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The use of gene expression-based classifiers has resulted in a number of promising potential signatures of patient diagnosis,
prognosis, and response to therapy. However, these approaches have also created difficulties in trying to use gene expression
alone to predict a complex trait. A practical approach to this problem is to integrate existing biological knowledge with gene
expression to build a composite predictor. We studied the problem of predicting radiation sensitivity within human cancer cell
lines from gene expression. First, we present evidence for the need to integrate known biological conditions (tissue of origin, RAS,
and p53 mutational status) into a gene expression prediction problem involving radiation sensitivity. Next, we demonstrate using
linear regression, a technique for incorporating this knowledge. The resulting correlations between gene expression and radiation
sensitivity improved through the use of this technique (best-fit adjusted 𝑅2 increased from 0.3 to 0.84). Overfitting of data was
examined through the use of simulation. The results reinforce the concept that radiation sensitivity is not driven solely by gene
expression, but rather by a combination of distinct parameters. We show that accounting for biological heterogeneity significantly
improves the ability of the model to identify genes that are associated with radiosensitivity.

1. Introduction

One of the goals of developing biomarkers is for use in patient
selection, diagnosis, andmanagement of cancer treatment [1–
3]. An important aspect in management of cancer treatment
is to understand how a patient will respond to a specific
treatment such as radiation therapy. Designing the radiation
therapy to maximize cancer cell death is beneficial, and
predicting such a response of the cells to radiation therapy
is important for effective patient management. Genes such
as RAS [4, 5] and p53 [6] have been known to influence
the response of tumor cells to radiation treatment. For
example, RAS has been implicated as a central regulator of
radioresistance. Similarly, presence of a mutant p53 gene
is used as an indicator for uncontrolled proliferation of
cells, while a wild-type p53 gene is known to be a tumor
suppressor. In addition tissue of origin has been associated
with radiosensitivity. For example, the SF2 (survival fraction
of cells after 2Gy of radiation) of melanoma and glioma

cell lines has been shown to be higher (radioresistant) than
lymphoma and myeloma cell lines [7–9].

The process of developing the systems-based model of
radiosensitivity followed a stepwise strategy. The first step
was to develop a radiosensitivity classifier to predict cellu-
lar radiosensitivity based on gene expression profiles [10].
We developed a multivariable linear regression model that
correlated gene expression to radiosensitivity as determined
by SF2, in a 35-cell line database. We used a leave-one-out
cross-validation approach, where the classifier was developed
using 34 of the 35 cell lines as a training set, leaving one
cell line as a test set. The basal gene expression profiles and
the radiation sensitivity of all 34 cell lines in the training
set were used to identify genes that were correlated with
radiosensitivity.Thiswas performedusing SAManalysis (Sig-
nificant Analysis of Microarrays) [11] with a false discovery
rate of 5%. Genes selected by SAM were then combined
as radiosensitivity predictors during the construction of the
classifier. Amultivariable linear regressionmodel was created
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using these probesets to predict the SF2 of the test sample and
was shown to achieve a statistically significant (𝑝 = 0.002)
predictive accuracy of 62%, within a continuous classification
problem. The classifier predicts an actual SF2 value (range:
0.01–1.0) rather than a binary phenotype (radiosensitive
versus radioresistant). Importantly, we biologically validated
the model by demonstrating that three of the genes selected
by the algorithm (rbap48, rgs-19, and top-1) were mechanisti-
cally involved in radiation response. Thus, we demonstrated
that cellular radiosensitivity is predictable based on gene
expression but more importantly we validated this approach
as a strategy for the discovery of novel radiosensitivity
biomarkers.

