
RESEARCH ARTICLE

Comparing fixed sampling with minimizer

sampling when using k-mer indexes to find

maximal exact matches

Meznah Almutairy1,2*, Eric Torng1*

1 Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan,

United States of America, 2 Department of Computer Science, College of Computer and Information

Sciences, Imam Muhammad ibn Saud Islamic University, Riyadh, Saudi Arabia

* mrmutairy@imamu.edu.sa (MA); torng@msu.edu (ET)

Abstract

Bioinformatics applications and pipelines increasingly use k-mer indexes to search for simi-

lar sequences. The major problem with k-mer indexes is that they require lots of memory.

Sampling is often used to reduce index size and query time. Most applications use one of

two major types of sampling: fixed sampling and minimizer sampling. It is well known that

fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is

generally assumed that minimizer sampling will produce faster query times since query k-

mers can also be sampled. However, no direct comparison of fixed and minimizer sampling

has been performed to verify these assumptions. We systematically compare fixed and min-

imizer sampling using the human genome as our database. We use the resulting k-mer

indexes for fixed sampling and minimizer sampling to find all maximal exact matches

between our database, the human genome, and three separate query sets, the mouse

genome, the chimp genome, and an NGS data set. We reach the following conclusions.

First, using larger k-mers reduces query time for both fixed sampling and minimizer sam-

pling at a cost of requiring more space. If we use the same k-mer size for both methods,

fixed sampling requires typically half as much space whereas minimizer sampling processes

queries only slightly faster. If we are allowed to use any k-mer size for each method, then we

can choose a k-mer size such that fixed sampling both uses less space and processes que-

ries faster than minimizer sampling. The reason is that although minimizer sampling is able

to sample query k-mers, the number of shared k-mer occurrences that must be processed is

much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any

application where each shared k-mer occurrence must be processed, fixed sampling is the

right sampling method.

Introduction

With each passing year, advances in sequencing technologies, such as ROCHE/454, Illumina/

Solexa, and Pacific Biosciences (PacBio), are producing DNA sequences both faster and

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Almutairy M, Torng E (2018) Comparing

fixed sampling with minimizer sampling when

using k-mer indexes to find maximal exact

matches. PLoS ONE 13(2): e0189960. https://doi.

org/10.1371/journal.pone.0189960

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: May 8, 2017

Accepted: December 5, 2017

Published: February 1, 2018

Copyright: © 2018 Almutairy, Torng. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The programs to

create k-mer indexes and pre-process the data are

available on GitHub (https://github.com/meznah/

generic-k-mer-index). Data sets are publicly

available at http://hgdownload.cse.ucsc.edu and

https://www.ncbi.nlm.nih.gov/sra.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189960
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189960&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189960&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189960&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189960&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189960&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189960&domain=pdf&date_stamp=2018-02-01
https://doi.org/10.1371/journal.pone.0189960
https://doi.org/10.1371/journal.pone.0189960
http://creativecommons.org/licenses/by/4.0/
https://github.com/meznah/generic-k-mer-index
https://github.com/meznah/generic-k-mer-index
http://hgdownload.cse.ucsc.edu
https://www.ncbi.nlm.nih.gov/sra

cheaper. Right now, the average number of sequences generated from one sequencing run is

on the order of hundreds of millions to billions. While this explosive growth in DNA datasets

yields exciting new possibilities for biologists, the vast size of the datasets also presents signifi-

cant challenges for many compute-intensive biology applications. These applications include

homogenous search [1–4], detection of single nucleotide polymorphisms (SNP) [5–7], map-

ping cDNA sequences against the corresponding genome [8–10]. sequence assembly [11–13],

sequence clustering [14–16], and sequence classification [17–19]. A core operation in all these

applications is to search the dataset for sequences that are similar to a given query sequence.

This search process is often sped up by finding shared exact matches (EM) of a minimum

length L. The value of L is usually set to ensure all the desired similar sequences are recognized.

Depending on the application, the shared EMs can be extended to longer EMs [17]. In some

applications, the EMs are extended to maximal exact matches (MEMs) [20, 21], and MEMs are

often extended further to local alignments by allowing mismatches and/or gaps [4, 8, 22, 23].

Finding EMs, MEMs, and local alignments is often sped up using k-mer indexes (k< L).

One of the biggest problems with using k-mer indexes is that the size of the index is signifi-

cantly larger than the underlying database/ datasets. One of the most effective and widely used

ways of mitigating k-mer index size and query time is to perform sampling, in which we omit

some k-mer occurrences from the index. A sampling strategy can be classified based on how it

chooses k-mers. There are two major ways to choose k-mers: fixed sampling and minimizer

sampling.

It has widely been assumed that fixed sampling produces smaller indexes than minimizer

sampling but that minimizer sampling leads to faster query processing than fixed sampling.

However, these beliefs have never been empirically verified. In fact, few studies have empiri-

cally tested either method on its own [4, 23]. In this paper, we fill this gap by systematically

evaluating and comparing fixed sampling and minimizer sampling to assess how these meth-

ods perform with respect to index construction time, index size, and query processing time.

Specifically, we compare and contrast the construction time, index size, and query processing

time required to find all MEMs using both fixed and minimizer sampling.

We start by formalizing the problem of finding MEMs between two sequences. Then, we

illustrate how k-mer indexes are used to find MEMs. Next, we formally describe the two k-mer

sampling methods: fixed sampling and minimize sampling. We highlight the key similarities

and differences between these two sampling methods. Finally, we set the comparison frame-

work and conclude with the comparison results.

The MEM enumeration problem

Let S be a finite ordered alphabet. We focus on the alphabet for nucleotide databases S = {A,

C, G, T}. Let s be a string over S of length |s|. We use s[i] to denote the character at position i in

s, for 0� i< |s|. We use s[0] to denote the first character in string s. We use the ordered pair

s(i, j) to denote the substring in s starting with the character at position i and ending with the

character at position j for 0� i< j< |s|. We note that substring s(i, j) is also denoted as s[i..j]
in some papers, but we only use s(i, j) in this paper.

Definition 1 Exact Match (EM) For any two strings s1 and s2, a pair of substrings (s1(i1, j1),

s2(i2, j2)) is an exact match if and only if s1(i1, j1) = s2(i2, j2). The length of an exact match is
j1 − i1 + 1.

Definition 2 Maximal Exact Match (MEM) An exact match (s1(i1, j1), s2(i2, j2)) is called
maximal if s1[i1 − 1] 6¼ s2[i2 − 1] and s1[j1 + 1] 6¼ s2[j2 + 1].

We now formalize the problem of finding MEMs between two datasets.

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 2 / 23

https://doi.org/10.1371/journal.pone.0189960

Definition 3 MEM Enumeration Problem Given two datasets of sequences D1 and D2 and
an integer L, the MEM enumeration problem is to find the set of all MEMs of length at least L
between all sequences in D1 and all sequences in D2. We denote this set as MEM(D1, D2, L). We
use MEM(L) if D1 and D2 are clear from the context.

We illustrate many of these and later definitions using the following example where

D1 = {s1} and D2 = {s2} and s1 and s2 are as follows:

s1 = GTAC T AGG CTA CTA GGGG with length |s1| = 18

s2 = GTAC A AGG CTA CTA CTA TTTTwith length |s2| = 21

The two string s1 and s2 have two MEMs of length at least 6:

AGGCTACTA = (s1(5, 13), s2(5, 13)) with length 9 and

CTACTA = (s1(8, 13), s2(11, 16)) with length 6. Thus,

MEM({s1}, {s2}, 6) = {(s1(5, 13), s2(5, 13)), (s1(8, 13), s2(11, 16))} whereas

MEM({s1}, {s2}, 8) = {(s1(5, 13), s2(5, 13))}.

In this study, we focus on finding MEMs of a minimum length L between a query sequence

and a database of sequences because it is a critical step in searching for local alignments with

tools such as NCBI BLAST.

Using k-mer indexes to find MEMs
Suffix trees have been the traditional data structure of choice when searching for MEMs [20,

24–26]. However, Khiste and Ilie [21] recently showed that k-mer indexes use much less space

and are more amenable to parallelization compared to suffix trees, at least for larger MEMs.

This is true despite the development of many new compressed and sparse suffix array data

structures [20, 25], Specifically, Khiste and Ilie use fixed sampling to build a memory-efficient

k-mer index to search for “all MEMs of a minimum length 100 between the whole human and

mouse genomes”. Their results show that k-mer indexes are 2 times faster when both methods

are limited to using 4GB of memory. In parallel mode with 12-core machines, k-mer indexes

are 6 times faster while using 2.6 times less memory. We do note that Khiste and Ilie did not

compare their k-mer based solution with suffix trees for finding small MEMs with minimum

lengths as low as 20. It is possible that suffix trees are better for these cases. We focus on finding

larger MEMs, so we focus on k-mer index solutions to find MEMs.

Finding MEMs with a minimum length L is often sped up using a k-mer index, k� L, at the

cost of additional space. A k-mer index supports quickly finding EMs of length k which are

also known as shared k-mers. We typically extend these shared k-mers in two stages. In the

first stage, we try to extend every shared k-mer into an EM of length L� k. If the first stage is

successful, we then further extend the match into an MEM. In the context of searching for

local alignments, every MEM is extended even further by allowing mismatches and/or gaps.

It is possible to skip the first extension step and build an L-mer index to find all shared L-mers.

However, due to technical limitations and the huge memory requirements necessary for build-

ing an L-mer index for L> 32, it is common to build the index using k� 32< L [4, 17, 21, 23].

