2AFY, PITX1, PCBD2,
CAMLG, SAR1B

Blank

E 13 6167549 6567549 Gga_rs14988623 GABRG2, GABRA1 Blank

18 9895245 10688532 Gga_rs14416916,
Gga_rs15469971

TIMP2, CYTH1, PGS1, SOCS3, TK1, GIPR,
P4HB, ARHGDIA, PCYT2, MAFG, NME1,
TOB1, LUC7L3, ANKRD40, XYLT2, CD300A,
CANT1, LRRC59

MIR1652, MIR1637

18 10776127 11280354 Gga_rs10729280,
Gga_rs13569377

GGA3, SUMO2, MRPS7, HN1, NUP85,
KCTD2, GRB2,

MIR1580

F 3 5425936 5825936 Gga_rs14319575 OTOR Blank

3 98046994 98587484 GGaluGA236122,
Gga_rs14402423

DDX1 Blank

9 16975422 17375422 Gga_rs16674724 MFN1, PIK3CA Blank

G 6 1690195 2231763 Gga_rs13561344,
Gga_rs14560750

WAPAL, OPN4, BMPR1A, SNCG MIR1579

10 12739689 13376210 Gga_rs15583507,
Gga_rs14009265

NTRK3 Blank

H 3 62613708 63023180 Gga_rs14368109,
Gga_rs14368127

ROS1, VGLL2 Blank

10 13962468 14362468 GGaluGA071224 ST8SIA2, RGMA MIR1611

I 3 76275164 76675164 Gga_rs14380677 SYNCRIP, SNX14, TBX18 Blank

3 77845258 78245258 Gga_rs16306728 FAM46A Blank

3 79788812 80188812 GGaluGA231041 IMPG1, MYO6, TMEM30A Blank

1Start = The start of the region;
2End = The end of the region.
doi:10.1371/journal.pone.0081520.t004
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their molecular mechanisms, and will contribute to faster progress

in the artificial genetic selection of broiler chickens.
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