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Abstract

Colorectal cancer (CRC) is characterized by genome-wide alterations to DNA methylation that 

influence gene expression and genomic stability. Less is known about the extent to which 

methylation is disrupted in the earliest stages of CRC development. In this study we have 

combined laser-capture microdissection (LCM) with reduced representation bisulfite sequencing 

(RRBS) to identify cancer-associated DNA methylation changes in human aberrant crypt foci 

(ACF), the earliest putative precursor to CRC. Using this approach, methylation profiles have been 

generated for 10 KRAS-mutant ACF and 10 CRCs harboring a KRAS mutation, as well as 

matched samples of normal mucosa. Of 811 differentially methylated regions (DMRs) identified 
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in ACF, 537 (66%) were hypermethylated and 274 (34%) were hypomethylated. DMRs located 

within intergenic regions were heavily enriched for AP-1 transcription factor binding sites and 

were frequently hypomethylated. Furthermore, gene ontology (GO) analysis demonstrated that 

DMRs associated with promoters were enriched for genes involved in intestinal development, 

including homeobox genes and targets of the Polycomb repressive complex 2 (PRC2). Consistent 

with their role in the earliest stages of colonic neoplasia, 75% of the loci harboring methylation 

changes in ACF were also altered in CRC samples, though the magnitude of change at these sites 

was lesser in ACF. While aberrant promoter methylation was associated with altered gene 

expression in CRC, this was not the case in ACF, suggesting the insufficiency of methylation 

changes to modulate gene expression in early colonic neoplasia. Together, these data demonstrate 

that DNA methylation changes, including significant hypermethylation, occur more frequently in 

early colonic neoplasia than previously believed, and identify epigenomic features of ACF that 

may provide new targets for cancer chemoprevention or lead to the development of new 

biomarkers for CRC risk.
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Introduction

Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths in the U.S 1. In 

addition to the established series of mutational events that accompany the adenoma-

carcinoma sequence, a number of epigenetic aberrations have been identified in CRC, 

including altered DNA methylation and covalent histone modifications 2. Global DNA 

hypomethylation, first identified in cancers more than three decades ago, is now recognized 

as a common genetic feature of CRC 3. DNA hypomethylation promotes genomic 

instability 4, in many cases leading to an increased mutational load and activation of proto-

oncogenes 4. On the other hand, gene-specific promoter hypermethylation has been shown to 

promote CRC by silencing the expression of key tumor suppressor genes such as CDKN2A, 

hMLH1 and CDH1 5.

While extensive epigenetic modifications are a common feature of CRC, their role in early 

neoplastic progression is less well defined. As reviewed by Sakai et al. 6, changes to DNA 

methylation have been found at early stages of cancer development, particularly in colorectal 

adenomas. Specific DNA methylation changes have even been found within normal colonic 

mucosa of patients with CRC 7,8, suggesting the possibility that epigenetic defects may 

predict subsequent cancer risk. Aberrant crypt foci (ACF) are the earliest morphologically 

identifiable mucosal abnormality in the colon, a subset of which may be precancerous and 

contribute to a “field defect” within the mucosa 9. Studies from our laboratory 10 and 

others 11–13 have identified methylation defects associated with a limited set of genes within 

human ACF, including the silencing of tumor suppressor genes by promoter 

hypermethylation. An early study by Chan et al. 11 showed that MINT1, MINT2, MINT31, 

and the tumor suppressor gene CDKN2A, were frequently methylated in ACF from patients 

with synchronous CRC. We later demonstrated that the tumor suppressor gene RASSF1A is 
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silenced by promoter hypermethylation in distal colon ACF, even in the absence of 

synchronous tumors 10. More recently, Inoue et al.13 demonstrated that 6 genes are 

frequently hypermethylated in BRAF-mutant ACF, sessile serrated polyps (SSPs) and 

cancers located in the proximal colon, providing additional evidence for the role of aberrant 

methylation in the serrated pathway to CRC. Together, these observations suggest that 

aberrant DNA methylation patterns may be established prior to adenoma formation and may 

be important for the promotion of early colonic neoplasia.

While BRAF-mutant tumors are associated with the CpG island methylator phenotype 

(CIMP)14, and are thus thought to be driven by epigenetic dysregulation, there is also 

evidence for the role of aberrant methylation in the progression of KRAS-mutant neoplasia. 

Several studies15–18 have demonstrated that KRAS-mutant CRCs are associated with a 

distinct set of DNA methylation changes. Notably, Yagi et al.18 have shown that many of the 

changes present in KRAS-mutant CRCs can also be detected in KRAS-mutant adenomas. 

Furthermore, Chan et al.11 have shown that the hypermethylation of tumor suppressor genes 

in ACF is strongly associated with KRAS codon 12 mutations. Together, these findings 

suggest a role for aberrant methylation in the establishment and progression of KRAS-
mutant colonic neoplasia. However, compared to BRAF-mutant lesions, little is known 

about the specific loci effected by aberrant methylation in the earliest stages of KRAS-
mutant colonic neoplasia.