We typically work with a k-mer index as follows. We save the list of k-mers present in the

database and we refer to this list as dictionary. For each saved k-mer, we save some of its occur-

rences into a list. When given a query sequence, we extract k-mers from the query, see if that

k-mer appears in the dictionary, and find the corresponding shared k-mers by using the stored

list of occurrences.

We describe this search process more precisely as follows.

Definition 4 (k-mer and k-mer occurrence) Consider any length k substring s(j − k + 1, j) of
string s where k − 1� j� s − 1. We call that substring a k-mer and more concisely represent this
k-mer occurrence using the ordered pair (s, j).

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0189960

Definition 5 (Shared k-mers and shared k-mer occurrences) Consider any two strings s1

and s2 that have an exact match (s1(i1, j1), s2(i2, j2)) of length k. We call the common substring
s1(i1, j1) (equivalently s2(i2, jw)) a shared k-mer and more concisely represent the corresponding
shared k-mer occurrence using the quadruple (s1, j1, s2, j2).

Any string s of length |s| contains exactly |s| − k + 1 k-mer occurrences. Using our previous

example with k = 3, s1 and s2 have 16 and 19 3-mer occurrences, respectively. Furthermore, s1

and s2 have exactly seven shared 3-mers: ACT, AGG, CTA, GCT, GGC, GTA, and TAC. These

shared 3-mers result in 24 different shared 3-mer occurrences as follows. GCT, GGC, and GTA
appear exactly once in s1 and s2, and thus each of them has exactly one shared 3-mer occur-

rence: (s1, 9, s2, 9), (s1, 8, s2, 8), and (s1, 2, s2, 2). The 3-mer AGG occurs 2 times in s1 and 1 time

in s2, and thus AGG is part of two different shared 3-mer occurrences: (s1, 5, s2, 7) and (s1, 15,

s2, 7). Since shared 3-mer ACT occurs 2 times in both s1 and in s2, the shared 3-mer ACT is

part of 2 × 2 different shared 3-mer occurrences: (s1, 4, s2, 12), (s1, 4, s2, 15), (s1, 12, s2, 12), and

(s1, 12, s2, 15). Similarly, TAC occurs 2 times in s1 and 3 times in s2, so shared 3-mer TAC is

part of 3 × 2 different shared 3-mer occurrences: (s1, 3, s2, 3), (s1, 3, s2, 11), (s1, 3, s2, 14), (s1, 11,

s2, 3), (s1, 11, s2, 11), and (s1, 11, s2, 14). Finally, CTA occurs 3 times in s1 and 3 times in s2, lead-

ing to 3 × 3 different shared 3-mer occurrences: (s1, 5, s2, 10), (s1, 5, s2, 13), (s1, 5, s2, 16), (s1, 10,

s2, 10), (s1, 10, s2, 13), (s1, 10, s2, 16), (s1, 13, s2, 10), (s1, 13, s2, 13), and (s1, 13, s2, 16).

Since k� L, it is possible that a shared k-mer occurrence is not part of an MEM of length at

least L; we call such a shared k-mer occurrence a false positive. In general, decreasing the

value of k increases the chance that a shared k-mer occurrence is a false positive.

Using the above 24 shared 3-mers occurrences and assuming L = 6, the MEM =

AGGCTACTA can be found by extending any of the following seven 3-mer occurrences:

(s1, 7, s2, 7), (s1, 8, s2, 8), (s1, 9, s2, 9), (s1, 10, s2, 10), (s1, 11, s2, 11), (s1, 12, s2, 12), or

(s1, 13, s2, 13). Similarly the MEM = CTACTA can be found by extending any of the following

four 3-mer occurrences: (s1, 10, s2, 13), (s1, 11, s2, 14), (s1, 12, s2, 15), or (s1, 13, s2, 16). The

remaining twelve shared 3-mer occurrences are false positives. If L = 8, then the seven shared

3-mer occurrences that can be extended to AGGCTACTA are not false positives. The remain-

ing sixteen shared 3-mer occurrences are false positives.

Every EM of length L has L − k + 1 shared k-mer occurrences. Finding and extending one

of these shared k-mer occurrences is sufficient for finding that EM. Therefore, when building

k-mer indexes, we can store a sampled subset of k-mer occurrences in the index and still find

every possible MEM of length at least L. With sampling, we not only reduce the index’s mem-

ory requirements, we also reduce query time by not discovering the same MEM multiple

times. Sampling, therefore, is a very effective method for improving a k-mer index’s efficiency

(reducing construction time, space, and query time).

Fixed sampling versus minimizer sampling

In bioinformatics, two sampling methods are commonly used to build k-mer indexes: fixed

sampling [4, 21] and minimizer sampling [17, 23]. To ensure that a k-mer index achieves

100% sensitivity which means that it finds all shared MEMs of length at least L, both methods

ensure that within every MEM of length at least L, at least one k-mer occurrence is saved to the

index. We now define both sampling methods comparing and contrasting their relative

strengths and weaknesses.

Fixed sampling is a simple greedy sampling strategy that minimizes the number of k-mer

occurrences stored in the index. The goal is to ensure we choose one complete k-mer from

every possible substring of length L from each database sequence s. For example, we must

choose one k-mer from s(0, L − 1) to store in the index; we greedily choose the k-mer that ends

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 4 / 23

https://doi.org/10.1371/journal.pone.0189960

at s[L − 1] since it not only covers this substring but also the next L − k − 1 substrings up to but

not including s(L − k + 1, 2L − k). To cover the substring s(L − k + 1, 2L − k), we again greedily

choose the k-mer that ends at s[2L − k] since it again covers the next L − k − 1 substrings. In

general, the jth k-mer occurrence that we sample ends at position L − 1 + (j − 1)w where

w = L − k + 1. We typically refer to w = L − k + 1 as our sampling step or sampling window for

fixed sampling. During the query phase, we extract every k-mer from the query sequence q to

search for shared k-mer occurrences. Since every k-mer is extracted from q, if s and q have an

MEM of length at least L, then some shared k-mer from that MEM will be in the k-mer index

and the MEM can be recovered. Fixed sampling has several advantages. First, it is very fast to

construct the index requiring no k-mer comparisons and skipping over significant portions of

the database sequence s. Second, it stores the minimum possible number of k-mer occurrences

in the index to guarantee 100% sensitivity and thus minimizes index size. The disadvantage is

that all k-mers from the query sequence need to be processed which may slow query time.

Minimizer sampling uses a more sophisticated sampling strategy that allows sampling of

both the database sequence s and the query sequence q. We must again choose one k-mer from

s(0, L − 1) to store in the index. This time, we choose to store the minimum k-mer from

s(0, L − 1) in our index where we order substrings in some canonical order. For simplicity, one

can use the alphabetical order where A< C< T< G which implies AAA< AGA < AGG <
TAA. Roberts et al. recognized using an alphabetical ordering can have issues, particularly in

low complexity regions where there may be repeats of characters or short substrings. To han-

dle the low complexity regions, Roberts et al. write “In general, we want to devise our ordering

to increase the chance of rare k-mers being minimizers.” For example, Robert et al. proposed

using C< A< T< G in odd numbered bases and the reverse ordering in even-numbered

bases [23]. Alternatively, Wood et al. [17] suggest using the exclusive-or (XOR) operation to

scramble the standard ordering of each k-mer before comparing the k-mers to each other

using lexicographical ordering. Once an ordering is established, we process each length L sub-

string of s (equivalently each window of w = L − k + 1 k-mers) in turn storing the minimum

k-mer occurrence in the index. The first view focusing on substrings of length L seems more

intuitive; the second view focusing on windows of w k-mers is useful when predicting the

expected size reduction from using minimizer sampling. We note a few things. First, there

may be multiple occurrences of a minimum k-mer within a length L substring; in this case for

the original minimizer algorithm but not the one we focus on in this paper, each occurrence is

stored in the index. Second, minimizer sampling is likely to store more occurrences than fixed

sampling as it does not maximize the distance between k-mer occurrences stored in the index.

Third, the time to construct the index is a bit slower as more work is done for each window

including comparing different k-mers. The advantage that minimizer has comes at query time.

Rather than choosing all k-mers from query q, minimizer sampling applies the same sampling

strategy to q. That is, we consider every substring of length L and choose only the minimum k-

mers from within each length L substring to consider for extension. Since both the query and

each database string extract the minimum k-mer(s) from every substring of length L, if there is

an EM of length L, the same minimum k-mer will be extracted and then extended into the EM
and then MEM. In summary, minimizer sampling requires a bit more time to construct its

index though it can do so in linear time and builds a larger index than fixed sampling, but it

processes fewer k-mers from the query sequence and thus may have faster query processing

times.

We illustrate the two algorithms using our previous example where we use k = 3 and L = 8

so w = L − k + 1 = 6, and we use D1 = {s1} as our database and D2 = {s2} as our query dataset.

The goal is to return MEM({s1}, {s2}, 8). With fixed sampling, we store the 3-mer AGG with its

occurrence (s1, 7) and the 3-mer CTA and its occurrence (s1, 13) in the 3-mer index.

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 5 / 23

https://doi.org/10.1371/journal.pone.0189960

All 19 3-mers from s2 are extracted with both AGG and CTA being shared 3-mers. Since

CTA occurs three times in s2, we consider four shared 3-mer occurrences for extension: (s1, 7,

s2, 7), (s1, 13, s2, 10), (s1, 13, s2, 13), (s1, 13, s2, 16). The first and third can be extended to the

same MEM of length 9 whereas the other two cannot be extended to a length 8 MEM and thus

are false positives.

