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Wepresent three reasons to suspect that themajor deleterious consequence of dopamine loss from the striatum
is a corticalmalfunction.We suggest that it is cortex, rather than striatum, that should be considered as the source
of the debilitating symptoms of Parkinson's disease (PD) since:

1. Cortical synapses onto striatal dendritic spines are lost in PD.
2. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted

following antidromic activation of cortical neurons.
3. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas,

regions intimately associated with motor behaviour.

These three reasons combinedwith evidence that the current summary diagramof the basal ganglia involvement
in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than
striatal malfunction, is overdue.

© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.

0/).
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At least three generations of scientists have already devoted their
life to understanding PD. There is no doubt that important achieve-
ments have been made during this time. The development of the
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animal models necessary to acquire new data and advances in the
treatment of patients, are two of the many significant contributions.
Here, we briefly review some accomplishments in the field to
emphasize that the contribution of striatum and its output pathways,
although significant, might be modest compared to cortical abnor-
malities evidenced by the pathological oscillatory activity. Further,
the loss of synaptic contacts in the striatum likely arises from the
corticostriatal pathway. Cortical participation is accentuated by its
antidromic activation by the successful treatment of the disease
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after applying DBS. Lastly, the participation of the return pathway
from the basal ganglia to the motor thalamus and its input to layer
I found experimentally, suggests possible therapeutic procedures,
although none are yet well developed in treatment strategies.

1. Approaches to the Treatment of PD

With the discovery of dopamine as the neurotransmitter lost in
Parkinson's disease (PD) [30] it seemed obvious that the loss of
dopamine innervation to striatum was the source of symptoms and
the cause of the disease [2,21]. Naturally, treatments initially centred
on replacing the missing dopamine with L-Dopa. This pharmacological
approach was successful to some extent, the progression of the disease
was slowed and patients lived twice as long as before. Nonetheless, the
quality of life did not improve as much as desired; for review see Paul
and Borah [59]. Subsequently, the postulation that PD symptoms are a
consequence of a fundamental imbalance between the two striatal
output pathways [1], provided the basis for new neurosurgical therapy.
Sporadic surgical procedures such as interruption of pyramidal tract,
motor cortex or cerebral peduncle, were then replaced by the successful
ablation of basal ganglia outputs as therapy for PD. A reassuring reversal
of symptoms, at least for a period of 2 years, was observed on the
side contralateral to surgery. Lesions were performed either in the
ventroposterolateral globus pallidus or the ventral intermediate nucleus
of the thalamus [47]. Other successful targets were the globus pallidus
externus or subthalamic nucleus in both rodents and monkeys [10].
Lesions of the subthalamic nucleus were too risky for humans, since it
is penetrated by the branch of the internal carotid artery that feeds
most of the forebrain. Added to this surgical risk was the debilitating
side effect of a lesion induced-hemiballism that only a few patients
did not present, for review see Guridi and Obeso [38]. Pallidotomy and
thalamotomy of ventrolateral or ventromedial nuclei became popular,
although not without controversies about reproducible successful
locations and the need of more controlled studies [48].

2. The Advent of Deep Brain Stimulation (DBS)

Instead of a permanent lesion, a modern strategy for the recovery
of PD symptoms, became the high frequency stimulation of the
subthalamus [8,27]. This deep brain stimulation (DBS) technique
produced spectacular relief of debilitating symptoms for many
patients, and became an established treatment for advanced PD.
The disease still progresses but the patients are in a much better
situation for another few years, until cognitive symptoms and other
complications emerge [55].

Years of basic science research performed in patients, or animal
models, have yielded contradictory results about how the therapeutic
effects of DBS are achieved. Logically, electrical stimulation had to
affect excitable tissue, i.e., local neurons, presynaptic and postsynaptic
neuronal processes or fibres of passage.

