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Abstract: Learning the underlying details of a gene network with feedback is critical in designing
new synthetic circuits. Yet, quantitative characterization of these circuits remains limited. This is due
to the fact that experiments can only measure partial information from which the details of the circuit
must be inferred. One potentially useful avenue is to harness hidden information from single-cell
stochastic gene expression time trajectories measured for long periods of time—recorded at frequent
intervals—over multiple cells. This raises the feasibility vs. accuracy dilemma while deciding
between different models of mining these stochastic trajectories. We demonstrate that inference
based on the Maximum Caliber (MaxCal) principle is the method of choice by critically evaluating
its computational efficiency and accuracy against two other typical modeling approaches: (i) a
detailed model (DM) with explicit consideration of multiple molecules including protein-promoter
interaction, and (ii) a coarse-grain model (CGM) using Hill type functions to model feedback. MaxCal
provides a reasonably accurate model while being significantly more computationally efficient than
DM and CGM. Furthermore, MaxCal requires minimal assumptions since it is a top-down approach
and allows systematic model improvement by including constraints of higher order, in contrast
to traditional bottom-up approaches that require more parameters or ad hoc assumptions. Thus,
based on efficiency, accuracy, and ability to build minimal models, we propose MaxCal as a superior
alternative to traditional approaches (DM, CGM) when inferring underlying details of gene circuits
with feedback from limited data.

Keywords: gene network; inference; Maximum Caliber

1. Introduction

A common goal in synthetic biology of single cells is to design and introduce small cir-
cuits to optimize certain behaviors [1–10]. However, this requires quantitative knowledge
about the details of these circuits and their subsequent optimization. Circuit character-
istics are often studied by single-cell measurements using fluorescent markers on few
proteins [11]. These traditional measurements—with the exception of a few emerging
technologies that simultaneously monitor transcription and translation [12,13]—cannot
visualize many other underlying species that are involved in dictating gene expression
dynamics. For example, nucleic acids, protein-complexes, protein-nucleic acid complexes
remain invisible. So, how do we extract information from such limited data? One pos-
sible solution is to track the stochastic gene expression trajectories of the fluorescently
tagged proteins and use the noisy time series data to learn about the underlying invis-
ible network [14–19]. This data mining scheme requires building stochastic models that
are typically bottom-up and can be divided in two major categories. The first approach
builds detailed models (DM) based on a pre-specified reaction network that include tagged
proteins and other molecules such as promoter, protein-promoter complexes, etc. [20,21].
These detailed reaction schemes are usually simulated using Gillespie algorithm [22,23] to
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generate noisy trajectories and analyze circuit properties. However, the same DMs can be
used for inference as well. The detailed reactions—written as chemical master Equation
(CME) [24] and solved using Finite State Projection method [25,26]—can yield probabilities
of numbers of molecules as a function of rate parameters. Consequently, parameter infer-
ences can be done by trying to match the measured noisy trajectory. The second approach
builds coarse-grain models (CGM) using a smaller set of reactions where effective reaction
rates are implemented by assuming an ad hoc mechanism that accounts for invisible species.
CGMs can be made arbitrarily complex with additional fit parameters but we consider only
the minimal CGMs due to their computational efficiency and an alternate to DM. Although
CGMs are typically used to describe average protein numbers [27,28], CMEs can be con-
structed for CGMs [29–32] and solved via FSP to describe probability distributions. Both
models (CGM and DM) have merits and demerits over each other. DM’s are by definition
more detailed and are expected to be accurate but require invoking multiple molecular
species that are not always visible. Consequently, DM’s involve multiple parameters and
a much bigger phase space. Thus, accuracy comes at the expense of computational cost.
Minimal CGM’s on the other hand minimize computational burden by using effective rates
based on pre-specified mechanisms. As a result, these models can be less accurate but
efficient. The accuracy vs. efficiency dilemma raises two critical questions: how costly is a
DM and how inaccurate is a CGM? Are CGM’s accurate enough or do we need to build a
third class of models that are still feasible and yet more accurate than CGM?

We have recently introduced the principle of Maximum Caliber (MaxCal) to model and
infer underlying details of gene networks using stochastic gene expression data [32–36].
The adoption of MaxCal-based inference for small gene networks provides a third ap-
proach that resolves the accuracy vs. efficiency dilemma. Maximum Caliber (MaxCal) is
analogous to the Maximum Entropy (MaxEnt) principle but applied to the distribution
of paths/trajectories instead of states [37,38]. Similar to MaxEnt, MaxCal maximizes path
entropy (caliber) subject to constraints. In the application to gene networks, MaxCal starts
with a minimal set of constraints on proteins whose numbers are followed by fluorescent
tags. This makes MaxCal directly amenable to model measured time series data of gene ex-
pression while not invoking additional mechanisms or auxiliary species [32]. Consequently,
MaxCal avoids ad hoc assumptions on mechanisms inherent in CGM while bypassing the
challenge of increased phase space inherent in DM. In addition, the top-down nature of
MaxCal allows systematic model building via the imposition of constraints of a higher or-
der on top of the minimal constraints it starts with—allowing the user to improve accuracy
as needed. This is in contrast to bottom-up approaches of DM and CGM, which work on
the premise that a given model must be pre-specified based on pre-imposed assumptions.
Since each mechanism/model can be very different from each other, it is difficult to sys-
tematically add higher order terms in a given model to increase model complexity. Instead,
a new model must be generated every time and the process of testing must start all over.