Our limited understanding of the molecular alterations present in premalignant lesions 

represents an important barrier to the development of new cancer detection and prevention 

strategies 19. To address this issue, the present study was undertaken to develop a more in-

depth understanding of the DNA methylation changes that are present throughout the 

genome in human ACF. To achieve the requisite sensitivity for analysis of isolated colonic 

epithelial cells, we combined reduced representation bisulfite sequencing (RRBS) with 

laser-capture microdissection (LCM) of ACF harboring mutations in exon 2 of the KRAS 
oncogene. RRBS is an efficient, high-throughput sequencing technique that combines Na-

bisulfite conversion of unmethylated cytosines with MspI restriction digestion to enrich 

samples for CpG-rich regions of the genome 20. Using this approach, we have shown that 

KRAS-mutant ACF harbor extensive DNA methylation changes, many of which are also 

present in primary CRCs. In addition to promoter hypermethylation we identify a large 

number of hypomethylated intergenic regions, which are significantly enriched for AP-1 

transcription factor binding sites. Furthermore, ACF-associated methylation changes were 

enriched in genes involved in cellular identity and differentiation, including a set of 

homeobox genes and targets of PRC2. These observations extend the scope of aberrant 

methylation in the earliest stages of colonic neoplasia and define features of an epigenomic 

landscape that may provide new targets for CRC detection and chemoprevention.

Results

Genome-wide DNA methylation changes in colon cancers and ACF

To investigate the epigenomic landscape of early colonic neoplasia, RRBS analysis was used 

to identify DNA methylation changes in stage III–IV CRCs and ACF biopsied from the 

distal colon; representative images of an ACF visualized during endoscopy and its 
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histological appearance are shown in Figure 1A. As shown in Supplemental Figures S1A 

and S1B, data obtained using RRBS from two independent library preparations were highly 

reproducible. Differentially methylated regions (DMRs), defined as genomic regions 

exhibiting an average change in methylation ≥ 15% compared to matched normal that 

achieved a false-discovery-adjusted p-value < 0.05, were used for all subsequent analyses. 

The complete list of ACF- and cancer-associated DMRs is included in Supplemental Tables 

S1 and S2. The heat-map shown in Figure 1B, generated by unsupervised clustering, shows 

DMRs identified in CRC. A total of 23 745 DMRs were identified, consistent with previous 

reports that aberrant DNA methylation is a common feature of CRC 6. 5 995 (25%) of these 

DMRs were hypermethylated, while 17 750 (75%) were hypomethylated. Methylation 

changes were also found in ACF (Figure 1C); 811 regions were differentially methylated 

compared to matched normal mucosa. However, in ACF, 537 (66%) of DMRs were 

hypermethylated, indicating a greater tendency towards increased methylation at aberrantly 

methylated loci in ACF. The difference in net methylation change between ACF and CRC 

suggests that a shift in global methylation status may be important for progression from 

early neoplasia to invasive CRC.

To gain a better understanding of the functional significance of methylation changes found 

in ACF, GSEA was used to compare the set of all ACF DMRs to annotated functional gene 

sets stored in the Molecular Signatures Database (Broad Institute, Cambridge, MA) 21; 

GSEA results are summarized in Supplemental Table S3. GSEA identified enrichment for 

transcription factors involved in intestinal development, including APC2, FOXF1, NKX2-3, 
NOTCH1, PAX6, and PDGFA (Supplemental Figure S2) 22–27. In addition, this set of genes 

was enriched for targets of PRC2 identified in human embryonic stem cells (hESCs) 28. 

PRC2 is a chromatin-remodeling complex involved in the maintenance of stem cell 

plasticity 29. Furthermore, ACF-associated DMRs showed enrichment for genes known to be 

trimethylated at lysine 27 of histone subunit 3 (H3K27me3, the “polycomb mark”) in normal 

adult colonic mucosa 30. Finally, genes with frequent methylation changes in ACF contained 

a number of HOX genes (HOXA3, HOXC9, HOXC10, HOXC11, and HOXC13), a family 

of early developmental regulators whose aberrant expression has previously been implicated 

in human carcinogenesis 31. These findings demonstrate that genes involved in normal 

intestinal development and genes targeted by PRC2 in embryonic stem cells frequently 

exhibit methylation changes in human ACF and suggest a role for the epigenetic disruption 

of these genes in the establishment of early neoplasia.