With minimizer sampling, we store three 3-mer occurrences to the index, two with ACT
and one with AGG: (s1, 4), (s1, 7), and (s1, 12). Minimizer sampling is also applied to the query

s2 and three 3-mer occurrences are chosen to test for extension, two with ACT and one with

AAG: (s2, 7), (s2, 12), and (s2, 15). The only shared 3-mer is ACT, and since ACT appears twice

in both sequences, we consider four shared 3-mer occurrences for extension: (s1, 4, s2, 12), (s1,

4, s2, 15), (s1, 12, s2, 12), and (s1, 12, s2, 15). Only (s1, 12, s2, 12) can be extended to an MEM of

length at least 8; the other three shared k-mer occurrences are false positives.

There are two possible optimizations that can be used to improve the performance of mini-

mizer sampling. The first one is to avoid using lexicographical ordering. The second one is not

to sample duplicate minimizers. In this paper, we study the effects of each optimization indi-

vidually and combined. To avoid lexicographical ordering, we use the randomization method

suggested by Wood et al. [17]. To prevent sampling duplicate minimizers, we use the robust

winnowing method proposed by Schleimer et al. [27], but only apply robust winnowing to the

index, not to the query sequences. We sample all minimizers from a query sequence window.

In this scenario, the correct minimizer occurrence matches are guaranteed to be found. We

finally apply both methods together to test the effectiveness of using both optimizations

simultaneously.

Problem statement and overall aims

It has widely been assumed that fixed sampling produces smaller indexes than minimizer sam-

pling but that minimizer sampling leads to faster query processing than fixed sampling. For

example, Roberts et al. [23] highlight the importance of sampling k-mers at query time during

the search procedure saying that “the procedure would still be more efficient if we could com-

pare only a fraction of the k-mers in T to the database” where T is their notation for a set of

query strings. However, these beliefs have never been empirically verified. In fact, few studies

have empirically tested either method on its own [4, 23].

In this paper, we fill this gap by systematically evaluating and comparing fixed sampling

and minimizer sampling to assess how these methods perform with respect to index con-

struction time, index size, and query processing time. Specifically, we compare and contrast

the construction time, index size, and query processing time required to solve the MEM Enu-

meration Problem using both fixed and minimizer sampling. We use the human genome as

our database and the mouse genome, the chimp genome, and an NGS data set as our three

query sets. Our goal is to provide guidance to developers of k-mer-based bioinformatics tools

so that they can choose the best method for their application.

Our main contributions are the following: First, we systematically compare fixed sampling

with minimizer sampling using real biological datasets to assess how well they find all MEMs
with respect to index construction time, index size, and query processing time. Our results

show that if we use the same k-mer size, minimizer sampling is only slightly faster than fixed

sampling, despite sampling from the query sequence. If we are allowed to use any k-mer size

for each method, then we can choose a k-mer size such that fixed sampling both uses less space

and processes queries faster than minimizer sampling. Second, we evaluate the impact of the k
value on the effectiveness of fixed and minimizer sampling methods to find all MEMs. Previous

studies usually focus on only one value of k. We show that the value of k has a significant

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 6 / 23

https://doi.org/10.1371/journal.pone.0189960

impact on a sampling method’s index size and query processing time. When the value of k
decreases, fewer k-mer occurrences are saved resulting in smaller indexes. However, when the

value of k increases, the index processes queries much faster. On average, the reduction in

query times for all query sets when k = 32 compared to k = 12 is 37 and 136 times faster for

fixed sampling and minimizer sampling, respectively.

Related work

Over the last decade, there has been dramatic increase in the use of k-mer indexes in biological

applications and pipelines to accelerate the search for EMs, MEMs, or local alignments. Since

k-mer indexes require a lot of memory compared to the underlying databases, sampling has

been widely used to reduce index size. Two primary sampling methods have been proposed in

the literature for building k-mer indexes: fixed sampling [4, 21] and minimizer sampling [23,

28, 29]. Fixed sampling is the dominant sampling method in practice since it is used in indexed

BLAST [4]. Minimizer sampling was proposed in 2004 by Roberts et al. but was largely ignored

for many years until roughly 2012 when papers began using the minimizer sampling concept

for a wide variety of bioinformatics applications [17, 28–34]. Recently, tools have been devel-

oped that use minimizer sampling to reduce k-mer index size and increase efficiency [28, 29];

both tools map long reads (10kb or longer) that are produced by new sequencing technologies

(Single Molecule Real Time and Oxford Nanopore Technologies) against large reference

databases.

Despite the fact that both sampling methods have existed for some time, no previous work

has compared fixed sampling with minimizer sampling to determine their relative benefits and

weaknesses with respect to building k-mer indexes to search for EMs, MEMs, or local align-

ments. Specifically, Roberts et al. did not compare to fixed sampling when they presented min-

imizer sampling; they compared instead to no sampling [23]. Morgulis et al. did not compare

to minimizer sampling when they presented their work on fixed sampling in indexed BLAST

[4]. Khiste and Ilie only consider fixed sampling when analyzing k-mer based indexes [21]. Li

as well as Jain et al. did not consider fixed sampling in their work [28, 29]. We fill in this gap

by carefully comparing these two strategies to determine how well they perform for this impor-

tant problem.

Schleimer et al. [27] independently introduced minimizer sampling calling it winnowing

sampling. While winnowing is identical to minimizer, winnowing has been studied and used

for different problems and domains than minimizer. Minimizer has been used with biological

datasets to solve the problem of searching for local alignments whereas winnowing has been

used with text document datasets to solve the problems of k-mer counting and ranking to

detect document plagiarism. A key difference between minimizer and winnowing sampling is

that minimizer sampling requires saving sampled k-mer positions whereas winnowing sam-

pling does not. This is because in MEM and HSLA search problems, the positions define

anchor points to compare sequences whereas in k-mer counting and ranking problems, only

the number of occurrences is used to estimate the similarity between two documents. Similar

to Roberts et al., Schleimeret al. observed that in low complexity regions (or low-entropy

strings in text mining literature), a k-mer might occur more than once and all of its occur-

rences are sampled. Schleimer addressed this problem by not sampling duplicate k-mers in

both the indexing and the querying phases; they call this version robust winnowing. Schleimer

et al. did not compare the performance of winnowing and robust winnowing.

We now summarize some other applications which have used k-mer sampling in bioinfor-

matics. We emphasize that these all differ from our application and our not directly compara-

ble. We start with sequence assembly. Ye et al. [30] proposed using sampled k-mers, instead of

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0189960

all k-mers, to reduce the memory requirements for De Bruijn graph (DBG) based assemblers.

Ye et al. used fixed sampling to sample k-mers; the penalty is that links or edges between k-

mers are longer and slightly more complex. Ye et al. report that fixed sampling with step w
reduces their dictionary by roughly 1/w compared to tools that use a full list of k-mers [35–37].

Ye et al. note the existence of minimizer sampling and express interest in comparing mini-

mizer sampling to fixed sampling in future work but did not compare the two in their work. In

genome assembly, we only use the the dictionary (the list of k-mers); we do not use the lists of

k-mer occurrences. In other applications, where we use the lists of k-mer occurrences, the size

of these lists is the dominant factor in index size. Therefore it is important to understand how

fixed and minimizer sampling affect both the number of k-mers and the number of k-mer

occurrences. Li et al. [38] and Movahedi et al. [31] both proposed disk-based DBG assemblers

to avoid loading the whole graph into RAM. They load small segments of the graph incremen-

tally, and complete the assembly in this fashion. Since completing the assembly requires identi-

fying adjacent EMs, both papers use minimizer sampling as a hashing mechanism to find

adjacent EMs and group them into the same segment. We do not focus on these applications

for two reasons. First, our goal is to focus on applications that use k-mer indexes in RAM,

which means that index size is critical. Second, minimizer sampling, in the above context, is

used as a hashing function to minimize disk I/O operations rather than reducing the list of

k-mers.

In the k-mer counting problem, the task is to build a histogram of occurrences of every k-

mer in a given data set where k is relatively large (k> 20) and it is infeasible to list all k-mers in

RAM. Similar to disk based DBG assemblers, minimizer sampling is used to select m-mers

(m< k) from every k-mer. These m-mers are later used to reduce disk I/O operations in disk

based counting k-mers tools such as MSPKmerCounter [33] and KMC2 [34]. Again, this prob-

lem is significantly different than our motivating problems which are searching for MEMs and

HSLAs. In MEM and HSLA search problems, the location of sampled k-mers is important.

In metagenomic sequence classification, Kraken [17] uses the idea of minimizer to acceler-

ate the classification process in large data sets. Kraken starts with creating a database that con-

tains entries of an L-mer and the lowest common ancestor LCA of all organisms whose

genomes contain that L-mer. When a query sequence is given, Kraken searches the database

for each L-mer in a sequence, and then uses the resulting set of LCA taxa to determine an

appropriate label for the sequence. To find all L-mers effectively, Kraken builds a k-mer index,

(k< L) where each k-mer is associated with all L-mers containing this k-mer as a its mini-

mizer. Since a simple lexicographical ordering of k-mers can be biased to sample more mini-

mizers over low-complexity regains, Kraken uses the exclusive-or (XOR) operation to

scramble the standard ordering of each k-mer’s canonical representation before comparing

the k-mers to each other using lexicographical ordering.

Recently Orenstein et al. [39] proposed a new k-mer sampling method called DOCKS. For a

given data set, L and k (k< L), the task is to find the minimum-size set of k-mers such that for

every L-mer in the data set, at least one k-mer is in this L-mer. They show that DOCKS sam-

pling results in a much smaller set compared to minimizer sampling. It will be interesting to

compare fixed sampling and minimizer sampling with DOCKS in future work.