In this work we show how MaxCal provides a model that is minimal and more
accurate than CGM while also being as efficient (or more) as CGM. We establish this with
two basic genetic circuits: Single Gene Auto-activation (SGAA) [34] and Toggle Switch (TS)
where two genes mutually repress each other [1,21,33]. We first generate synthetic data
to be used as input by simulating the respective reaction networks with details of protein
and nucleic acid dynamics. We subject three different models (DM, CGM and MaxCal) to
infer parameters from this synthetic data for which actual model parameters are known.
This serves as the benchmark for accuracy between the three models of DM, CGM, and
MaxCal. By noting the computation time needed, we can assess accuracy and efficiency of
all three models. The quantitive comparison shows that for small circuits used by synthetic
biologists, MaxCal is efficient and reasonably accurate.

2. Materials and Methods

In this section, we describe the methods involved in generating synthetic data of
stochastic gene expression using known parameters that serve as a benchmark to test the
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accuracy of different models. We also describe different methods of analysis to infer model
parameters from this stochastic data.

2.1. Single Gene Auto-Activation (SGAA) Circuit

We first demonstrate MaxCal’s performance on a single gene auto activation circuit
(SGAA). This circuit consists of a single protein that enhances its own production and has
been studied extensively in different biological contexts [30,31,39–44].

2.1.1. Generating Synthetic Data

We first describe the model introduced by Elston et al. [20] to generate synthetic data
mimicking experiment.

α
g−→ α + a ; a d−→ �

a
p−→ a + A ; A r−→ �

A + A
fd−→←−
bd

A2

α + A2

fp−→←−
bp

α∗ ; α∗
g∗−→ α∗ + a

(1)

where a is mRNA transcribed from gene α with rate g, and gets degraded with rate d.
Protein A is translated from a with basal rate p and degraded with rate r. Two A molecules
complex to form a dimer A2 with rate fd, and dissociate back to monomers with rate bd.
The dimer A2 can bind and unbind to the promoter with rate fp and bp, respectively. In
the bound form, the promoter gets converted to the activated state α∗ producing mRNA
at an enhanced rate g∗ much greater than g. Thus, A promotes self-activation. Synthetic
input trajectories were generated using a Gillespie algorithm to simulate Equation (1)
with d = 0.2 s−1, p = 0.02 s−1, fd = 5.0× 10−3 s−1, bd = 50.0 s−1, fp = 6.0× 10−3 s−1,
bp = 3.0× 10−5 s−1, g = 0.05 s−1, g∗ = 0.5 s−1, r = 1.0× 10−3 s−1. These parameters
and the reaction scheme (1) were chosen for three primary reasons: First, dimers are
typical stoichiometry for regulatory proteins binding to the promoter site [20]. Next, the
parameters produce noisy switch like trajectory and were used earlier to test MaxCal’s
inferential power [35]. Third, the rate parameter values and resulting switching times (few
hours) are typical in realistic circuits [5]. Finally, to further mimic experiment, ten replicates
of one hundred trajectories—each trajectory seven days long—were considered.

2.1.2. The Detailed Model for Inference

Next, we describe the three models (DM, CGM, and MaxCal) used to infer the under-
lying details of the circuit from the synthetic data generated. We start with the DM model
first. The detailed model (DM) of SGAA is built by considering the promoter in its basal
state (α), activated state (α∗), and the protein A. The reaction scheme is given by

α
g1−→ α + A ; A

r1−→ �

α + A
f1−→←−
b1

α∗ ; α∗
g∗1−→ α∗ + A

(2)

The effective protein production rate in the non-activated and activated forms are
g1 and g∗1 , respectively. Upon defining the reaction network by Equation (2), the system
can be described by a chemical master Equation (CME) to compute probability P(NA, t) of
observing NA number of A proteins at time t. The CME is given by

dP(NA ,α,t)
dt = (g1α + g∗1(1− α))P(NA − 1, α, t)

− (g1α + g∗1(1− α))P(NA, α, t)
+ r1(NA + 1)P(NA + 1, α, t)− r1NAP(NA, α, t)
+ (NA + 1) f1(1− α)P(NA + 1, 1− α, t)− NA f1αP(NA, α, t)
+ b1αP(NA − 1, 1− α, t)− b1(1− α)P(NA, α, t)

(3)
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where, α = 1 and 0 denote the basal and the activated state (α∗) of the promoter, respectively.
The CME can be expressed in the matrix form as

dPi(t)
dt

= ∑
ij

WijPj(t) (4)

where, states (i) are given by different values of NA and α and their time dependent
probability is Pi(t). The transition matrix W is a function of rate parameters g1, r1, f1, b1, g∗1
and can be constructed from Equation (3). Using Finite State Projection (FSP) [25], the state
space can be bounded and the time evolution of probability state vectors is given by