Cancer-associated methylation changes are present in ACF

In the following analyses, methylation profiles of DMRs present in CRCs and ACF samples 

were normalized to matched normal-appearing mucosa. As shown in Figure 2A, data were 

clearly separated by PCA, indicating distinct methylation profiles, although ACF showed 

tighter overall clustering than tumors. Despite segregation by PCA, a subset of genomic 

regions was classified as DMRs in both cancer and ACF samples (Figure 2B). Of these 

shared DMRs, the majority exhibited methylation changes in the same direction (66% 

hypermethylated, 32% hypomethylated) and are referred to as “overlapping” DMRs. In 

general, these methylation changes were of greater magnitude in cancers than in ACF, 

regardless of the direction of change or the genomic location of the altered region. As shown 
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in Supplemental Figure S3, aberrant methylation of a representative DMR associated with 

the gene RSPO2 was validated in an independent set of ACF and CRC samples using 

Combined Bisulfite Restriction Analysis (COBRA).

As shown in Figure 3A, 592 DMRs were classified as overlapping; a complete list of 

overlapping DMRs is provided in Supplemental Table S4. Bootstrapping analysis confirmed 

that this degree of overlap between ACF and CRC DMRs was highly significant 

(Supplemental Figure S1C). Approximately 75% of all DMRs identified in ACF overlapped 

with CRC DMRs. Hypermethylated overlapping DMRs were evenly distributed among 

promoters (139, 35%), gene bodies (147, 37%) and intergenic regions (113, 28%) 

(Supplemental Figure S4A). In contrast, hypomethylated overlapping DMRs occurred 

mainly within gene bodies (84; 44%) and intergenic regions (104; 53%); only 5 (3%) were 

located in promoter regions (Supplemental Figure S4A). As shown in Figure 3B, GSEA 

revealed that overlapping DMRs were frequently associated with homeobox genes. As 

shown in Figure 3C, overlapping DMRs associated with homeobox genes were frequently 

hypermethylated.

Non-promoter DMRs undergo a switch in methylation status during cancer development

To better define the methylation landscape of early and late colonic neoplasia, all DMRs 

were separated according to their genomic location into gene body, intergenic, and promoter 

DMRs. 8 849 (37%) cancer-associated DMRs were located within gene bodies, 12 170 

(51%) were located in intergenic regions, and 2 726 (11%) were located within known 

promoter regions, indicating more extensive methylation changes within non-promoter 

regions in CRC (Supplemental Figure S4B). Similarly, of the 811 DMRs found in ACF, 349 

(43%) were located within gene bodies, 297 (37%) were located in intergenic regions, and 

165 (20%) were located within promoters (Supplemental Figure S4B).

In cancers, DMRs in non-promoter regions were primarily hypomethylated compared to 

matched normal; 6 591 (74%) gene body-associated DMRs were hypomethylated (Figure 

4A) and 10 401 (85%) intergenic DMRs were hypomethylated (Figure 4B). In contrast, 213 

(61%) gene body-associated DMRs were hypermethylated (Figure 4A) and 168 (57%) 

intergenic regions were hypermethylated (Figure 4B) in ACF samples. Together, these 

results suggest that genome-wide DNA hypomethylation occurs during later stages of CRC 

progression. In contrast to gene bodies and intergenic regions, the majority of promoter 

DMRs in both cancers (1 968, 72%) and ACF (165, 95%) were hypermethylated (Figure 

4C).

Intergenic DMRs are enriched for AP-1 family transcription factor binding motifs

As shown in Figure S3 and Figure 4, a significant fraction of ACF and cancer DMRs were 

located in noncoding intergenic regions of the genome. To determine whether these DMRs 

were enriched for regulatory features, we used Hypergeometric Optimization of Motif 

EnRichment (HOMER) analysis 32 to identify sequence elements within DMRs that 

correspond to known transcription factor binding motifs. As shown in Figure 5A, intergenic 

DMRs in CRCs were enriched for 103 motifs, including 6 that were also enriched in ACF 

intergenic DMRs. Furthermore, a number of motifs were also enriched in DMRs located 
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within gene bodies in cancer samples; complete results of the HOMER analysis are provided 

in Supplemental Table S5. As shown in Supplemental Figure 1D, bootstrapping analysis 

indicated that these results were highly statistically significant. As shown in Figure 5B, 5 of 

the 6 motifs enriched in ACF intergenic DMRs corresponded to binding sequences for AP-1 

family transcription factors (Figure 5B). The majority of DMRs enriched for AP-1 motifs 

were hypomethylated in both ACF and cancer samples (Figure 5C); however, a greater 

number of AP-1 sites were affected in cancer samples than in ACF. Furthermore, as shown 

in Figure 5D, the average degree of hypomethylation at AP-1 motif-associated DMRs was 

greater in cancers than in ACF.