In this study we focus on k-mer indexes that find all shared EMs of length L. All indexes are

built with w = L − k + 1 and thus achieve 100% sensitivity. Almutairy and Torng [40] proposed

to study the impact of the sampling parameter w on the effectiveness of k-mer indexes to find

all highly similar local alignments (HSLAs) using NCBI BLAST. In their paper, k-mer indexes

are built using the default BLAST setting where k = 12 and fixed sampling. To study the impact

of w, they build indexes with a wide range of w values where w> L − k + 1. They compared the

indexes’ effectiveness with respect to baseline indexes; which are indexes created using

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0189960

w = L − k + 1. They show very large w can still achieve high sensitivity; that is, even with very

large w, fixed sampling can find almost all HSLAs. This is slightly different than our study

where we focus on finding all MEMs and not all HSLAs. Our results about the impact of the

value of k on fixed sampling would enhance their findings since both k and w play a major role

in k-mer index efficiency.

Materials and methods

We represent nucleotides using two bits and store k-mers for k� 32 in a 64-bit block. All

indexes are saved as hash tables where a key is a k-mer and its value is a pointer to that k-mer’s

list of occurrences. We store each k-mer’s list of occurrences in a set data structure; each occur-

rence is an ordered pair of 64-bit positive integers (s, j) where s is a sequence ID and j is the

ending position of this k-mer occurrence in s.

Sampling methods

We compare fixed sampling and minimizer sampling. Minimizer sampling can be improved

using two different optimizations: randomized ordering and duplicate minimizer removal. We

list all possible combinations of our two optimizations for minimizer sampling in Table 1.

Using both optimizations will result in the most effective minimizer method minrand,one.

Thus, we compare minrand,one with fixed sampling (fix) to test the effectiveness of the two

major sampling methods. We compare minlex,one with min minrand,one to determine how much

effect the randomization optimization has, and we compare minrand,many with min minrand,one

to determine how effective duplicate removal is. We will not consider minlex,many in any com-

parison since it is the worst version of minimizer and known to be inefficient. Next, we for-

mally describe each sampling method. Note that we choose parameters that ensure we achieve

100% sensitivity which means we will find all MEMs.

In fixed sampling (fix), as we described earlier, we build the k-mer index for a database of

sequences by sampling from every database sequence s the k-mer occurrences ending at posi-

tions L − 1 + (j − 1)w where w = L − k + 1 and 0� j� b(|s| − L + 1)/wc. We refer to

w = L − k + 1 as our sampling step. During the query phase, we extract all k-mer occurrences

from each query sequence q and consider them for extension. Since every k-mer is extracted

from q, if a database sequence s and q have an MEM of length at least L, then some shared

k-mer from that MEM will be in the k-mer index and the MEM can be recovered.

In standard minimizer sampling without any optimization (minlex,many), for every substring

of length L in a database sequence s, we store the minimum k-mer occurrence in our index; if

there is more than one minimum k-mer within any length L substring, all minimum k-mer

occurrences are stored. We use the normal lexicographical ordering where A< C< T< G to

define minimum k-mers in our work. Unlike fixed sampling, during the query phase, we use

the same sampling for a query sequence q. That is, we consider only the minimum k-mers

from each substring of length L in q for extension. Since both the query and each database

string extract the minimum k-mer(s) from every substring of length L, if there is an EM of

Table 1. Possible minimizer sampling versions based on the optimization techniques.

Duplicate handling \Ordering schema Lexicographical Randomized

Sample all duplicate minimizers minlex,many minrand,many

Remove duplicate minimizers minlex,one minrand,one

https://doi.org/10.1371/journal.pone.0189960.t001

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0189960.t001
https://doi.org/10.1371/journal.pone.0189960

length L, the same minimum k-mer will be extracted and then extended into the EM and then

MEM.

We find minimum k-mers from s and q using a linear time sliding window approach pro-

posed by Smith [41]. The basic idea is to store k-mers in a double-ended queue or deque that

allows fast insertion and deletion at both its beginning and its end. We maintain the following

invariant for the deque. The deque contains k-mers from the eligible window sorted in two

ways: by k-mer value where the smallest k-mer value is at the front and the largest k-mer value

is at the rear and by location where the oldest k-mer is at the front and the newest k-mer is at

the rear. The basic reason for these invariants is that any k-mer that is larger and further to the

left of the most recent k-mer will never be a minimizer in any future windows since this new

k-mer will be in any such windows and has smaller value. We maintain this invariant in two

ways. First, when we add the new k-mer that is in this window, we compare it to the k-mer at

the rear of the deque and remove that rear k-mer if it is larger than the current k-mer. We con-

tinue in this fashion until we find a k-mer smaller than the new k-mer or the deque is empty

and we add the new k-mer to the deque at the rear of the deque. Second, we find the minimizer

by pulling the first element from the deque. However, we must first verify this k-mer is still in

the current window. If not, we remove it from the deque and use the next k-mer as the mini-

mizer. We can see this takes linear time using the following charging scheme where we charge

each comparison to the item that was deleted or inserted into the deque. Each item is charged

twice, once for when it is inserted, and once for when it is deleted. Thus, the total number of

comparisons is linear in the number of k-mers processed.

Now, we describe how to apply optimizations to reduce the number of k-mers sampled

from the database which leads to a significant speedup of query time. The first optimization is

to use randomized ordering instead of lexicographical ordering. To do this, we first create a

random k-mer mask by uniformly selecting k letters from A, C, G, or T in each position. We

then view a k-mer as a 2k bit string. For any k-mer or equivalently 2k bit string, we create a

new scrambled 2k bit string by doing an exclusive-or (XOR) operation between every bit of

the 2k bit string and the 2k bit mask. We then sort all the scrambled 2k bit strings to identify a

minimizer. For example, the bit string for the 4-mer AACC is 00000101 using lexicographical

ordering, where A = 00, C = 01, G = 10, and T = 11. Let the random 4-mer mask be CGAT
which is equivalent to the 8-bit string 01100011. After applying the XOR operation between

AACC (00000101) and CGAT (01100011), the resulting scrambled bit string for AACC is

01100110. We refer to minimizer sampling that uses this randomized ordering as minrand.

The second optimization prevents sampling duplicate minimizers in the indexing phase.

There are two occasions where standard minimizer stores duplicate minimizers in the index.

The first occurs when the current minimizer is not part of the next window and we must

examine all w = L − k + 1 k-mers in that window. If we find multiple minimizers, all are stored

in the index using the standard minimizer sampling strategy. To apply the duplicate removal

optimization, we store only the rightmost minimizer in the index. The second possibility for

storing duplicate minimizers occurs when the current minimizer for the previous window still

lies within the next window and is identical to the one new k-mer for that window. In this sce-

nario, to remove duplicates, we do not store this duplicate copy at this time in the index. How-

ever, we do track its position so that if no new minimizer is found before the current

minimizer moves out of the current window, we can use this k-mer to replace the current min-

imizer at that time and still do only one comparison for that window. At that time, we would

have to store this minimizer in the index if it is the minimizer of that window. We refer to min-

imizer sampling that uses duplicate removal as minone.

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 10 / 23

https://doi.org/10.1371/journal.pone.0189960

Indexing and querying

In the indexing phase, we create a k-mer index for a given database and sampling method as

follows. We sample k-mers and their occurrences from each sequence based on the selected

sampling method (fix, minrand,one, minrand,many, and minlex,one). We save the sampled k-mers

into the index dictionary, and for each k-mer occurrence, we update the corresponding list of

k-mer occurrences.

We then proceed to the querying phase where we sequentially process each query sequence.

If we use fixed sampling (fix), we extract all k-mer occurrences from query sequence q. For all

minimizer methods minrand,one, minrand,many, and minlex,one, we extract the minimum k-mer

occurrences including duplicates from each window in q.

Once we extract the k-mer occurrences from q, we use the index to find shared k-mer

occurrences and then MEMs as follows. For every k-mer occurrence in q, we check if the k-

mer is in the index dictionary. If the k-mer is found, then we use the k-mer’s associated list of

occurrences to find all shared k-mer occurrences between q and the database of sequences.

We perform this search in a manner similar to NCBI BLAST with the goal of minimizing

the number of database read operations. Specifically, we group the shared k-mer occurrences

between q and DB by database sequence ID s. For the list of k-mer occurrences shared between

q and s, we sort them in alphabetical order and then positional order. We store this informa-

tion in a hash table with key s where the hash table entries are pointers to the sorted lists of

shared k-mer occurrences. We then read in each relevant database sequence s exactly once and

process all the corresponding shared k-mers in alphabetical order of k-mer.

For every query sequence q and a database sequence s, we report any shared k-mer occur-

rence that can be extended to length at least L as an MEM. Our extension method is similar to

that of Khiste and Ilie [21]. Before we try to extend a shared k-mer occurrence, we first check if

it is contained within our list of discovered MEMs which is, of course, initially empty. If so, we

skip this shared k-mer occurrence and move on to the next one. If not, then we try to extend

the k-mer in both directions to see if it is part of an MEM with length at least L. If the extension

succeeds, we add the new MEM to our list of discovered MEMs. If the extension fails, we report

this shared k-mer occurrence as a false positive. This ensures we only extend one shared k-mer

occurrence within any MEM.

We check if a shared k-mer occurrence is part of a discovered MEM using the following

properties. A shared k-mer occurrence ðq; j0q; s; j
0
sÞ is part of a shared MEMMEM = (q(iq, jq),

s(is, js)) if the following conditions hold: (1) iq � j0q � kþ 1 < j0q � jq, (2),

is � j0s � kþ 1 < j0s � js, and (3) ðj0q � kþ 1Þ � iq ¼ ðj0s � kþ 1Þ � is. Checking these condi-

tions can be done in constant time per discovered MEM, and typically the number of discov-

ered MEMs per pair of sequences q and S is small, so this verification step typically takes

constant time.