Pi(t2) = [exp(W(t2 − t1))]ijPj(t1) (5)

where, t2, t1 are final and initial time points, respectively. Thus, Equation (5) yields the
probability of being in some state i at time t2 from an initial condition at time t1. These
conditional probabilities are used to compute the likelihood of producing the synthetic
trajectory as a function of the rate parameters (see Equation (15)). The likelihood is then
maximized to determine the optimum values of the parameters, thus inferring details of
the model. It is important to note that DM ignores mRNA and dimer dynamics and hence
is less detailed than the model (Equation (1)) created to generate the synthetic data. The
choice of this reduced model is motivated to lower computational cost while constructing
a model that is sufficiently fine-grained compared to CGM and MaxCal, outlined next.

2.1.3. CGM Model for Inference

The coarse-grain model (CGM) uses an approach where mass-action (MA) models
are combined with CME [29–32]. Specifically, there is only one reaction describing the
time evolution of protein number A given by Equation (6). This is akin to a mass-action
approach where coupling with other species to capture feedback is modeled in an indirect
manner by assuming an ad hoc functional form for the effective rate X. Specifically, X
is given by a Hill type function invoking a cooperative model with n = 2 defined in
Equation (6). The parameter g2 is the basal rate in the absence of any positive feedback and
the second term in X monotonically increases with A approaching an asymptotic value of
g∗2 , successfully capturing auto-activation. In this model, the rate in the activated state is
g2 + g∗2 and K is a parameter. Protein A is degraded with rate r2.

α
X−→ α + A ; A

r2−→ �

X = g2 + g∗2
An

An+K

(6)

While traditional MA models use similar functional forms to describe the time evolu-
tion of average protein number, adopting Equation (6) within Chemical Master Equation
(CME) framework allows stochastic modeling. Thus, the combined approach of CME and
MA (CME + MA) computes the probability (P(NA; t)) of protein number (NA) at a given
time t. Specifically, the time evolution equation of P(NA; t) corresponding to the reaction
scheme in Equation (6) is given by

dP(NA ,t)
dt = Wcgm

1 (NA − 1)P(NA − 1, t) + Wcgm
2 (NA + 1)P(NA + 1, t)

− [Wcgm
1 (NA) + Wcgm

2 (NA)]P(NA, t)
(7)

where Wcgm
1 (N) = g2 + g∗2

Nn

Nn+K and Wcgm
2 (N) = r2N. Using the matrix formulation, simi-

lar to DM, the likelihood of input trajectories can be calculated as a function of g2, g∗2 , K, r2.
Maximization of the likelihood infers model parameters g2, g∗2 , K, and r2.
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2.1.4. MaxCal Model for Inference

MaxCal modeling of SGAA and other circuits have been described in our earlier
work [32,34,35]. Here we give a brief outline of the method for SGAA. Maximum Caliber
maximizes the path entropy subject to constraints. We define two random variables, `α and
`A, to define microscopic trajectories between a time interval t and t + ∆t. The probabilities
of these paths are denoted as P`α ,`A . Variable `α tracks the production of proteins—in the
time interval between t and t+∆t—ranging between 0 and M (predefined maximum) while
`A is the number of proteins from the previous step that have not undergone degradation,
i.e., 0 < `A < NA. The first term in C (in Equation (8)) is the path entropy and the remaining
three terms denote three constraints on average production, average degradation, and
a correlation between protein production and the proteins present. The constraints are
imposed by Lagrange multipliers hα, hA and KA, respectively.

C = −
M
∑

`α=0

NA
∑

`A=0
P`α ,`A log P`α ,`A + hα

M
∑

`α=0

NA
∑

`A=0
`αP`α ,`A+

hA
M
∑

`α=0

NA
∑

`A=0
`AP`α ,`A + KA

M
∑

`α=0
∑NA
`A=0 `α`AP`α ,`A

(8)

Maximizing the caliber subject to the three constraints yield the probability of these
micro trajectories as

P`α ,`A = Q−1(NA
`A
) exp(hα`α + hA`A + KA`α`A)

Q =
M
∑

`α=0

NA
∑

`A=0
(NA
`A
) exp(hα`α + hA`A + KA`α`A)

(9)

2.2. Two-Gene Toggle Switch (TS) Circuit

Next we consider a two gene mutually repressing circuit called the Toggle Switch (TS),
first designed by Collins and colleagues [1].