Aberrant DNA methylation is associated with altered gene expression in colon cancers, 
but not in ACF

Promoter methylation is an important mechanism for regulating gene expression 5. To assess 

the functional consequences of aberrant promoter methylation, genome-wide RNA-Seq 

analysis was performed on CRC and ACF samples. Scatter-plots depicting the correlation 

between promoter methylation and gene expression are shown in Figure 6. In CRCs, 

promoter methylation was negatively correlated with gene expression (Pearson’s r = −0.55, 

P=0.005) (Figure 6A), consistent with the transcriptional silencing commonly found in 

advanced neoplasia 5. However, when ACF were subjected to a similar analysis, there was 

no correlation observed between promoter methylation status and changes in gene 

expression (Pearson’s r = −0.07, P=0.7) (Figure 6B).

This lack of correlation between promoter methylation and gene expression in ACF may be 

related to the magnitude of methylation changes. To address this possibility, 12 genes with 

promoter hypermethylation in both CRC and ACF, but reduced expression in CRC only, 

were selected for further analysis of their promoter methylation statuses. As shown in Figure 

6C, the expression of GSG1L, DPP6, NEFL, GRIN2A, SORCS1, NPTX1, SFRP1, 
ST8SIA5, ADCYAP1R1, SNAP25 and GABRB3 were each significantly reduced by at least 

3-fold in Stage III–IV cancers, but had no significant change in expression in ACF. These 

genes showed an average increase in promoter methylation of ~40% in CRCs, but an 

increase of only ~20% in ACF (Figure 6D), suggesting that the extent of promoter 

methylation in early neoplasia is insufficient to alter gene expression.

Overexpression of EZH2, the catalytic subunit of PRC2, has been identified in CRC and is 

frequently associated with a poor prognosis 33. To determine whether the enrichment of ACF 

DMRs for PRC2 targets may be due to the overexpression of components of the PRC2 

complex, we interrogated our RNA-Seq data for changes in expression of the Polycomb 

genes EZH2, SUZ12, and EED. As shown in Supplemental Figure S5A, EZH2 was 

overexpressed in Stage III–IV CRCs (1.55-fold increase, p=0.03), but not in ACF 

(Supplemental Figure S5B). We also interrogated the RNA-Seq dataset for the expression 

levels of the DNA methyltransferases (DNMTs), a group of genes (DNMT1, DNMT3A and 

DNMT3B) that are often up-regulated in CRC 34. As shown in Supplemental Figure 

S5A&B, DNMT1 and DNMT3B are overexpressed in cancer samples, but not in ACF. 

Taken together, these results suggest that while overexpression EZH2, DNMT1 and 

DNMT3B may promote hypermethylation and cancer progression, their overexpression is 
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not required for the establishment of early colonic neoplasia. Alternatively, higher 

expression of DNMT1, DNMT3B and EZH2 may accompany increased cell proliferation in 

CRC but may not be causative for the DNA methylation changes.

Discussion

The disruption of DNA methylation patterns has been shown to play an important role in the 

pathogenesis of CRC 6. However, the epigenomic landscape at the earliest stages of colonic 

neoplasia has not been clearly defined. Several studies have investigated methylation defects 

at pre-defined targets within ACF and identified changes associated with a limited set of 

genes 7,8,10,11,13. However, an investigation of DNA methylation changes occurring in early 

human colonic neoplasia using next-generation sequencing and an integrated genomics 

approach has not yet been reported. In the present study, we have applied a highly sensitive 

genome-wide approach by combining LCM with RRBS to compare DNA methylation 

changes present in early colonic neoplasia with the extensive modifications found in 

advanced CRC.

As expected, the majority of DMRs identified in Stage III–IV cancers were hypomethylated. 

This global loss of DNA methylation was particularly common within intergenic regions, in 

which ~85% of DMRs were hypomethylated. These findings are consistent with previous 

reports of genome-wide hypomethylation in a number of different human cancers 3,35. DNA 

hypomethylation also occurs in low-grade adenomas 35,36, indicating that this epigenetic 

alteration precedes the development of more advanced malignancies. However, our present 

study has uncovered an unexpected finding; the majority of DMRs (across all genomic 

locations) in ACF samples are hypermethylated, indicating a global gain of DNA 

methylation at the earliest stages of tumor initiation. Since the majority of ACF are self-

limiting and unlikely to progress to malignancy 37, genome-wide hypermethylation may in 

fact provide a mechanism for restricting ACF progression, in part by reducing the likelihood 

of genomic instability associated with DNA hypomethylation 4. Because our investigation 

was limited to KRAS-mutant ACF, the present study is unable to rule out the possibility that 

this hypermethylation phenotype is restricted to early neoplastic lesions with KRAS 
mutations. Thus, these results warrant future study of the global methylation status of ACF 

harboring other common mutations, such as BRAF V600E.