Although we had developed a successful mathematical
model correlating gene expression and radiosensitivity, we
reasoned the model had a number of problems that if
overcome would significantly improve its ability to impact
the field of radiation biology. First, expansion of the cell line
dataset from 35 samples should provide more reliable cor-
relations. Second, there were few genes consistently selected
by the classifier. A larger pool of genes would be desirable,
as it would allow us to identify the biological networks
that regulate cellular radiosensitivity. Third, gene expression
was the only variable considered in the model, while there
are several biologic factors besides gene expression that are
known to influence radiosensitivity.Therefore we focused on
strategies aimed at increasing the pool of candidate genes and
incorporating biologic variables into the algorithm. One of
the advantages of developing the classifier in the NCI-60 is
that these cell lines are molecularly well characterized, thus
allowing the inclusion of important biological variables into
the process.We chose four variables that have been previously
correlated to radiation sensitivity: gene expression [10], tissue
type [8, 12], RAS mutation status [13–18], and p53 mutation
status [19–21]. In addition we expanded the cell line dataset
from 35 to 48 cell lines.

2. Material and Methods

2.1. Microarrays. Gene expression profiles were from Affym-
etrix HU6800 chips (7,129 genes) from a previously published
study [22]. These are publicly available as supplemental data
to the published study. The gene expression data had been
previously preprocessed using the Affymetrix MAS 5.0 algo-
rithm in average difference units. Negative expression values
were set to zero and the chips were normalized to the same
mean intensity. Specific cell lines used are listed in Supple-
mental Table 1 in Supplementary Material available online at
https://doi.org/10.1155/2017/6576840.

2.2. Radiation Survival Assays (SF2). The SF2 of cell lines
used inmodel development were previously reported [10, 23].
SF2 values are included in Supplemental Table 1.

2.3. Permutation Analysis. Predictions were randomly per-
mutated among cell lines 10,000 times and accuracies greater
than or equal to the threshold were counted to calculate a 𝑝
value for significance relative to chance.

2.4. Gene Expression Model. Gene expression and radiation
sensitivity were described through a linear relationship as
described in (1). In this equation, SF2

𝑛
represents the radi-

ation sensitivity (as measured by SF2) for cell line 𝑛 in the
dataset. 𝑘

𝑖
represents a model coefficient, computed during

the training process, and 𝑦
𝑛𝑖
represents the gene expression

value for the 𝑖th probeset for cell line 𝑛. The least-squares fit
of the individual linear models was compared when selecting
probesets of interest for modeling radiosensitivity.

Gene Expression-Only Model

SF2
𝑛
= 𝑘
0
+ 𝑘
1
(𝑦
𝑛𝑖
) . (1)

2.5. Inclusion of Biological Covariates in Model Development.
We hypothesized that incorporating biological covariates
into the gene selection process would improve the ability
of the algorithm to identify radiosensitivity biomarkers.
To integrate biological covariates into model development
we constructed individual gene-based models using two
different equations to relate gene expression and the biolog-
ical parameters to radiosensitivity (SF2). Specific biological
parameters are tissue of origin (TO), RAS mutation status
(RAS), and p53 mutation status (p53).

Additive Model
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Interactive Model
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In (2) and (3), the cell line radiosensitivity (SF2
𝑛
) was

modeled as a function of gene expression (𝑦) and biological
variables (TO, RAS, and p53). Specifically, SF2

𝑛
represents

the radiosensitivity of cell line 𝑛 and 𝑦
𝑛𝑖
represents the gene

expression value of an individual probeset (i) for the 𝑛th cell
line in the dataset. A total of 9 different TO values were
present in the 48 cell line database. RAS

𝑛
and p53

𝑛
were

binary variables (wild-type/mutated) for the 𝑛th cell line.
Thus, the additive model considered a total of 13 terms (an
intercept, gene expression, 9 TO, RAS, and p53). The more
complex interactive model initially considered all possible
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Table 1: Terms used in linear modeling. The term (𝑦) represents
gene expression. The operator × represents an interaction term
between two or more variables.