2.2.1. Generating Synthetic Data

Synthetic data mimicking experimental time trace was created by using the reaction
scheme described in reference [21], detailed below:

α
g3−→ α + a ; a

d3−→ �
a

p3−→ a + A ; A
r3−→ �

α + A
f3−→←−
b3

α∗ ; α∗
g3−→ α∗ + a ; α∗

g∗3−→ α∗ + b

α
g3−→ α + b ; b

d3−→ �
b

p3−→ b + B ; B
r3−→ �

α + B
f3−→←−
b3

α′ ; α′
g∗3−→ α′ + a ; α′

g3−→ α′ + b

(10)

where mRNA a and b are transcribed from gene α (different loci) at rate g3, that in turn
produce proteins A and B, respectively, at rate p3. mRNAs and proteins are degraded at rate
d3 and r3, respectively. Mutual repression is modeled by binding of either protein (A or B) to
the promoter site of α at rate f3, altering the promoter state to different expression levels α∗

(for A) and α′ (for B). In the state α∗, mRNAs of B are produced at a rate g∗3 much less than
g3, while state α′ produces mRNAs of A at that same slower rate g∗3 , implementing negative
feedback. Unbinding of proteins convert the inactivated promoter states (α∗, α′) back to the
basal state α. For simplicity and as proof of concept, we assume a symmetric model in A and
B. The rate values (d3 = 0.5 s−1, p3 = 0.02 s−1, f3 = 3.5× 10−6 s−1, b3 = 2.0× 10−5 s−1,
g3 = 0.5 s−1, g∗3 = 2.5× 10−3 s−1, r3 = 1.0× 10−3 s−1) were chosen following our earlier
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work [35]. These values create biologically relevant switching time scales [5] between two
states (state 1: low A, high B; state 2: high A, low B) while maintaining typical synthesis
and degradation rates [27]. Next, the Gillespie algorithm [22] is used to simulate ten
replicates of one hundred noisy trajectories (each seven days long) of protein levels that
exhibit bistability and serve as our synthetic data to benchmark models.

2.2.2. Detailed Model

To infer network details, we first consider the detailed model (DM) built on a reaction
network similar to Equation (10) but neglecting mRNAs. The exact reaction scheme used
in DM for TS is described as

α
g4−→ α + A ; A

r4−→ �

α + A
f4−→←−
b4

α∗ ; α∗
g4−→ α∗ + A ; α∗

g∗4−→ α∗ + B

α
g4−→ α + B ; B

r4−→ �

α + B
f4−→←−
b4

α′ ; α′
g∗4−→ α′ + A ; α′

g4−→ α′ + B

(11)

where the symbols above and below arrows indicate respective reaction rates that will be
inferred from the synthetic trajectory data generated from Equation (10). As before, CME
arising from this reaction network architecture can be used to compute the probability
P(NA(t + ∆t), NB(t + ∆t); NA(t), NB(t)) of observing NA(t + ∆t) and NB(t + ∆t) number
of protein molecules at time t + ∆t given there were NA(t) and NB(t) number of A and
B protein molecules at time t. These probabilities are used to compute the likelihood
of a given trajectory (see Equation (17)), which can then be maximized to infer rates for
this system.

2.2.3. Coarse Grain Model

The coarse grain model (CGM) for TS does not explicitly model protein-promoter
complexation unlike DM. Feedback is modeled by an effective production rate of A and B,
given by X and Y, respectively, defined as

α
X−→ α + A ; A

r5−→ � ; β
Y−→ β + B ; B

r5−→ �

X = g5 + g∗5
1

Bn+K ; Y = g5 + g∗5
1

An+K

(12)

The specific functional form for X ensures that large B inhibits production of A.
Similarly, Y ensures that A inhibits production of B. Proteins A and B degrade with rate
r5. As before, the reaction network is used to construct the corresponding CME from
which the likelihood is computed as a function of model parameters g∗5 , g5, K, and r5.
The cooperativity parameter n was assumed to be 2, typically assumed in MA models of
TS to produce bistability [27]. The inferred values of these parameters are obtained by
maximizing the likelihood.

2.2.4. MaxCal

Two variables, `α and `A, were introduced to model SGAA (in Section 2.1.4) to track
production of A and number of A proteins not degraded in a time interval t and t + ∆t.
The same variables were used for protein A in TS. Additionally, variables `β and `B were
introduced to track the same but for protein B. The micro trajectories between time t
and t + ∆t are labeled by stochastic variables `α, `β, `A, and `B, and the corresponding
probability is denoted as P`α ,`A ,`β ,`B . The caliber (C) is defined as the path entropy (given
by the first term on the right hand side of Equation (13)) along with four constraints. First,
the average of `α and `β are imposed as constraints with Lagrange multiplier hα to model
protein production. Next, the average of `A and `B are constrained with Lagrange multi-
plier hA capturing information about degradation. Third, correlations between production
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and number of existing proteins (of the same protein type) are imposed by constraining
average of `α`A and `β`B by Lagrange multiplier KAα (fourth term in the right hand side of
Equation (13)). This term captures any positive feedback that may not be known about a
priori (see reference [35] for more). Finally, the average of `β`A and `α`B are constrained by
Lagrange multiplier KAβ to model cross-correlation (negative feedback) between A and B.