Promoter DMRs in both CRC and ACF were enriched in genes known to be targeted by 

PRC2 in embryonic stem cells (ESCs). PRC2 is a histone-modifying complex expressed in 

embryonic stem cells that plays an important role in maintaining ‘stemness’ 29 by repressing 

genes required for differentiation via the methylation of histone H3K27 38. Since many 

genes targeted by PRC2 in human ESCs become hypermethylated in CRC and other 

cancers 39,40, it is thought that PRC2 occupancy and/or histone methylation will increase the 

susceptibility of genes to aberrant hypermethylation 41,42. Widschwendter et al. 
hypothesized that cancer-associated promoter hypermethylation of PRC2 targets originates 

in stem cells during the earliest stages of carcinogenesis, and predisposes these cells to 

neoplastic transformation by “locking in” a stem cell phenotype 40. Our data support the 

timing of this hypothesis by demonstrating for the first time that hypermethylation of PRC2 

targets occurs as early as the ACF stage. While H3K27 methylation of PRC2 targets was 
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originally thought to be restricted to ESCs, Rada-Iglesias et al. 43 and Hahn et al. 44 showed 

that this modification is also found in normal adult colonic epithelial cells. Together, these 

observations suggest that DNA hypermethylation in ACF is directed by the Polycomb 

complex, or by its associated histone marks that are present in normal cells prior to early 

neoplastic initiation.

In addition, the present study has uncovered extensive promoter and gene body 

hypermethylation of homeobox genes in both cancers and ACF, many of which belong to the 

HOX family. The expression of homeobox genes, which is regulated to a large extent by 

epigenetic modifications 45,46, contributes to the maintenance of cellular identity and adult 

tissue morphology 47. Aberrant hypermethylation of homeobox-containing genes has been 

described in breast and lung cancers, and several HOX genes (HOXA7, HOXA9, and 

HOXB13) are reportedly hypermethylated in CRC 39,48,49. However, the large number of 

differentially methylated homeobox genes identified in our panel of primary Stage III–IV 

cancers (Figure 3) is an unexpected result. A subset of homeobox genes was also 

hypermethylated in ACF, suggesting that this epigenetic change is an early event in colonic 

neoplasia. CpG islands associated with homeobox genes are commonly hypermethylated in 

early stage ductal carcinomas (DCIS) and early-stage lung carcinomas 39,49, suggesting that 

this change is an early event in other tissues as well. Together, these results suggest that 

dysregulation of homeobox genes via hypermethylation occurs more extensively in CRC 

than previously thought, and that this epigenetic aberration is established in early neoplasia.

Finally, our results indicate that aberrant DNA methylation commonly occurs within non-

transcribed, intergenic regions in both ACF and CRCs. Upon further analysis, we have found 

that intergenic DMRs are enriched for transcription factor binding sites, especially those 

corresponding to members of the AP-1 transcription factor family. AP-1 is a nuclear 

transcription factor that controls many critical cellular functions, including proliferation, 

differentiation and apoptosis 50. AP-1 also plays an important role in oncogenesis; activating 

mutations in the KRAS gene are thought to promote tumor development by increasing AP-1 

activity, with concurrent up-regulation of proliferative and anti-apoptotic genes 51. Notably, 

all of the ACF and CRC samples examined in this study contained mutant KRAS. Recent 

evidence indicates that transcriptional activation by AP-1 is controlled, in part, by DNA 

methylation 52. As shown by Park et al., the DNA binding activity of AP-1 is significantly 

reduced when CpGs in close proximity to its DNA binding motif are methylated 52. A 

genome-wide methylation study of a single KRAS-mutant stage III colon adenocarcinoma 

by Berman et al. 53 suggested that epigenetic regulation of AP-1 is disrupted in cancer by 

demonstrating that genomic regions with cancer-specific hypomethylation are significantly 

enriched for AP-1 binding motifs. Our study has confirmed this observation in a larger panel 

consisting of 10 KRAS-mutant colon cancers, substantiating a role for hypomethylation of 

AP-1 sequences in CRC. Furthermore, our data extend this hypothesis by demonstrating that 

a small number of AP-1 sites are hypomethylated in ACF, suggesting that this epigenetic 

phenomenon begins early in the neoplastic process. However, the number of affected AP-1 

sites, and the average degree of hypomethylation at these sites, was significantly greater in 

cancer samples than in ACF. These observations suggest that the expansion of AP-1 site 

hypomethylation may promote neoplastic progression.
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In summary, the present study demonstrates that cancer-associated DNA methylation 

changes are more abundant in ACF than previously thought. These changes frequently affect 

genes involved in cellular identity and differentiation, suggesting that disrupted regulation of 

cell fate determination may contribute to the establishment of early colonic neoplasia. 

Methylation of these genes, including those targeted by PRC2 or containing homeobox 

sequences, may be useful targets for novel chemopreventive interventions. In addition, we 

identified significant hypomethylation associated with AP-1 transcription factor binding 

sites, suggesting a role for epigenetic dysregulation of AP-1 activity in the development of 

CRC. Furthermore, the present study identifies epigenetic changes specifically associated 

with advanced neoplasia, including a switch in the global methylation status of non-

promoter regions, which may serve as useful biomarkers for cancer risk. Finally, while 

aberrant promoter methylation was associated with altered gene expression in CRC, no such 

association was detected in ACF. Combined with the observation that the magnitude of 

change in methylation was greater, on average, in CRC than ACF, these findings suggest that 

DNA methylation changes are insufficient to alter gene expression at the ACF stage. Our 

results provide new insights into the role of DNA methylation in the development of early 

colonic neoplasia, and provide target candidates for the use of epigenetic profiling in CRC 

detection and prevention.