Experimental setting and evaluation metics

Database and query sets. We consider only nucleotide datasets. Our database is the

human genome. We use three query sets: the mouse genome, the chimp genome and an NGS

dataset. All the datasets are publicly available. The genome datasets can be downloaded from

UCSC (http://hgdownload.cse.ucsc.edu). The NGS dataset can be downloaded from Sequence

Read Archive (SRA) on the NCBI website (https://www.ncbi.nlm.nih.gov/sra) Table 2

describes each dataset used. According to Koning et al. [42], two third of the human genome

consists of repetitive sequences. It is also known that the mouse genome contains many repeats

too. [4, 43]. It is unclear if this is the case for the chimp and NGS datasets.

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 11 / 23

http://hgdownload.cse.ucsc.edu
https://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.1371/journal.pone.0189960

Performing the queries using each query set directly would require lots of computing

power, memory and time. For example, the number of MEMs of length at least 50 is more than

two billion when we compare the human and the chimp genomes. Khiste and Ilie [21] pro-

posed to store the MEMs in files based on their starting positions in the query genome. Later,

each file is sorted, duplicates are removed, and MEMs are output in the right order. In our

case, we pre-process all the datasets by dividing every sequence into non-overlapping

sequences of length 1000. Therefore, we process more but smaller sequences while keeping the

list of MEMs for each sequence manageable in RAM. This pre-processing also supports paral-

lelization of queries on MSU’s High Performance Computing Cluster. The number of resulting

sequences is shown in Table 2. We also only save letters in {A, C, G, T}; that is, ambiguous

characters are removed. For each pre-processed query set, we partition the set into 1000 query

sets of equal size (except the last set may be slightly smaller). We recognize that we may not be

able to find MEMs that extend across the pre-processed sequences, but this should not signifi-

cantly change our results.

For each of our pre-processed query sets, we compute the actual number of MEMs between

that query set and the pre-processed human genome for both choices of L. These results are

shown in Table 3.

Index parameters and metrics. We study the impact of the sampling methods on the k-

mer index creation phase. We consider the following sampling methods fix, minrand,one,

minlex,one, and minrand,many. We use the index to find all MEMs of length at least L where

L 2 {50, 100}. For each sampling method, we create a set of indexes for k 2 [12, 32]. We

consider L = 50 and L = 100, because both are frequently used in biological applications that

compare the mouse and chimp genomes to the human genome [20, 21] or map an NGS

dataset against the human genome [8, 22].

For each index, we report the dictionary size, lists size and the total index size which is the

sum of dictionary and lists sizes. The dictionary size is measured by counting the number of k-

mers. The lists size is measured by counting the number of k-mers occurrences in all lists. We

also report the index construction time.

Table 2. datasets used for testing.

Datasets Size (Mbp) #Seq. Type # Processed Seq.

Homo sapiens (Human) 3137 93 Database 2,897,341

Mus musculus (Mouse) 2731 66 Query set 5,306

Pan troglodytes (Chimp) 3218 24,132 Query set 5,818

SRA:SRR003161 (NGS) 788.5 1,376,701 Query set 2,792

The database set is only one large set. The query sets are partitioned into 1000 small query sets where each small set has the indicated number of processed sequences

(except the last set may have fewer sequences). The processed sequences are of length 1000 (except the last processed sequence for every sequence may be shorter).

https://doi.org/10.1371/journal.pone.0189960.t002

Table 3. The number of MEMs for each query set and the human genome for both choices of L given our pre-pro-

cessing into sequences of length 1000.

L Mouse Chimp NGS

50 838,857,328 2,077,183,744 940,731

100 428,609 101,868,611 457,512

https://doi.org/10.1371/journal.pone.0189960.t003

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 12 / 23

https://doi.org/10.1371/journal.pone.0189960.t002
https://doi.org/10.1371/journal.pone.0189960.t003
https://doi.org/10.1371/journal.pone.0189960

Querying parameters and metrics. The index is used to find all MEMs of length at least L
where L 2 {50, 100}. For L and for each sampling method, we used a set of k-mer indexes

where k 2 {12, 16, 20, 24, 28, 32}. The total number of indexes considered is 2 × 3 × 6 = 48

indexes. All the indexes give the same final results, namely all MEMs of length at least L.

For each query phase, we report the time and the number of “false positives”. The number

of false positives for a query set is the number of shared k-mer occurrences that failed to be

extended to a MEM of length at least L. Recall that we partition each query set into 1000 query

set partitions. The reported time is the sum of times that an index needs to answer all queries

in all query set partitions. Likewise, the number of false positives for a query set is the sum of

the number false positives for all queries in all query set partitions..

System specification/configuration. We run the experiments on a cluster that runs the

Community Enterprise Operating System (CentOS) 6.6. The cluster has 24 nodes where each

node has two 2.5Ghz 10-core Intel Xeon E5-2670v2 processors, 256 GB RAM, and 500 GB

local disk.

Results and discussion

Index size and index construction time

Fixed sampling (fix) produces indexes that are less than half the size of those produced by all mini-
mizer sampling methods (minrand,one, minrand,many, and minlex,one) for almost all choices of k.

Likewise, we can construct fixed sampling’s index roughly 1.5 to 1.9 times as fast as we can

construct minimizer’s index. We provide full index size and construction time results in Fig 1.

We now explore why fixed sampling produces indexes that are roughly half the size of

indexes produced by minimizer sampling minrand,one. We start with the size of the occurrence

lists. For a fixed value of k, we can accurately predict the size of fixed sampling’s k-mer occur-

rence lists because 1/w of the total number of k-mer occurrences will be sampled. For mini-

mizer, Roberts et al. showed that for random sequences, the number of minimizers would be

roughly 2/(w + 1) of the total number of k-mer occurrences [23]. Basically, each minimizer

would cover roughly half a window of length w rather than a full window of length w as we get

from fixed sampling. Thus, we would expect fixed sampling to produce occurrence lists that

are roughly (w + 1)/2w the size of the occurrence lists produced by minimizer sampling; that

is, the occurrence lists should be just more than half the size. In our experiments, we see that

the number of sampled occurrences for fixed sampling divided by the number of sampled

occurrences for minimizer sampling ranges from 48% to 55% for both L = 50 and L = 100

which is consistent with the expectation.

Minimizer sampling minrand,many has essentially identical results to minimizer sampling

minrand,one with respect to the size of occurrence lists; the optimization to remove duplicate

minimizers from a window does not have much effect on the total number of sampled occur-

rences. Minimizer sampling minlex,one produced indexes that are larger than minimizer sam-

pling minrand,one with respect to the size of occurrence lists; the optimization to use

randomized ordering, instead of lexicographical ordering, effectively reduces over sampling

the same k-mer in regions with many repeats resulting in 15% to 20% reduction for L = 50 and

L = 100, respectively.

We now consider the dictionary size. For the smallest values of k that we consider, mainly

12-15, minimizer typically has much smaller dictionaries than fixed sampling. For k = 12 and

L = 100, minimizer’s dictionary is almost 6 times smaller than fixed sampling’s dictionary. For

these small values of k, many of the sampled k-mers are chosen many times, and this is espe-

cially true for minimizer which leads to its smaller dictionary. However, for these k values,

because many of the sampled k-mers are chosen many times, the dictionaries are much smaller

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0189960

than the occurrence lists, so fixed sampling still has a total index size that is roughly half that of

minimizer. For example, for k = 12 and L = 50, for fixed sampling, each k-mer in the dictionary

appears roughly 6.5 times in the occurrence lists whereas for minimizer sampling minrand,one,

each k-mer in the dictionary appears roughly 52 times in the occurrence lists.

Once we consider k� 16, for fixed sampling, each dictionary consists of mostly unique k-

mers. For example, for k = 16 and L = 50, each k-mer in fixed sampling’s dictionary appears

roughly 1.23 times in the occurrence lists. For minimizer sampling minrand,one, this starts to

happen around k = 21. For example for k = 21 and L = 50, each k-mer in minimizer sampling’s

dictionary appears roughly 1.24 times in the occurrence lists. By the time k = 32, each dictio-

nary k-mer appears less than 1.13 times in the occurrence lists for both fixed sampling and

minimizer sampling. This implies that for large k, the dictionary size is comparable to the

Fig 1. The dictionary sizes, lists sizes, and construction times for k-mer indexes built using fixed sampling (fix) and minimizer sampling minrand,one,

minrand,many, and minlex,one. For parts (a), (b), and (c), we use L = 50. For parts (d), (e), and (f), we use L = 100. For all graphs, 12� k� 32.

https://doi.org/10.1371/journal.pone.0189960.g001

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 14 / 23

https://doi.org/10.1371/journal.pone.0189960.g001
https://doi.org/10.1371/journal.pone.0189960

occurrence lists size. Specifically, we see that fixed sampling’s dictionaries are roughly half the

size of minimizer sampling’s dictionaries for k� 21 for both L = 50 and L = 100. Finally, we

note that the dictionary size for minimizer sampling minrand,many is identical to that of mini-

mizer sampling minrand,one as minrand,many only omits some repeated occurrences for the same

k-mer. Minimizer sampling minlex,one produced dictionaries that are larger than minimizer

sampling minrand,one, again because we reduce oversampling the same k-mer in regions with

many repeats. For example, when k> 16 the reduction ranges from 12% to 23% for L = 50 and

L = 100, respectively.