C =−
M

∑
`α=0

NA

∑
`A=0

M

∑
`β=0

NB

∑
`B=0

[
P`α ,`A ,`β ,`B log P`α ,`A ,`β ,`B

+ hα(`α + `β)P`α ,`A ,`β ,`B + hA(`A + `B)P`α ,`A ,`β ,`B

+ KAα(`α`A + `β`B)P`α ,`A ,`β ,`B + KAβ(`β`A + `α`B)P`α ,`A ,`β ,`B

]
,

(13)

Maximizing the caliber subject to these constraints gives the path probability in terms
of the Lagrange multipliers as

P`α ,`A ,`β ,`B = Q−1(NA
`A
)(NB

`B
) exp[hα(`α + `β) + hA(`A + `B)+

KAα(`α`A + `β`B) + KAβ(`β`A + `α`B)];

Q =
M
∑

`α=0

NA
∑

`A=0

M
∑

`β=0

NB
∑

`B=0
(NA
`A
)(NB

`B
) exp[hα(`α + `β) + hA(`A + `B)+

KAα(`α`A + `β`B) + KAβ(`β`A + `α`B)].

(14)

2.3. Calculation of Trajectory Likelihood

Parameters of DM, CGM, and MaxCal models are determined by maximizing the likeli-
hood (L ) of the synthetic trajectory—mimicking experimental data—recording fluctuating
numbers of protein with time.

2.3.1. Calculation of Trajectory Likelihood for SGAA

For SGAA, the likelihood of the trajectory is calculated as

L =
N

∏
n=1

P(NA(t + m); NA(t = m(n− 1))) = ∏
{i→j}

P
ω(i→j),m
(i→j),m , (15)

where T is the total snapshots recorded in experiment or synthetic data, N is T/m rounded
to the nearest integer and ω(i→j),m is the total number of transition from state i to j over m
frames. States are given by number of proteins. Typically m is chosen in the same range
as the average residence time (in frames) in the high and low state. Multiple frames are
combined to avoid any spurious jumps in the number of proteins present in the trajectory,
not allowed in the MaxCal formulation. Thus, calculating likelihood for transitions over
m frames allows MaxCal to select reasonable values for the Lagrange multipliers (see
reference [34] for further details). The individual transition probability of going from state
i to state j in one time step in MaxCal is computed as

Pi→j =
M

∑
`α=0

i

∑
`A=0

δ(`α + `A − j)P`α ,`A . (16)

The transition probability P(i→j),m over m frames—needed for likelihood calculation—
can be obtained by arranging single time step transition in a matrix (with i, j as matrix
elements) and raising the matrix to the mth power. FSP formalism—originally devised by
Munsky and colleagues [25]—has been used to introduce a sink state and carry out this
calculation. Supplemental material in reference [36] provides a general description on how
to use FSP formalism for MaxCal, including the calculation of transition probabilities for m
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steps. For DM and CGM models, the calculation of P(i→j),m require matrix exponentiation
following Equation (5) with t2 − t1 = m∆t.

2.3.2. Calculation of Trajectory Likelihood for TS

For TS, the likelihood of the trajectory is calculated as

L =
N
∏

n=1
P(NA(t + m), NB(t + m); NA(t = m(n− 1)), NB(t = m(n− 1)))

= ∏
{i→j,k→l}

P
ω(i→j),(k→l),m
(i→j),(k→l),m ,

(17)

where T is total time frames noted in data, N is T/m rounded to the nearest integer,
ω(i→j),(k→l),m is the total number of simultaneous transitions from i to j states (in number
of protein A) and k to l (in number of protein B) over m frames, and NA(t), NB(t) denote
the number of A, B proteins at time t (corresponding to frame m(n − 1) where n is an
integer). The most likely values of hα, hA, KAα, KAβ, and M are determined by maximizing
the likelihood. As before, transitions between m frames were used to avoid large spurious
jumps in protein number in one step in the raw data that cannot be easily modeled in
MaxCal. The transition probabilities P(j, l, t + 1; i, k, t) between two consecutive frames in
MaxCal is defined as,

P(j, l, t + 1; i, k, t) = Pi→j,k→l =
M

∑
`α=0

i

∑
`A=0

M

∑
`β=0

k

∑
`B=0

δ(`α + `A − j)δ(`β + `B − l)P`α ,`A ,`β ,`B . (18)

with P`α ,`A ,`β ,`B defined in Equation (14). The transition probability P(i→j),(k→l),m between
m frames is then calculated by raising the two frame transition probability matrix to the
mth power, similar to the procedure described for SGAA. Similar to SGAA, calculation
of the transition probability P(i→j),(k→l),m within DM and CGM formalism require matrix
exponentiation in contrast to matrix multiplication needed for MaxCal.