Materials and Methods

Subject selection and human tissue collection

All ACF subjects included in the present study were selected from a larger population of 

patients enrolled in an ongoing clinical study at John Dempsey Hospital (JDH, UConn 

Health). All patients who met the Amsterdam criteria for familial adenomatous polyposis 

(FAP) or hereditary non-polyposis CRC (HNPCC) were excluded from this overarching 

study. In order to control for the effects of age and smoking on DNA methylation, all 

subjects selected for the present study were non-smokers between the ages of 50 and 65. 10 

ACF were biopsied from the distal colons of individual subjects as previously described 54. 

Briefly, ACF were identified and biopsied during high-definition, magnifying 

chromoendoscopy using indigo carmine dye-spray 54. For each subject, a sample of normal-

appearing mucosa was also obtained from the distal colon. Biopsies were immediately 

embedded in OCT freezing medium (Neg 50, ThermoFisher Scientific, Waltham, 

Massachusetts, USA), flash-frozen, and stored at −80°C. Frozen tissues were sectioned onto 

polyethylene naphthalate (PEN, ThermoFisher Scientific) membrane slides using a Leica 

CM1900 Cryostat. Frozen sections were stained with hematoxylin and eosin (H&E) and 

routine histologic analyses were performed. All biopsies collected from ACF subjects were 

histologically confirmed by a board-certified human gastrointestinal pathologist blinded 

according to previously established criteria 54.

Twenty Stage III–IV CRCs resected from the distal colons of individual subjects were 

obtained from the City of Hope (COH) frozen tumor bank. In addition, 10 histologically-

confirmed matched normal samples, collected from the margins on either side of the 

resected tumor, were obtained. Tissue sections were stained with H&E and reviewed by a 

board-certified pathologist to confirm the presence and histopathology of the lesions. This 
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study was conducted with the written, informed consent of each subject, as well as 

Institutional Review Board approval from both the University of Connecticut Health and 

COH (IRB Protocols IE-10-068OSJ-3 and 97134, respectively).

Laser-capture microdissection

LCM of ACF and matched normal biopsies was performed as previously described 54. 

Briefly, an ArcturusXT Laser Capture Microdissection system (ThermoFisher Scientific) 

was used to isolate a minimum of 1 mm2 of tissue (~5000 cells) from 12 μm-thick frozen 

serial sections. LCM caps were stored at −80°C until nucleic acid extraction.

DNA methylation profiling and mutation screening

Genomic DNA was isolated from laser-captured colonic crypt epithelium using phenol/

chloroform extraction. All ACF samples collected as part of the overarching ACF study 

currently ongoing at JDH undergo routine screening for KRAS and BRAF mutations using 

Sanger sequencing. In addition, the 20 Stage III–IV CRC samples obtained from the COH 

Tumor Bank were screened for KRAS and BRAF mutations at the COH Integrative 

Genomics Core. KRAS/BRAF mutation screening was done using PCR to amplify target 

regions (KRAS Exon 2: 5′GGTCCTGCACCAGTAATATG and 

5′AACCTTATGTGTGACATGTTCTAA, BRAF V600E Region: 

5′AACTCTTCATAATGCTTGCTCTGA and 

5′CAGACAACTGTTCAAACTGATGGGACC) followed by Sanger sequencing. Ten ACF 

and 10 cancer samples, each with a mutation in KRAS Exon 2 (KRASG12D or KRASG12V) 

and no detectable BRAF mutation, were selected for further analysis by RRBS. RRBS was 

done as previously described 55. Briefly, purified DNA was digested by overnight incubation 

with MspI at 37°C. Following restriction digest, DNA fragments were subjected to end 

repair and A-tailing, followed by linker ligation. Bisulfite conversion was done using the EZ 

DNA Methylation-Gold Kit (Zymo Research, Irvine, California, USA) according to the 

manufacturer’s instructions. RRBS libraries were sequenced on the HiSeq 2500 (Illumina, 

San Diego, California, USA) using 100 bp paired-end sequencing according to the 

manufacturer’s protocol. Alignment of bisulfite sequencing reads and determination of the 

methylation state at each cytosine was done using Bismark (version 0.13.0) with default 

parameters. A minimum of 14 million reads/sample were aligned to human reference 

genome assembly hg19 and cytosines with fewer than 5 reads in any sample were removed 

from subsequent analyses. Per-sample sequencing depth metrics are listed in Supplemental 