Terms Terms
Intercept 𝑦 × tissueTypeBREAST
𝑦 (gene expression) 𝑦 × tissueTypeCNS
tissueTypeBREAST 𝑦 × tissueTypeCOLON
tissueTypeCNS 𝑦 × tissueTypeLEUK
tissueTypeCOLON 𝑦 × tissueTypeMELAN
tissueTypeLEUK 𝑦 × tissueTypeNSCLC
tissueTypeMELAN 𝑦 × tissueTypeOVAR
tissueTypeNSCLC 𝑦 × tissueTypePROSTATE
tissueTypeOVAR 𝑦 × RASmut
tissueTypePROSTATE 𝑦 × p53mut
RASmut tissueTypeBREAST × RASmut
p53mut tissueTypeCOLON × RASmut

tissueTypeMELAN × RASmut
tissueTypeNSCLC × RASmut
tissueTypeOVAR × RASmut
𝑦 × tissueTypeBREAST × RASmut
𝑦 × tissueTypeCOLON × RASmut

terms and 2-, 3-, and 4-way interactions among these terms.
Without accounting for linearly dependent terms, there are
180 terms total, far more than the number of observations
(48). These include an intercept, 14 terms involving a single
variable (gene expression, 9 TO, 2 p53, and 2 RAS), 53 paired
terms, 76 triples, and 36 terms with four variables interacting.

While the equations represent models with very large
number of variables, the number of nonsingular terms was
far less due to the small sample size. Additionally, linearly
dependent variables (typically interactions with no examples
present) are dropped from the model. Interactions of larger
numbers of variables were dropped in favor of fewer in the
case of linearly dependent variables. Thus there are only 29
terms in the linear model (an intercept, gene expression,
9 TO, p53, RAS, 15 two-way interactions, and 2 three-way
interactions) (Table 1). A gene-based linear model was con-
structed for each gene (7168 probesets), correlating expres-
sion and biological parameters with the measured SF2 using
a least-squares fit. We compared the sum squared error of the
gene expression-based linear models to the null model, con-
sisting of biological parameters and no expression (SSE = 1.2).

2.6. Random Variables. Random variables for exploring the
effect of RAS and p53 mutation status were created and
uniformly distributed into two states (one each for the
mutated and wild-type status).The frequencies of these states
were similar to the true distributions in the data. Similarly,
a random variable was defined for TO, with each sample
being assigned a tissue type at random.This new dataset with
randomly assigned biological parameters was used to test
whether the improvement in linear fit achieved by both the
additive and interactive model was due to the integration of
biological variables or due to chance.

3. Results

3.1. Expansion of Cell Line Dataset Lowers Classification
Accuracy. As described above we previously developed a
gene expression radiosensitivity classifier [10] as a continuous
prediction rather than a binary classification problem (i.e.,
radiosensitive versus radioresistant). During development of
the model we had observed that increasing the number of
samples increased the classifier accuracy (data not shown).
Thus we hypothesized that increasing the cell line dataset
to 48 cell lines would result in a more accurate model.
Surprisingly, the classifier techniquewas not as accuratewhen
the cell line population was increased to 48 (compared to
35) cell lines. The best linear regression-based classifier using
the 48 cell lines correctly classified 26/48 samples (54%)
(Figure 1(a)) compared to 25/35 (71%) for the best classifier
in the 35-cell line dataset. We explored the use of alternate
normalization (Figure 1(b)); however themaximumaccuracy
was 28/48 or 58%. Additionally, we looked at alternate
predictors (Figure 1(c)) but the decreased accuracy in the 48-
cell line dataset was consistent. Although the results were
still statistically significant in that the classifier in the 48 cell
line dataset performed better than chance (𝑝 = 0.0094), we
were interested in understanding the reason for the decreased
accuracy.

3.2. Understanding the Influence of Confounding Factors. The
decrease in classification accuracy suggested that the linear
regression model based only on gene expression data did not
fully represent the classification problem. We hypothesized
that accounting for the biological diversity of cell lines in
the database would be of importance. Several biological
variables available for the NCI-60 cell lines include tissue of
origin (TO), RASmutational status (wt/mut) (RAS), and p53
mutational status (p53).These variables have been implicated
in the biological regulation of radiation sensitivity [13, 24].
Among the 48 cell lines, the RAS-mutated cell lines represent
only 31% (15/48) of cell lines whereas they represented
40% (14/35) in the 35-cell line database (Figure 2(a)). The
p53 mutation status was also different between the two
groups; 26 cell lines were p53 mutants in the 35 cell lines;
however only 5 additional mutants were added, changing the
proportions from 74%down to 65%of the cell line population
(Figure 2(b)). Tissue of origin was similar in proportions in
the two groups (Figure 2(c)). Since only one additional RAS-
mutated cell line was added when increasing the dataset to
48 we first focused on determining if RAS mutation status
impacted the gene selection process.