3. Results
3.1. Comparison of Three Models for SGAA

Quantitative comparison of three SGAA models was carried out in terms of their
accuracy and efficiency. Accuracy is determined by comparing inferred values of three
observables (peff, p∗eff, reff) against the gold standard used to generate the synthetic data (see
Table 1). The true basal production rate peff and activated production rate p∗eff are obtained
from the parameters in reaction 1 by peff = p(g/d), p∗eff = p(g∗/d). The degradation rate
remains the same, reff = r. For DM, these rates can be extracted as peff = g1, p∗eff = g∗1 ,
reff = r1, where g1, g∗1 , and r1 are defined in reaction 2. The effective rates for CGM
(described by Equation (6)) are calculated as peff = g2, p∗eff = g2 + g∗2 , and reff = r2. The
effective rates using MaxCal are calculated using

peff ≈
〈`α〉NL

∆t , p∗eff ≈
〈`α〉NH

∆t ,

r(N) =
N − 〈`A〉N

N∆t
, reff ≈ ∑

N
Peq(N)r(N),

(19)

where 〈· · · 〉i denotes the average of an observable for a given NA = i, NL is the peak
position of the protein number distribution in the low state, NH is the peak in the high state,
and Peq(N) is the probability distribution of N proteins at relative equilibrium calculated
using FSP [25] (see reference [35] for details). Comparing reported values in Table 1, we
conclude that both DM and MaxCal models infer these underlying details reasonably well.
CGM however infers a value of p∗eff almost twice the true value.
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Table 1. Comparison of accuracy between three models for SGAA. The first row reports the values of
three known (“True”) rates for effective production (peff) in the basal state, production (p∗eff) in the
activated state, and protein degradation (reff) used to generate the synthetic data. The inferred rates
using three models, DM (second row), CGM (third row), and MaxCal (fourth row), are compared
against each other and the “True” rates indicating that CGM is less accurate than DM and MaxCal.
Error bars for rates were obtained by using inference on ten replicates of the input trajectory data.

Method peff (s−1) p∗
eff (s−1) reff (s−1)

True 5.0× 10−3 50× 10−3 1.0× 10−3

DM (4.2± 0.5)× 10−3 (42± 5)× 10−3 (0.8± 0.1)× 10−3

CGM (4.1± 0.4)× 10−3 (91± 8.9)× 10−3 (1.3± 0.1)× 10−3

MaxCal (5.6± 0.2)× 10−3 (43± 2.1)× 10−3 (0.96± 0.1)× 10−3

Next, we provide a comparison of the computational efficiency between the three
models by tracking the typical time needed to complete the basic unit of operation invoked
in the calculation of the likelihood function. For a given model, we measured the time
taken for each likelihood calculation during the entire process of inference. The averages
and standard deviations of these times are noted in column 4 in Table 2. For MaxCal, the
basic operation is raising the transition matrix to the mth power, in contrast to the matrix
exponentiation required for DM and CGM (see Equation (5)). We note that both CGM
and MaxCal have identical matrix dimensions (column 3 in Table 2), constrained by the
maximum number of proteins allowed (Nmax = 92 reported in column 2 of Table 2). The
maximum number of proteins used for FSP calculation was chosen to be significantly
higher than the maximum protein number seen in the input trajectory. The total state
space dimension is equal to Nmax + 1 with the additional state (or “sink” state) accounting
for all states with protein numbers greater than Nmax. Despite identical matrix size, a
typical step in CGM is slower than MaxCal because matrix exponentiation is slower than
matrix multiplication performed m times in succession. We notice basic step calculation
in DM is significantly slower than MaxCal. This is primarily due to two reasons. First,
DM has almost four times larger of a matrix size—compared to MaxCal—due to explicit
consideration of the promoter state (basal and activated) in combination with different
protein numbers defining the state space. Next, DM requires matrix exponentiation, a
much more computationally expensive operation compared to matrix multiplication. We
conclude that CGM is less accurate than MaxCal and MaxCal is the method of choice over
DM given its efficiency. However, for SGAA, the true power of MaxCal is not reflected
since the basic step/operation is in milliseconds for DM and the cumulative time needed
for inference (fifth column) is in seconds, feasible on traditional hardware. Nevertheless,
the comparison conceptually shows MaxCal’s ability to balance efficiency and accuracy for
SGAA, in conjunction with the bigger circuit that we discuss next.

Table 2. Comparison of efficiency between three models for SGAA. Second column reports the
maximum number of proteins used in FSP, third column shows the overall matrix dimension, fourth
column reports the average time taken (using a CPU platform) for the basic matrix operation needed
for a likelihood calculation, and fifth column reports the total time taken during the entire process
of likelihood maximization to infer model parameters for the three different models (noted in the
first column).