We note that for all sampling methods, increasing the value of k increases the size of the

index. This is expected, since the sampling step w = L − k + 1 decreases as k increases.

Finally, fixed sampling’s faster construction time is easily explained. First, the number of

sampled occurrences is less than half as many as minimizer sampling. Second, no comparisons

are needed; fixed sampling simply grabs every wth k-mer whereas minimizer sampling needs

to consider every k-mer and do comparisons to determine if new k-mers are minimizers.

However, as we show in later, the reduction has significant impact on reducing query time.

Query time

We first start with our query time results. Our full query time results for each of our three sam-

pling methods for L = 50 and L = 100 are shown in Tables 4 and 5.

Our key query time result is that for the same k values and query data with many repeats, such
as in the mouse genome, minrand,one processes queries significantly faster than fixed sampling,
especially for commonly used small k values like 12 and 16 [4, 17, 44–49]. For example, when

k = 12 and k = 16, minrand,one answer the queries 126.14% and 369.14% faster, on average, than

fixed sampling for L = 50 and L = 100, respectively. For large k, k> 16, minrand,one processes

the queries 58.36% and 271.64% faster, on average, than fixed sampling for L = 50 and L = 100,

Table 4. Query times (in hours) for all sampling methods and all choices of k when L = 50.

Query set k fix minrand,one minrand,many minlex,one

Mouse 12 447.00 284.50 437.16 1008.30

16 106.49 36.08 142.22 204.39

20 52.91 26.96 107.46 86.13

24 33.31 17.36 58.38 48.54

28 20.84 15.48 48.77 28.87

32 13.75 12.43 32.79 18.58

Chimp 12 1493.09 1294.66 1407.43 2340.63

16 661.67 510.99 641.86 932.27

20 340.00 471.84 859.09 455.38

24 180.67 184.19 221.33 205.94

28 98.20 116.06 146.56 116.46

32 55.25 71.34 79.92 56.58

NGS 12 237.04 197.73 205.70 486.43

16 88.02 79.71 72.66 134.30

20 41.75 49.40 47.99 59.96

24 21.33 22.72 22.21 26.69

28 11.83 14.98 15.73 14.38

32 6.77 10.68 9.80 7.36

https://doi.org/10.1371/journal.pone.0189960.t004

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 15 / 23

https://doi.org/10.1371/journal.pone.0189960.t004
https://doi.org/10.1371/journal.pone.0189960

respectively. When there are only a few repeats in the query data, such as in the chimp genome

and NGS datasets, and for small k values, minrand,one is 15.15% to 37.65% faster, on average,

than fixed sampling. On the other hand, when the value of k> 16, minrand,one is 7.73% to

19.82% slower, on average, than fixed sampling.

While we observe that minimizer sampling process queries faster than fixed sampling for

the same choice of k, we also observe that minimizer sampling uses more space than fixed sam-

pling for the same choice of k. We will later compare minimizer sampling with fixed sampling

when they are restricted to indexes of the same size to determine which is indeed faster. When

exploring this tradeoff, we find that fixed sampling is faster than minimizer sampling when

both methods have equal sized indexes.

Our next query time result is that increasing k significantly decreases the query processing time
of all methods. For all query sets, increasing k from 12 to 16 reduces the query time of fixed

sampling and minrand,one by roughly 3-5 times; the one exception is minrand,one with the mouse

genome query set for L = 50 and L = 100 where the reduction is only 7.89% and 17.96% times,

respectively. For all query sets and all methods, increasing k by an additive factor of 4 above 16

roughly halves the method’s query processing time with a couple of outliers in both directions.

Our final query time result is that the optimization using randomized ordering is significantly
more effective than the optimization that removes duplicate minimizers, especially for large L and
small k values. For the mouse genome and for k = 12 and k = 16, the randomized ordering is

360.46% to 1508.86% faster, on average, than lexicographical ordering. For the chimp and

NGS datasets and k = 12 and k = 16, the randomized ordering is 81.62% to 280.17% faster, on

average, than lexicographical ordering. On the other hand, for the mouse genome k = 12 and

k = 16, duplicate minimizer removal is only 14.94% to 173.93% faster, on average, than stan-

dard minimizer sampling without duplicate removal. For the chimp and NGS datasets, dupli-

cate minimizer removal does not improve minimizer sampling’s query time; the one exception

Table 5. Query times (in hours) or all sampling methods and all choices of k when L = 100.

Query set k fix minrand,one minrand,many minlex,one

Mouse 12 198.46 101.05 102.06 692.17

16 41.74 5.63 7.25 142.50

20 21.31 3.59 4.52 40.38

24 12.37 3.76 4.29 15.60

28 7.28 2.17 2.48 7.49

32 4.92 2.16 2.35 4.89

Chimp 12 732.51 524.91 505.38 1744.26

16 276.38 203.60 203.90 560.79

20 131.61 160.61 254.88 242.23

24 61.68 50.29 50.03 98.51

28 33.20 41.01 40.88 53.60

32 17.78 30.91 31.53 21.94

NGS 12 111.03 79.95 82.78 364.51

16 33.33 27.39 28.17 83.38

20 15.58 13.93 14.47 27.85

24 7.27 5.91 5.85 10.90

28 4.12 5.01 5.34 6.08

32 2.32 4.47 4.43 2.52

https://doi.org/10.1371/journal.pone.0189960.t005

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 16 / 23

https://doi.org/10.1371/journal.pone.0189960.t005
https://doi.org/10.1371/journal.pone.0189960

is for chimp data when L = 100 and k = 12 and k = 16 where duplicate removal is 17.16% faster,

on average, than standard minimizer without duplicate removal.

The theoretical vs. empirical query time expectation. Because minimizer sampling only

tests some k-mers extracted from the query sequence to see if they are shared k-mers, one

might expect that minimizer sampling would process queries as much as w times faster than

fixed sampling. However, the query time results show this is not the case; the speedup is typi-

cally much less than w and often less than twice as fast. This is explained by counting the total

number of shared k-mer occurrences found by both fixed and minrand,one. These counts are

shown in Tables 6 and 7.

Recall fixed sampling will test all q − k + 1 k-mers from a query sequence q. On the other

hand, the expected number of query k-mers that minimizer sampling will test is 2(q − k + 1)/

(w + 1) or roughly 2/(w + 1) times smaller if the sequences are generated uniformly at random

[23]. Each tested k-mer will generate x shared k-mer occurrences where x is the length of that

k-mer’s occurrence list in the index. Theoretically, if x = c for fixed sampling, then we expect

that x = 2c for minimizer sampling. Then fixed sampling will test c(q − k + 1) k-mers occur-

rences and minimizer sampling will test 2c(q − k + 1)/(w + 1) of k-mers occurrences; since

minimizer sampling produce lists large by a factor of two. However, this is not always the case.

For example, for q = 1000 and L = 100, then we expect minimizer sampling to be 95% faster

than fixed sampling when 20� k� 32. For chimp and NGS datasets, the empirical results

show that minimizer sampling is 7.73% to 14.24% slower than fixed sampling.

To understand the query time, we need to compute the average size of x for k-mers that are

in the index dictionary. We show this in Tables 8 and 9 for each sampling method; specifically,

these tables show the mean and the standard deviation of occurrence list lengths in each index.

For L = 100 and k = 12, the mean length of a minimizer sampling occurrence list is just over 13

times larger than the mean length of a fixed sampling occurrence list. For k = 16, this falls to

Table 6. The number of shared k-mer occurrences (in billions) for all sampling methods and all choices of k when L = 50.

Query set k fix minrand,one minrand,many minlex,one

Mouse 12 281.90 100.58 348.92 870.72

16 103.19 25.02 202.80 242.16

20 55.96 20.84 161.16 101.93

24 33.28 11.33 83.47 52.93

28 19.55 11.68 73.18 29.27

32 11.74 9.36 47.14 16.98

Chimp 12 714.46 445.52 515.02 1699.86

16 310.33 176.65 223.43 601.94

20 155.08 255.68 520.61 221.16

24 75.52 62.58 85.37 87.17

28 37.92 46.97 109.50 45.74

32 22.12 27.64 45.33 23.79

NGS 12 101.81 64.62 71.33 390.05

16 30.29 24.05 26.56 86.30

20 12.95 17.20 20.26 28.24

24 6.41 7.24 8.24 11.00

28 3.44 5.11 5.95 5.86

32 2.09 3.42 3.91 3.06

https://doi.org/10.1371/journal.pone.0189960.t006

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0189960.t006
https://doi.org/10.1371/journal.pone.0189960

roughly 1.55 times larger, and for larger k, this falls to just a bit larger. Even more dramatic, the

standard deviation for minimizer’s occurrence list lengths ranges from 6.58 times up to 21.5

times larger than the standard deviation of fixed samplings occurrence list lengths.

What this shows is that some k-mers in minimizer sampling have very large occurrence

lists. Furthermore, the k-mers that have large occurrence lists are exactly the k-mers that are

most likely to be extracted from a query sequence since the sampling method is biased to

choose them. This explains why, despite testing relatively few query k-mers, minimizer sam-

pling have much larger query times than expected theoretically.

Table 7. The number of shared k-mer occurrences (in billions) for all sampling methods and all choices of k when L = 100.