The oncogenic protein RAS has been proposed tomediate
a central mechanism in radiation resistance [16]. We tested
whether the presence of a RAS mutation, which usually
affords a chronically active RAS protein, was an important
source of variability within the dataset. This was done by
determining whether the genes selected by the 35 cell line
classifier were dependent or independent of RAS status. We
stratified the original 35 cell lines by RAS status and per-
formed the gene selection step (correlation of gene expression
and SF2) in each group of cell lines. The three genes (rbap48,
rgs-19, and r5pia) selected by the original classifier (without
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Radiation sensitivity prediction versus number of features
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Figure 1: Investigation of building predictors for radiation sensitivity in 48 cell lines. (a) Classification accuracy of radiation sensitivity
predictor built from 48 cell lines, using different numbers of features in the regression model. (b) Classification accuracy of radiation
sensitivity predictor built from 48 cell lines, using different types of normalization. MAS5.0 and MAS4.0 algorithms generated the most
accurate predictors. (c) Classification accuracy of radiation sensitivity predictor built from 48 cell lines, using different types of classification
algorithms, including linear regression, least median, and SMO.

Table 2: Ranking of previously validated radiosensitivity genes when considering all cell lines (𝑛 = 35), RAS-mutated cell lines only (𝑛 = 14),
and RAS wt cell lines only (𝑛 = 21). Significant differences in ranking occur when considering the biological variable of RASmutation status.

Gene Overall ranking RAS-mutated cell line RAS wt cell lines
rbap48 5 19 743
rgs-19 1 46 758
r5pia 9 262 397

RAS stratification) were previously shown to be highly useful
in predicting radiosensitivity.These genes were highly ranked
among the RAS-mutated cell lines but not in the wild-type
lines, suggesting that the RAS-mutated cell lines were driving
the classification process. RbAp48, rgs-19, and r5pia were
ranked 19th, 46th, and 262nd out of 7,129 probesets by 𝑅2
values from the RAS-mutated cell lines. In wild-type cell
lines, these same genes are ranked 743rd, 758th, and 397th,

respectively. Interestingly, these three genes ranked in the top
10 genes when all cell lines were considered together (5th, 1st,
and 9th) (Table 2). These results suggest that the biological
diversity of cell lines studies (e.g., RAS-mutated and RAS wt)
can significantly impact the evaluation of genes with respect
to outcomes. In particular, two diverse biological typesmixed
in different proportions can lead to highly variable ranking as
demonstrated by our 35-cell line experiment.
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Figure 2: Biological characteristics differ when considering 35 cell lines versus an expanded set of 48 cell lines. (a) The proportion of RAS
wild-type cell lines increased (60% to 69%). (b) The proportion of p53 wild-type cell lines increased (26% to 35%). (c) Tissue of origin of
cell lines did not change significantly. (d) Venn diagram showing the lack of concordance in correlation when using a test for correlation
(𝑝 < 0.05) using only RAS mutant or RAS wt cell lines in the 35-cell line set. Only 16 probesets were found correlated in both sets.

3.3. Integrating Biological Covariates. As a result of the
analysis of confounding factors, three variables (TO, RAS,
and p53)were integrated in the gene expression analysis using
two approaches: an additive model and an interaction-based
linear model. The gene selection process was repeated using
these approaches on the 48 cell lines. RAS and p53 status
indicators were binary variables that indicate wild-type (wt)
or mutational (mut) status of the gene for a cell line. The
indicator for tissue of origin (TO) has 9 levels, one for each
type of tissue from which the tumor cell line originated [22].
The analysis was performed for each probeset and the model
fit parameter adjusted-𝑅2 (Adj-𝑅2) was used to determine
if the model improved by inclusion of the covariates. The
adjusted-𝑅2 was used instead of 𝑅2 in these experiments to
adjust for addition of regressors in the equations.