Method Max N Matrix Size Unit Operation Time (ms) Total Time (ms)

DM 92 185× 185 10± 0.4 1263± 69
CGM 92 93× 93 3.0± 0.2 813± 190

MaxCal 92 93× 93 0.6± 0.5 47± 13
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3.2. Comparison of Three Models in TS

Next, we provide a quantitative comparison of three models for TS. As before, accuracy
is determined by comparing inferred values of the three effective rates, peff, p∗eff, and reff
against the gold standard used to generate the synthetic data (see Table 3). The true basal
production rate peff, repressed production rate p∗eff are obtained from the parameters in
reaction (10) defined as peff = p3(g3/d3) and p∗eff = p3(g∗3/d3). The degradation rate
remains the same, reff = r3. Within the framework of DM, these rates are extracted as
peff = g4, p∗eff = g∗4 , and reff = r4, where g4, g∗4 , and r4 are defined in reaction (11). The
effective rates for CGM (described by Equation (12)) are calculated as peff = g5 + g∗5/K,
p∗eff = g5, and reff = r5. The effective rates from MaxCal are calculated as

peff ≈
〈`α〉NH ,NL

∆t =
〈`β〉NL ,NH

∆t ,

p∗eff ≈
〈`α〉NL ,NH

∆t =
〈`β〉NH ,NL

∆t ,

rA(NA, NB) =
NA − 〈`A〉NA ,NB

NA∆t
, rB(NA, NB) =

NB − 〈`B〉NA ,NB

NB∆t
,

reff ≈
∞

∑
NA=0

∞

∑
NB=0

Peq(NA, NB)rA(NA, NB) =
∞

∑
NA=0

∞

∑
NB=0

Peq(NA, NB)rB(NA, NB),

(20)

where 〈· · · 〉i,j is the average of a quantity of interest given that there are i and j number
of proteins initially present of type A and B, respectively, NH and NL are the peaks of the
protein number distribution in the basal (unrepressed) and repressed state, respectively,
and Peq(i, j) is the relative equilibrium probability (calculated using FSP [25]) of having
NA = i and NB = j proteins. The details of these definitions and results can be found in our
earlier work [35]. Comparing the extracted rates against the gold standard, we find DM
and MaxCal reliably infer effective rates, similar to their performance with SGAA. CGM
however infers rates that differ from the “True” rates by almost an order of magnitude or
even more (p∗eff for example).

Table 3. Comparison of accuracy between three models for TS. The first row reports the values of three known (“True”)
rates for effective production (peff) in the basal state, production (p∗eff) in the repressed state, and protein degradation (reff)
used to generate the synthetic data. The inferred rates using the three models, DM (second row), CGM (third row), and
MaxCal (fourth row), are compared against each other and the “True” rates indicate CGM is less accurate than DM and
MaxCal. Error bars for rates were obtained by using inference on ten replicates of the input trajectory data.

Method peff (s−1) p∗
eff (s−1) reff (s−1)

True 20× 10−3 0.1× 10−3 1.0× 10−3

DM 20.7× 10−3 ± 5.2× 10−5 0.1× 10−3 ± 2.6× 10−5 1.0× 10−3 ± 0.2× 10−3

CGM 170× 10−3 ± 30× 10−3 2.3× 10−7 ± 0.7× 10−7 7.0× 10−3 ± 2.0× 10−3

MaxCal 14.6× 10−3 ± 0.9× 10−3 0.16× 10−3 ± 0.02× 10−3 0.7× 10−3 ± 3× 10−5

Next, we provide a comprehensive comparison of the three models in terms of their
computational efficiency (see Table 4). Similar to SGAA, DM is significantly slower than
MaxCal and CGM primarily due to large matrix size. We have chosen NA,max = NB,max = 59
resulting in 59× 59× 2× 2 + 1 = 13,925 states, considering the two states of the promoter
and the sink state included in the state space of DM. The enormous dimensional explo-
sion in DM compounded with matrix exponentiation significantly slows down the basic
operation to minutes. The estimates of basic steps are obtained using a GPU platform for
feasibility reasons. CPU-based computing—used in SGAA–was abandoned as it would
have taken an unreasonably long time to complete DM inference. We modified the existing
SciPy libraries for calculating the matrix exponential term (needed for basic operation
in DM and CGM) using CuPy. To calculate matrix power needed for MaxCal, we used
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existing CuPy libraries. The timing of the basic step was evaluated on two Nvidia Tesla
P100 cards using CUDA version 8.0.

CGM and MaxCal are however much faster than DM. This is primarily because of
significantly smaller variable space that CGM and MaxCal uses. Furthermore, we notice
MaxCal is even faster compared to CGM due to MaxCal’s reliance on matrix multiplication
in contrast to matrix exponentiation. The differences in basic operation (column four in
Table 4) translate to marked differences in the total time taken for the entire process of
likelihood maximization (reported in column five in Table 4) to infer model parameters.
Combining these findings we conclude for TS—similar to SGAA—MaxCal is the preferred
method of inference due to its efficiency and ability to reliably infer underlying model
parameters. For TS, unlike SGAA, the gain from MaxCal is readily appreciated when using
standard GPU hardware with only few nodes.

The example of TS considered above illustrates the typical challenge of inferring
network details using detailed models (DM) where multiple genes and species are involved.
Genetic circuits larger than TS, i.e., involving more than two expressed proteins, will face
even more combinatorial challenges when using models like DM to account for proteins
and their promoters. This combinatorial explosion of the state space combined with the
need of matrix exponentiation will render detailed models unrealistic for the purposes
of inference. Although this challenge can be somewhat mitigated in CGM reducing the
state space, CGMs too will face computational challenge, due to their reliance on matrix
exponential that will tend to be slower for larger state space (due to multiple genes).
Alternate approaches similar to MaxCal should be used where basic operations in likelihood
calculation are less burdensome keeping overall computational cost manageable.