Query set k fix minrand,one minrand,many minlex,one

Mouse 12 124.51 25.91 35.00 663.35

16 40.72 1.49 4.24 156.26

20 20.98 0.69 2.33 44.94

24 10.94 0.57 1.27 13.70

28 6.04 0.10 0.36 5.09

32 3.25 0.10 0.50 2.82

Chimp 12 355.18 157.24 160.65 1499.97

16 129.05 61.04 61.30 418.83

20 58.20 87.84 174.00 125.58

24 24.31 13.01 13.05 37.12

28 11.72 10.77 11.62 15.88

32 6.08 8.09 8.10 6.35

NGS 12 44.95 22.98 23.41 318.71

16 11.89 7.81 7.86 59.64

20 4.86 4.67 4.71 14.79

24 2.08 1.54 1.55 4.17

28 1.06 1.36 1.37 1.82

32 0.58 1.09 1.10 0.73

https://doi.org/10.1371/journal.pone.0189960.t007

Table 8. The mean and standard deviation of the length of a k-mer’s list of occurrences using the human genome for all sampling methods and all choices of k when

L = 50.

k fix minrand,one minrand,many minlex,one

Mean 12 6.50 51.72 53.20 58.70

16 1.23 2.01 2.05 2.26

20 1.13 1.26 1.27 1.26

24 1.10 1.19 1.19 1.19

28 1.08 1.16 1.16 1.15

32 1.07 1.13 1.13 1.12

Std. Dev. 12 37.61 419.57 483.85 616.48

16 10.17 67.30 66.02 69.38

20 6.65 32.14 36.96 32.79

24 4.66 20.06 22.73 19.98

28 3.41 17.56 16.91 13.74

32 2.65 10.61 11.84 9.09

https://doi.org/10.1371/journal.pone.0189960.t008

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0189960.t007
https://doi.org/10.1371/journal.pone.0189960.t008
https://doi.org/10.1371/journal.pone.0189960

Space and speed

We summarize our comparison of the the sampling methods by plotting the space and speed

of the resulting index for each query set and both choices of L in Fig 2.

If we ask both methods to use the same space regardless of k, we find that fixed sampling

typically answers queries at least as fast as minrand,one and often is faster. For example, the

index created using fixed sampling with k = 16 has roughly the same size as the index created

using minimizer sampling with k = 12. However, fixed sampling is 37.43%, 51.11%, and

44.52% faster than minimizer sampling for the mouse, chimp, and NGS datasets, respectively.

Combined with the fact that fixed sampling is much simpler than minimizer sampling, fixed

sampling is always the best choice if we can choose k to optimize both time and space.

Finally, we observe that the randomized ordering optimization is more effective than the

duplicate removal optimization. We can see that for all k values we consider, the effectiveness

of minrand,many and minrand,one are very similar. On the other hand, minlex,one is significantly

worse than both minrand,one and minrand,many.

Conclusion

We now summarize our main conclusions. When comparing fixed and minimizer sampling,

our results show that if we use the same k-mer size, minimizer sampling is only slightly faster

than fixed sampling, despite sampling from the query sequence. If we are allowed to use any k-

mer size for each method, then we can choose a k-mer size such that fixed sampling both uses

less space and processes queries faster than minimizer sampling. As is common in many appli-

cations, there is a space versus speed tradeoff. Using a larger k requires more space but results

in smaller query times. The key benefit of increasing k is that there are many fewer false posi-

tives which leads to much faster query processing. On average, the reduction in query times

for all query sets when k = 32 compared to k = 12 is 37 and 136 times faster for fixed sampling

and minimizer sampling, respectively.

Table 9. The mean and standard deviation of the length of a k-mer’s list of occurrences using the human genome for all sampling methods and all choices of k when

L = 100.

k fix minrand,one minrand,many minlex,one

Mean 12 3.63 45.20 44.70 53.02

16 1.17 1.81 1.95 2.34

20 1.11 1.24 1.25 1.28

24 1.08 1.19 1.19 1.19

28 1.06 1.16 1.15 1.15

32 1.05 1.13 1.13 1.12

Std. Dev. 12 18.68 401.81 402.42 712.16

16 6.21 67.08 61.54 80.71

20 4.02 25.38 30.99 36.05

24 2.62 17.51 19.63 20.47

28 1.87 16.71 14.84 13.85

32 1.37 9.02 10.11 8.61

https://doi.org/10.1371/journal.pone.0189960.t009

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 19 / 23

https://doi.org/10.1371/journal.pone.0189960.t009
https://doi.org/10.1371/journal.pone.0189960

Acknowledgments

We thank the anonymous reviewers for their very helpful comments that greatly improved the

paper. This work was supported in part by Michigan State University through computational

resources provided by the Institute for Cyber-Enabled Research. We also would like to

acknowledge Al-Imam Muhammad ibn Saud Islamic University for support of this work.

Author Contributions

Conceptualization: Meznah Almutairy, Eric Torng.

Data curation: Meznah Almutairy.

Investigation: Meznah Almutairy.

Fig 2. Comparing the space and speed of fixed sampling (fix), minimizer sampling minrand,one, minrand,many, and minlex,one. We use L = 50 for the three

upper figures and L = 100 for the three lower figures. The values for minlex,one when k = 12 are very large and removed from figure below.

https://doi.org/10.1371/journal.pone.0189960.g002

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 20 / 23

https://doi.org/10.1371/journal.pone.0189960.g002
https://doi.org/10.1371/journal.pone.0189960

Methodology: Meznah Almutairy, Eric Torng.

Project administration: Meznah Almutairy, Eric Torng.

Software: Meznah Almutairy.

Supervision: Eric Torng.

Validation: Meznah Almutairy, Eric Torng.

Visualization: Meznah Almutairy, Eric Torng.

Writing – original draft: Meznah Almutairy, Eric Torng.

Writing – review & editing: Meznah Almutairy, Eric Torng.

References
1. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proceedings of the

National Academy of Sciences. 1988; 85(8):2444–2448. https://doi.org/10.1073/pnas.85.8.2444

2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-

BLAST: A new generation of protein database search programs. Nucleic Acids Research. 1997; 25

(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694

3. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of

Computational Biology. 2000; 7(1-2):203–214. https://doi.org/10.1089/10665270050081478 PMID:

10890397

4. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for pro-

duction MegaBLAST searches. Bioinformatics. 2008; 24(16):1757–1764. https://doi.org/10.1093/

bioinformatics/btn322 PMID: 18567917

5. Irizarry K, Kustanovich V, Li C, Brown N, Nelson S, Wong W, et al. Genome-wide analysis of single-

nucleotide polymorphisms in human expressed sequences. Nature Genetics. 2000; 26(2):233–236.

https://doi.org/10.1038/79981 PMID: 11017085

6. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human

genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;

409(6822):928–933. https://doi.org/10.1038/35057149 PMID: 11237013

7. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Research. 2001; 11

(5):863–874. https://doi.org/10.1101/gr.176601 PMID: 11337480

8. Kent WJ. BLAT-the BLAST-like alignment tool. Genome Research. 2002; 12(4):656–664. https://doi.

org/10.1101/gr.229202 PMID: 11932250

9. Ning Z, Cox AJ, Mullikin JC. SSAHA: A fast search method for large DNA databases. Genome

Research. 2001; 11(10):1725–1729. https://doi.org/10.1101/gr.194201 PMID: 11591649

10. Wu TD, Watanabe CK. GMAP: A genomic mapping and alignment program for mRNA and EST

sequences. Bioinformatics. 2005; 21(9):1859–1875. https://doi.org/10.1093/bioinformatics/bti310

PMID: 15728110

11. Simpson JT, Durbin R. Efficient construction of an assembly string graph using the FM-index. Bioinfor-

matics. 2010; 26(12):i367–i373. https://doi.org/10.1093/bioinformatics/btq217 PMID: 20529929

12. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. Scaling metagenome sequence

assembly with probabilistic de Bruijn graphs. Proceedings of the National Academy of Sciences. 2012;

109(33):13272–13277. https://doi.org/10.1073/pnas.1121464109

13. Peterlongo P, Chikhi R. Mapsembler, targeted and micro assembly of large NGS datasets on a desktop

computer. BMC Bioinformatics. 2012; 13(1):48. https://doi.org/10.1186/1471-2105-13-48 PMID:

22443449

14. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26

(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461 PMID: 20709691

15. Ghodsi M, Liu B, Pop M. DNACLUST: Accurate and efficient clustering of phylogenetic marker genes.

BMC bioinformatics. 2011; 12(1):271. https://doi.org/10.1186/1471-2105-12-271 PMID: 21718538

16. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics. 2006; 22(13):1658–1659. https://doi.org/10.1093/bioinformatics/btl158

PMID: 16731699

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 21 / 23

https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1089/10665270050081478
http://www.ncbi.nlm.nih.gov/pubmed/10890397
https://doi.org/10.1093/bioinformatics/btn322
https://doi.org/10.1093/bioinformatics/btn322
http://www.ncbi.nlm.nih.gov/pubmed/18567917
https://doi.org/10.1038/79981
http://www.ncbi.nlm.nih.gov/pubmed/11017085
https://doi.org/10.1038/35057149
http://www.ncbi.nlm.nih.gov/pubmed/11237013
https://doi.org/10.1101/gr.176601
http://www.ncbi.nlm.nih.gov/pubmed/11337480
https://doi.org/10.1101/gr.229202
https://doi.org/10.1101/gr.229202
http://www.ncbi.nlm.nih.gov/pubmed/11932250
https://doi.org/10.1101/gr.194201
http://www.ncbi.nlm.nih.gov/pubmed/11591649
https://doi.org/10.1093/bioinformatics/bti310
http://www.ncbi.nlm.nih.gov/pubmed/15728110
https://doi.org/10.1093/bioinformatics/btq217
http://www.ncbi.nlm.nih.gov/pubmed/20529929
https://doi.org/10.1073/pnas.1121464109
https://doi.org/10.1186/1471-2105-13-48
http://www.ncbi.nlm.nih.gov/pubmed/22443449
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1186/1471-2105-12-271
http://www.ncbi.nlm.nih.gov/pubmed/21718538
https://doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
https://doi.org/10.1371/journal.pone.0189960

17. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact align-

ments. Genome Biology. 2014; 15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46 PMID: 24580807

18. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable metagenomic taxonomy

classification using a reference genome database. Bioinformatics. 2013; 29(18):2253–2260. https://doi.

org/10.1093/bioinformatics/btt389 PMID: 23828782

19. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA–Taxonomic classification of

environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics.