Figure 3 shows a box plot summarizing the Adj-𝑅2 values
from all probeset models individually when correlated with
radiation response (SF2) in the 48-cell line database. In the
gene expression-only model, fewer probesets had a model fit
better than 0.2 (<30 of the 7129 probesets), with the best fit
being just above 0.3. The average fit for the additive model
was 0.28 with a maximum fit of 0.48. With the interactive
model, the average fit improved to 0.6 with a maximum value
of 0.84.Thus the integration of biological variables, including
all interactions, improved the modeling fit considerably.

3.4. Verification of Model Fit. The improvement in Adj-𝑅2
of a linear model could be attributed simply to the addition
of more variables in the model (e.g., overfitting) [25]. We
compared the fit of the expanded linear models to the fit
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Table 3: Change in Adj-𝑅2 value obtained by adding terms and complexity to the linear model. Results obtained with clinical indicators TO,
RAS, and p53 are compared to Adj-𝑅2 values obtained using random variable for each indicator.

Model terms Model comparison Mean Δ𝑅2 value
Clinical indicators Random variables

GeneEx : TO GenEx only versus additive 0.254 0.256

Additive versus interaction 0.134 0.146

GeneEx : RAS GenEx only versus additive 0.060 0.004

Additive versus interaction 0.030 0.031

GeneEx : p53 GenEx only versus additive 0.026 0.0007

Additive versus interaction 0.016 0.031

GeneEx : TO : RAS Basic versus additive 0.256 0.257

Additive versus interaction 0.272 −0.213

GeneEx : TO : p53 Basic versus additive 0.262 0.257

Additive versus interaction 0.198 −0.211

GeneEx : RAS : p53 Basic versus additive 0.062 0.022

Additive versus interaction 0.042 0.024

GeneEx : TO : RAS : p53 Basic versus additive 0.265 0.258

Additive versus interaction 0.317 −0.103
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models

Ad
ju

ste
d
R
2

values for linear models with biological variables
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Figure 3: Adj-𝑅2 values for linear equations fitting SF2 on 48 cell
lines. Adj-𝑅2 values increase systematically as more covariates are
included in the linear model.

obtained using variables with randomly generated values.
Random variables that do not have any meaningful infor-
mation and are uncorrelated to the outcome are expected to
produce models with lower Adj-𝑅2 values.

Table 3 shows the change in the model fit (Δ𝑅2) when
terms are added to a linear model. Both the change in fit
from biological indicators and randomly generated variables
are recorded. For each biological covariate (RAS, p53, and
TO), inclusion of the variable in an additive model does
not improve the model fit more than including randomly

generated variables. The inclusion of TO in the additive
model provides nomore information thanwould be expected
by chance (average change in 𝑅2: TO 0.254, random 0.256).
Even with the addition of multiple terms, the additive model
improves no better than by chance. When gene expression,
TO, and RAS are combined in the additive model, the
correlation of the model improves by 0.256. However, the
same improvement is observed when the random variable is
added (Δ𝑅2 = 0.257).

The difference between including biological variables and
random variables in the interaction-based models is more
significant. For example, the change in 𝑅2 for the additive
model using RAS, TO, and gene expression was similar to
that of random variables; however in the interaction model,
the correlation improves by 0.272 whereas the interaction of
random variables (for TO and RAS) drops by 0.213 (Δ𝑅2 =
−0.213). When including all three terms in the interaction
models, the Adj-𝑅2 improves by 0.317 but the random
variables cause a drop in correlation (Δ𝑅2 = −0.103).

Figure 4 summarizes the trend that when two or more
biological variables are considered, this results in better linear
models than expected from randomly generated variables.
The interaction of random variables with gene expression
data alone provides a marginal improvement in the fit;
however, when two or more random variables interact, the
lack of information in each variable translates into poorer
fit of the linear model to the radiation sensitivity outcome.
In contrast, the interaction of the biological variables adds
more information to the linear model, as shown by the
improvement in Adj-𝑅2 values in Table 3 and Figure 4.