Table 4. Comparison of efficiency between three models for TS. Second column reports the maximum
number of proteins used in FSP, third column shows the overall matrix dimension, and fourth column
reports the average time taken (using GPU platform) for the basic matrix operation needed for a
likelihood calculation and fifth column reports the average of total time taken during the entire
process of likelihood maximization to infer model parameters for the three different models (noted in
the first column).

Method Max N Matrix Size Unit Operation Time (s) Total Time (s)

DM 59 13,925 × 13,925 223± 110 106,878 ± 19,765

CGM 59 3482× 3482 5.8± 0.4 14,124 ± 12,493

MaxCal 59 3482× 3482 0.13± 0.01 851± 60

4. Discussion

Quantitative determination of parameters in a gene network is critical to designing
new circuits for synthetic biology applications. However, determining these parameters is
challenging due to limited information available on few expressed proteins, much less than
the actual number of species involved in such feedback networks. A powerful approach is
to mine information-rich stochastic trajectories of protein numbers to infer network details.
Three primary modeling schemes were considered to harness information from these noisy
trajectories for two specific gene networks: Single Gene Auto Activation (SGAA) circuit
and Toggle Switch (TS). The first inferential approach used a detailed modeling (DM)
scheme where proteins and their interaction with corresponding genes were explicitly
modeled. The second approach employed a coarse grain model (CGM) where Hill type
functional forms were invoked to describe feedback, circumventing the need to explicitly
model promoter and protein-promoter complexes. The third scheme used the principle of
Maximum Caliber (MaxCal) which relies on the maximization of path entropy subject to
constraints of protein production, degradation, and feedback. MaxCal—similar to CGM—
also avoids explicit consideration of additional molecular species and provides a stochastic
description of protein expression trajectories, suitable to analyze noisy gene expression data
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typically measured in experiments. Using synthetic data generated from a known model,
we show that DM accurately infers network details. However, DM is computationally
challenging for networks with multiple proteins, even as few as two. The prohibitive
computational cost of DM is due to its large state space, resulting in the exponentiation of
high dimensional matrices. CGM operates on a lower dimensional state space and hence is
more efficient than DM, but still suffers from computational cost for larger circuits due to
matrix exponentiation. Moreover, minimal CGMs are less accurate in inferring underlying
model details. MaxCal offers the much needed framework both in terms of accuracy and
feasibility. In addition, MaxCal provides a systematic way to improve and select models
with the same variables but including different correlations as additional constraints.
However, adding more constraints will increase the number of parameters (Lagrange
multipliers) over which the likelihood function needs to be maximized, slowing down the
overall inference process. Nevertheless, MaxCal enjoys the computational efficiency of the
basic step—to be iterated multiple times during likelihood maximization—due to relatively
smaller matrix size and matrix multiplication operation.

The ability to systematically improve models by adding higher order correlation—
due to MaxCal’s inherent top-down nature [32,37]—is another advantage of MaxCal. In
contrast, traditional approaches are bottom-up and require first imposing a reaction di-
agram (such as in DM) or a mechanism (functional forms in CGM). Even with small
changes, different reaction networks or functional forms need to be incorporated into
the model, restricting systematic model building in a perturbative manner. Furthermore,
MaxCal’s reliance on production and degradation variables separately allows the calcula-
tion of an effective feedback parameter useful for network characterization, design, and
evolution [35,36]. These advantages strongly favor adoption of MaxCal to infer parameters
in gene networks from noisy time series protein expression data. However, MaxCal’s
performance depends on the availability of basic information. For example, MaxCal model
built on only two genes cannot produce oscillation seen in three gene repressilator circuit.
MaxCal requires minimal knowledge about the existence of all three genes to correctly
model repressilator [36]. Another common challenge with inference is experiments typi-
cally measure fluorescence and not protein numbers. Furthermore, fluorescence per protein
is not fixed, but random. Direct application of MaxCal on raw experimental data requires
experimentally determining the distribution of fluorescence per protein. In the absence of
such information, we created synthetic data mimicking noisy fluorescence trajectories and
demonstrated MaxCal’s ability to decouple fluorescence noise from gene expression noise
and infer underlying circuit details [34–36].

It is important to note, MaxCal—in spite of its relative efficiency over DM and CGM—
will face increased computational challenge with circuits having multiple different genes
due to increased dimensionality of matrices. With the emergence of new mass-spectrometry
tools measuring multiple proteins, we are likely to face such data deluge requiring sophis-
ticated tools of inference. Building efficient and reliable models like MaxCal and adoption
of GPU platform for additional computational acceleration, as done here, are necessary
steps to this direction.
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Abbreviations

The following abbreviations are used in this manuscript:
MaxCal Maximum Caliber
DM Detailed Model
CGM Coarse Grain Model
SGAA Single Gene Auto Activation
TS Toggle Switch
CME Chemical Master Equation
FSP Finite State Projection
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