2009; 10(1):56. https://doi.org/10.1186/1471-2105-10-56 PMID: 19210774

20. Vyverman M, De Baets B, Fack V, Dawyndt P. essaMEM: Finding maximal exact matches using

enhanced sparse suffix arrays. Bioinformatics. 2013; 29(6):802–804. https://doi.org/10.1093/

bioinformatics/btt042 PMID: 23349213

21. Khiste N, Ilie L. E-MEM: Efficient computation of maximal exact matches for very large genomes. Bioin-

formatics. 2015; 31(4):509–514. https://doi.org/10.1093/bioinformatics/btu687 PMID: 25399029

22. Vyverman M, De Baets B, Fack V, Dawyndt P. A long fragment aligner called ALFALFA. BMC Bioinfor-

matics. 2015; 16(1):159. https://doi.org/10.1186/s12859-015-0533-0 PMID: 25971785

23. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological

sequence comparison. Bioinformatics. 2004; 20(18):3363–3369. https://doi.org/10.1093/bioinformatics/

bth408 PMID: 15256412

24. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open soft-

ware for comparing large genomes. Genome Biology. 2004; 5(2):R12. https://doi.org/10.1186/gb-2004-

5-2-r12 PMID: 14759262

25. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with enhanced suffix arrays. Journal of

Discrete Algorithms. 2004; 2(1):53–86. https://doi.org/10.1016/S1570-8667(03)00065-0

26. Khan Z, Bloom JS, Kruglyak L, Singh M. A practical algorithm for finding maximal exact matches in

large sequence datasets using sparse suffix arrays. Bioinformatics. 2009; 25(13):1609–1616. https://

doi.org/10.1093/bioinformatics/btp275 PMID: 19389736

27. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for document fingerprinting. In: Pro-

ceedings of the 2003 ACM SIGMOD international conference on Management of data. ACM; 2003.

p. 76–85.

28. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-

ics. 2016; 32(14):2103–2110. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

29. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate algorithm for mapping long reads

to large reference databases. In: International Conference on Research in Computational Molecular

Biology. Springer; 2017. p. 66–81.

30. Ye C, Ma ZS, Cannon CH, Pop M, Douglas WY. Exploiting sparseness in de novo genome assembly.

BMC Bioinformatics. 2012; 13(6):1. https://doi.org/10.1186/1471-2105-13-S6-S1

31. Movahedi NS, Forouzmand E, Chitsaz H. De novo co-assembly of bacterial genomes from multiple sin-

gle cells. In: Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference on. IEEE;

2012. p. 1–5.

32. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the representation of de Bruijn graphs.

In: Research in Computational Molecular Biology. Springer; 2014. p. 35–55.

33. Li Y, Yan X MSPKmerCounter: A fast and memory efficient approach for k-mer counting. arXiv preprint

arXiv:150506550. 2015;.

34. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: Fast and resource-frugal k-mer

counting. Bioinformatics. 2015; 31(10):1569–1576. https://doi.org/10.1093/bioinformatics/btv022

PMID: 25609798

35. Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.

Genome Research. 2008; 18(5):821–829. https://doi.org/10.1101/gr.074492.107 PMID: 18349386

36. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: A parallel assembler for short

read sequence data. Genome Research. 2009; 19(6):1117–1123. https://doi.org/10.1101/gr.089532.

108 PMID: 19251739

37. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively

parallel short read sequencing. Genome Research. 2010; 20(2):265–272. https://doi.org/10.1101/gr.

097261.109 PMID: 20019144

38. Li Y, Kamousi P, Han F, Yang S, Yan X, Suri S. Memory efficient minimum substring partitioning. In:

Proceedings of the VLDB Endowment. vol. 6(3). VLDB Endowment; 2013. p. 169–180.

39. Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C. Compact universal k-mer hitting sets. In:

International Workshop on Algorithms in Bioinformatics. Springer; 2016. p. 257–268.

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 22 / 23

https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.1093/bioinformatics/btt389
https://doi.org/10.1093/bioinformatics/btt389
http://www.ncbi.nlm.nih.gov/pubmed/23828782
https://doi.org/10.1186/1471-2105-10-56
http://www.ncbi.nlm.nih.gov/pubmed/19210774
https://doi.org/10.1093/bioinformatics/btt042
https://doi.org/10.1093/bioinformatics/btt042
http://www.ncbi.nlm.nih.gov/pubmed/23349213
https://doi.org/10.1093/bioinformatics/btu687
http://www.ncbi.nlm.nih.gov/pubmed/25399029
https://doi.org/10.1186/s12859-015-0533-0
http://www.ncbi.nlm.nih.gov/pubmed/25971785
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1093/bioinformatics/bth408
http://www.ncbi.nlm.nih.gov/pubmed/15256412
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1186/gb-2004-5-2-r12
http://www.ncbi.nlm.nih.gov/pubmed/14759262
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1093/bioinformatics/btp275
https://doi.org/10.1093/bioinformatics/btp275
http://www.ncbi.nlm.nih.gov/pubmed/19389736
https://doi.org/10.1093/bioinformatics/btw152
http://www.ncbi.nlm.nih.gov/pubmed/27153593
https://doi.org/10.1186/1471-2105-13-S6-S1
https://doi.org/10.1093/bioinformatics/btv022
http://www.ncbi.nlm.nih.gov/pubmed/25609798
https://doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1101/gr.089532.108
http://www.ncbi.nlm.nih.gov/pubmed/19251739
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1101/gr.097261.109
http://www.ncbi.nlm.nih.gov/pubmed/20019144
https://doi.org/10.1371/journal.pone.0189960

40. Almutairy M, Torng E. The effects of sampling on the efficiency and accuracy of k- mer indexes: Theo-

retical and empirical comparisons using the human genome. PLOS ONE. 2017; 12(7):e0179046.

https://doi.org/10.1371/journal.pone.0179046 PMID: 28686614

41. Smith KC. Sliding window minimum implementations; 2016. https://people.cs.uct.ac.za/~ksmith/

articles/sliding_window_minimum.html#id2

42. de Koning AJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-

thirds of the human genome. PLOS Genetic. 2011; 7(12):e1002384. https://doi.org/10.1371/journal.

pgen.1002384

43. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: Window-based masker for

sequenced genomes. Bioinformatics. 2006; 22(2):134–141. https://doi.org/10.1093/bioinformatics/

bti774 PMID: 16287941

44. Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, Eichler EE, et al. mrsFAST: A cache-oblivious

algorithm for short-read mapping. Nature Methods. 2010; 7(8):576–577. https://doi.org/10.1038/

nmeth0810-576 PMID: 20676076

45. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et al. Personalized copy

number and segmental duplication maps using next-generation sequencing. Nature Genetics. 2009; 41

(10):1061–1067. https://doi.org/10.1038/ng.437 PMID: 19718026

46. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. SHRiMP: Accurate mapping of short

color-space reads. PLOS ONE Computational Biology. 2009; 5(5):e1000386. https://doi.org/10.1371/

journal.pcbi.1000386

47. Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X. Hobbes: Optimized gram-based methods for effi-

cient read alignment. Nucleic Acids Research. 2012; 40(6):e41–e41. https://doi.org/10.1093/nar/

gkr1246 PMID: 22199254

48. Hormozdiari F, Hach F, Sahinalp SC, Eichler EE, Alkan C. Sensitive and fast mapping of di-base

encoded reads. Bioinformatics. 2011; 27(14):1915–1921. https://doi.org/10.1093/bioinformatics/btr303

PMID: 21586516

49. Weese D, Emde AK, Rausch T, Döring A, Reinert K. RazerS: Fast read mapping with sensitivity control.

Genome Research. 2009; 19(9):1646–1654. https://doi.org/10.1101/gr.088823.108 PMID: 19592482

Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

PLOS ONE | https://doi.org/10.1371/journal.pone.0189960 February 1, 2018 23 / 23

https://doi.org/10.1371/journal.pone.0179046
http://www.ncbi.nlm.nih.gov/pubmed/28686614
https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html#id2
https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html#id2
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1093/bioinformatics/bti774
https://doi.org/10.1093/bioinformatics/bti774
http://www.ncbi.nlm.nih.gov/pubmed/16287941
https://doi.org/10.1038/nmeth0810-576
https://doi.org/10.1038/nmeth0810-576
http://www.ncbi.nlm.nih.gov/pubmed/20676076
https://doi.org/10.1038/ng.437
http://www.ncbi.nlm.nih.gov/pubmed/19718026
https://doi.org/10.1371/journal.pcbi.1000386
https://doi.org/10.1371/journal.pcbi.1000386
https://doi.org/10.1093/nar/gkr1246
https://doi.org/10.1093/nar/gkr1246
http://www.ncbi.nlm.nih.gov/pubmed/22199254
https://doi.org/10.1093/bioinformatics/btr303
http://www.ncbi.nlm.nih.gov/pubmed/21586516
https://doi.org/10.1101/gr.088823.108
http://www.ncbi.nlm.nih.gov/pubmed/19592482
https://doi.org/10.1371/journal.pone.0189960