4. Discussion

The central aim of our research efforts is the development
of a systems biology-based understanding of the biological
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Figure 4: Change in Adj-𝑅2 values obtained by incorporating
interaction terms in linear model for either biological indicators
or random variables. Linear models were created for each gene,
incorporating the three biological indicators. Differences in Adj-
𝑅2 values were computed for each experiment between using
an additive model and an interaction-based model. The mean
difference in 𝑅2 was recorded when adding interactions terms to the
individual linear models.

networks that regulate radiosensitivity. In systems biology,
central biological processes are proposed to be organized as
complex and redundant networks with complex interactions
within and across different biological scales (molecular,
network/pathway, cellular, tissue, and organism) [26, 27].
A central requirement in systems biology modeling is the
development of mathematical approaches to relate biological
scales. In a previous study we established a linear regression
algorithm as a valid biological approach to relate gene expres-
sion and radiosensitivity within a 35-cell line dataset [10].
However, a problem with this initial modeling approach was
that gene expression by itself resulted in the identification of
very few genes out of the 7,168 probesets evaluated.Therefore
a better approach to gene selection was required in order to
model the networks that regulate radiosensitivity.

In this study we show that accounting for biological
confounders within a linear regression model of radiosen-
sitivity significantly improves the ability of the algorithm to
fit gene expression and radiosensitivity, which resulted in a
better ability to identify significant genes. We showed that
simply adding the biological variables did not improve the
fit more than what was expected from chance but when
a more complex interaction-based model was utilized, its
performance was superior to chance.

Althoughunexpected, the previously developed predictor
of radiation sensitivity performed much worse when the
cell line set was expanded to 48 cell lines. The underlying
cause of this difference was determined to be from shifting
proportions of cell lines with key biological characteristics
that have been previously implicated inmodulating radiation
response. Specifically, we show that RAS-mutated cell lines
had a large impact in gene selection in the 35-cell line dataset.
Three of the top genes selected by the 35-cell line classifier

were highly ranked by RAS-mutated cell lines but not by
RAS wt cell lines. However when the model was expanded
to 48 cell lines, the impact of these cell lines was diluted
with the addition of predominantly RAS wt cell lines. Once
these factors were accounted for within themodeling process,
genes were identified as related to radiation sensitivity most
significantly through interactions with these biological char-
acteristics. This work led to the development of a systems-
based predictive model of tumor intrinsic radiosensitivity
that was validated in three independent clinical cohorts
of patients treated with chemoradiotherapy [28]. However,
a key insight into this process was the identification and
incorporation of confounders.

The strategy presented here may have applications in the
development of clinical predictive/prognostic models. For
example, we have already shown that this process led to
development of a predictive model of intrinsic radiosensitiv-
ity that has been clinically validated [23, 28–35]. However,
clinical cohorts very often present similar diversity as that
represented in the cell line database utilized and identifying
key biological covariates and a mathematical approach to
account for them might significantly enhance our ability to
develop predictive models with clinical utility.

The inclusion of biological variables significantly impro-
ved the ability of most genes to describe the relationship
between gene expression and radiation response in a lin-
ear regression model. However, the inclusion of additional
parameters and their interactions within the same equation
almost certainly leads at least in some instances to overfitting.
It is important to note that the selection process of genes for
further validation (e.g., by choosing the best-fit genes) does
not require overfitting to be completely removed. Rather, it
is expected that overfitting will uniformly increase the fit
of genes with radiation sensitivity. In addition, the behavior
of the random variables in the interaction models clearly
indicates that the biological variables do provide meaningful
information, and rather than causing overfitting of the model
to the data, the biological variables can be used to create a
better model for gene selection.

Finally, an improvement in linear fit should be similarly
obtainedwhen adding a randomly generated variable into the
model instead of a variable that carries biological significance.
However, it is intriguing that not all variables considered had
similar impact in improving the model, as might be expected
due to chance. For example RAS was significantly more
important than p53 in improving themodel.This observation
suggests that at least part of the improvement obtained by the
expanded linear models is due to a better representation of
biology.

5. Conclusion

In conclusion, we demonstrate that incorporating biological
covariates into a gene expression model of tumor intrinsic
radiosensitivity can improve the modeling process. Account-
ing for biological heterogeneity can identify genes that are
associated with radiosensitivity, which in turn led to the
development of a successful model of clinical response to
radiotherapy [23, 28–35].
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