Table S6. For RRBS analysis, genomic regions were defined as sequences containing a 

minimum of 2 CpGs separated by no more than 100 bp. Differentially methylated regions 

(DMRs) were defined as genomic regions exhibiting an average change in methylation 

≥15% compared to matched normal, with a false discovery rate (FDR)-adjusted p-value < 

0.05. Bootstrapping analysis was performed as a control for the identification of overlapping 

DMRs by generating 1 000 sets of 811 randomly selected DMRs, calculating the average 

number of overlapping DMRs in these sets and comparing the expected value to the 

observed number of overlapping DMRs. Changes in methylation status were validated in an 

independent set of samples using Combined Bisulfite Restriction Analysis (COBRA) 

according to standard protocol56.
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Transcriptome profiling

RNA was isolated from cancer samples using the mirVana miRNA Isolation Kit 

(ThermoFisher) and from laser-captured ACF samples using the Arcturus PicoPure Frozen 

RNA Isolation Kit (ThermoFisher) according to the manufacturers’ instructions. Sequencing 

libraries were prepared from RNA isolated from cancer samples using the TruSeq Stranded 

Total Library Preparation Kit and the RiboZero Gold rRNA Removal Kit (Illumina). For 

RNA extracted from ACF, depletion of rRNA was done using the RiboZero Magnetic Kit 

according to the “Protocol for Removal of rRNA from Small Amounts of Total RNA” 

(Clontech, Mountain View, California, USA). Subsequently, dscDNA library preparation and 

amplification were done using the SMARTer Stranded RNA-Seq Kit (Clontech) according to 

the manufacturer’s protocol. RNA sequencing for both sample types was done on the HiSeq 

2500 (Illumina) using 40-bp paired-end sequencing according to the manufacturer’s 

protocol. A minimum of 40 million paired-end reads per sample were aligned to the human 

reference genome assembly hg19.

Bioinformatics Analysis

Gene ontology (GO) analysis was conducted using the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) according to standard protocol 57. Briefly, 

GO analysis was done using the statistical overrepresentation test with Bonferroni correction 

for multiple testing. Gene set enrichment analysis (GSEA) was performed by calculating the 

overlap of gene sets of interest with annotated gene sets stored in the Molecular Signatures 

Database (MSigDB) version 5.1 (Broad Institute, Cambridge, Massachusetts, USA)21. 

Comparison of DMRs to H3K4me-marked enhancer regions was done using GEO dataset 

GSM621670. Hypergeometric Optimization of Motif EnRichment (HOMER) analysis 32 

was used to evaluate the enrichment of known transcription factor binding motifs located 

within differentially methylated regions of the genome. Bootstrapping analysis was 

performed as a control for HOMER by generating 1 000 sets of 297 randomly selected 

intergenic regions, calculating the expected percent enrichment for motifs of interest and 

comparing this value to the observed percent enrichment. RRBS and RNA-seq datasets have 

been deposited in the NCBI Gene Expresson Omnibus, and may be retrieved using accession 

number GSE95656.

Statistical Analysis

The set of genomic regions with frequently altered DNA methylation was subjected to 

complete linkage clustering using a Euclidean distance measure. Correlation between 

changes in promoter methylation and changes in gene expression were estimated by 

Pearson’s correlation analysis. Statistical analyses of differentially methylated regions 

(DMRs) and differentially expressed genes were performed using Student’s t-test followed 

by false discovery rate (FDR) correction using the Benjamini-Hochberg procedure. Principal 

component analysis (PCA) and biplot generation were done using the R programming 

language and software environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DNA methylation patterns in Stage III–IV CRCs and ACF
(A) Gross appearance of a human ACF during HD-chromoendoscopy (top) and H&E-

stained section of an ACF biopsy with serrated morphology (bottom). Serrated crypts, 

characterized by their star-shaped lumen in cross section, are indicated with black arrows. 

(B) Heat-map depicting differentially methylated regions (DMRs), defined as genomic 

regions with a change in methylation relative to matched normal >15% and a FDR-adjusted 

P-value<0.05, in CRCs. Tumor samples are generally segregated from their matched normal 

mucosa by unsupervised clustering. Of the 23,745 DMRs detected in cancer samples, 5,995 

(25%) were hypermethylated, while 17,750 (75%) were hypomethylated. (C) Heat-map 

depicting DMRs in ACF. ACF are segregated from normal mucosal samples by 

unsupervised clustering. 811 DMRs were identified, 537 (66%) of which were 

hypermethylated and 274 of which (34%) were hypomethylated.
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Figure 2. Direct comparison of DNA methylation changes in Stage III–IV CRCs and ACF
(A) Principal component analysis (PCA) bi-plot of DNA methylation changes demonstrates 

a clear separation of ACF (red) and tumor samples (black). CRCs are less tightly clustered 

than ACF, indicating a greater variability of DNA methylation. (B) Heat-map depicting 

overlapping DMRs detected in both CRCs and ACF. Of 608 shared DMRs, 66% were 

hypermethylated and 32% were hypomethylated; a small subset of DMRs (2%) were 

hypermethylated in ACF, but hypomethylated in cancers. The magnitude of these 

overlapping methylation changes was typically greater in CRCs than in ACF.
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Figure 3. Functional enrichment analysis of overlapping DMRs
(A) 592 DMRs exhibited a methylation change in the same direction in both stage III–IV 

cancers and ACF; these DMRs are referred to as “overlapping” DMRs. (B) Gene ontology 

(GO) analysis for overlapping DMRs. These DMRs were significantly enriched (FDR-

adjusted P-value <0.05) for homeobox genes, as well as genes involved in the regulation of 

transcription and cell fate commitment. (C) Representative homeobox genes that show 

increased methylation in both CRCs and ACF. All of the genes identified in this panel 

exhibit significantly increased methylation in both CRCs and ACF compared to matched 

normal tissues. Error bars represent means +/− SEM.
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Figure 4. Volcano plots depicting DMRs in colon cancers and ACF grouped by genomic region
DMRs identified in CRCs and ACF were segregated according to their genomic location, 

and the methylation changes in gene bodies, intergenic and promoter regions were 

examined; DMRs are depicted as blue dots. (A) DMRs located within gene bodies. In cancer 

tissue, 12,258 DMRs (74%) were hypomethylated and 6,591 (26%) were hypermethylated. 

In contrast, in ACF, 136 gene body DMRs (39%) were hypomethylated and 213 (61%) were 

hypermethylated. (B) Intergenic DMRs in colon cancers and ACF. In cancers, 10,401 (85%) 

intergenic DMRs were hypomethylated while only 1,769 (15%) were hypermethylated. Of 

the 297 intergenic DMRs identified in ACF, 129 (43%) were hypomethylated, while 168 

(57%) were hypermethylated. (C) Promoter-associated DMRs in colon cancers and ACF. In 

cancers, 758 DMRs (28%) were hypomethylated while 1,968 (72%) were hypermethylated. 

The same pattern was observed in promoter DMRs identified in ACF; only 9 promoter 

DMRs (5%) were hypomethylated, while 156 (95%) were hypermethylated.

Hanley et al. Page 18

Oncogene. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Enrichment of AP-1 binding motifs in intergenic DMRs
Intergenic DMRs from cancers and ACF were subjected to Hypergeometric Optimization of 

Motif EnRichment (HOMER) analysis to determine whether they were enriched for known 

regulatory elements. (A) 103 motifs were enriched in intergenic DMRs in cancers, including 

6 motifs which were also enriched in intergenic DMRs in ACF. (B) Motifs enriched in ACF 

intergenic regions. Five of the 6 motifs enriched in ACF intergenic DMRs corresponded to 

the binding sequences of AP-1 transcription factor family members, indicated with an 

asterisk. (C) Change in methylation of DMRs enriched for AP-1 binding motifs in ACF and 

cancer. In both sample sets, the DMRs containing AP-1 binding motifs were significantly 

hypomethylated compared to their respective matched normal samples. This pattern was 

especially pronounced in CRCs, where 95% of AP-1 enriched DMRs were hypomethylated. 

Furthermore, a greater number of AP-1 sites were affected in CRCs than in ACF. (D) 

Average change in percent methylation of DMRs enriched for AP-1 family motifs. 

Intergenic DMRs containing AP-1 binding motifs exhibited a ~15% reduction in 

methylation in ACF and a ~25% reduction in cancer. Bars represent average change in 

methylation of all DMRs containing the indicated motif. Error bars represent means +/− 

SEM.
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Figure 6. Promoter methylation is correlated with gene expression in CRCs but not ACF
(A) Scatter-plot depicting the correlation between changes in promoter methylation and gene 

expression in CRCs (Pearson’s correlation coefficient = −0.55), indicating increased 

promoter methylation associated with gene silencing. (B) Scatter-plot depicting the lack of 

correlation between changes in promoter methylation and gene expression in ACF 

(Pearson’s correlation coefficient = −0.07). (C) Selected genes with promoter DMRs 

identified in both CRCs and ACF. GSG1L, DPP6, NEFL, GRIN2A, SORCS1, NPTX1, 

SFRP1, ST8SIA5, ADCYAP1R1, SNAP25, and GABRB3 were significantly down-

regulated in cancer samples (at least 3-fold reduction in expression), but not significantly 

altered in ACF. (D) These same genes exhibit promoter hypermethylation in both stages of 

neoplasia, but the extend of hypermethylation is greater in CRC. Bars represent the average 

percentage change in methylation of promoter DMRs for indicated genes. Error bars 

represent 95% confidence interval and SEM in (C) and (D), respectively.
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