Initially DBS was supposed to produce a reversible functional
neuronal silencing. However, the possibility of stimulation inducing
‘depolarization block’ [7,8] seemed unlikely since ‘depolarization
block’ in motorneurons just moves the site of stimulation a few nodes
down the axon [29,54]. DBS did not inhibit the production of action po-
tentials [53] as reasonably proposed [25]. Instead, stimulation resulted
in neurons producing action potentials that loosely followed different
ranges of frequency of stimulation –entrainment [6,20]. Entrainment
is consistent with the capacity of neurons to fire much faster than
125 Hz, though admittedly for short periods.

3. DBS and Antidromic Cortical Stimulation

Over the past decade, another explanation emerged for the benefi-
cial effects of DBS: stimulation of fibres of passage or axonal terminal
fields. It was proposed that stimulation of cortical fibres under the
electrode could be responsible for the therapeutic effect of DBS.
Initial studies of neuronal excitability properties (e.g., chronaxie and
refractory period) concluded that the large myelinated axons are
excited before activation of cell bodies and low calibre axons, for review
see [60]. Chronaxie and refractory period determined in patients
undergoing thalamic DBS revealed a short chronaxie (50 μs) with
short refractory periods [5,66]. These values of the excitability
properties allowed axons to follow the high frequencies (N100 Hz) of
subthalamic DBS. Subsequently, it was observed in patients, that single
stimuli induced an antidromic positive slow electroencephalographic
(EEG) wave with a constant short latency [5,39]. In anaesthetized rats,
it was possible for us to demonstrate that the slow EEG wave peaked
in coincidence with antidromic activation of layer V cells in the motor
cortex [51]. These results led to the hypothesis that DBS produces
antidromic activation of motor cortex. Consistent with a cortical activa-
tion related to the positive effects of DBS, is the report that optogenetic
activation of layer V neurons in frontal cortex is effective in reducing
symptoms in 6-hydroxydopamine treated mice, whereas direct cell
body optogenetic stimulation, or inhibition, in the subthalamic nucleus
does not reverse the behavioural effects of dopamine loss [37].
Moreover, recently it was reported that only specific optical stimulation
of axons descending from motor cortex layer V to subthalamic nucleus
(hyperdirect pathway, see below) reduced behavioural signs of a
unilateral dopamine depletion [62]. This is congruent with our findings
that in freely moving rats, only stimulation that generated the EEG
antidromic potential, was sufficient to recover movement in rats made
akinetic by application of dopamine receptor antagonists [23]; for
review see [17].

4. Abnormalities in Cortical Function Associated to PD

Cortical efferent connections to basal ganglia form three different
pathways: pyramidal, intratelencephalic and hyperdirect [28,63]. They
mainly originate in layer V of the motor and premotor cortex in the
primate [58]. Neurons from pyramidal and intratelencephalic pathways
connect to striatal neurons and the hyperdirect pathway connects cor-
tex to the subthalamic nucleus with the shortest latency. Alterations
in corticostriatal connectivity have been repetitively mentioned in
association to PD [11,16]. Here we want to emphasize other somewhat
different and not so familiar aspects that involve the output of basal
ganglia to motor thalamus and then to cortex layer I, as another source
of cortical dysfunction in PD.

4.1. Beta Oscillations

An important characteristic of PD is the significant increase in beta
frequency oscillations. These oscillations (10 b 30 Hz) occur along
cortex and basal ganglia in normal animals and humans, and are associ-
atedwith cognitive aswell asmotor behaviour, for review see Stein and
Bar-Gad [64]. We have shown that the cortical effects of stochastic
antidromic action potentials is sufficient to desynchronise the dominant
beta frequency in impaired animals and remove the coherence between
the EEG and action potentials in cortical layer V [50]. Similarly, the PD
model that involves selective degeneration of dopamine neurons by
deletion of the mitochondrial protein PINK1, has recently being used
to study the strength of correlation between motor cortical neurons.
Carron et al. [18] reported an initial surge of coactive and synchronized
cortical networks more than a year before the onset of motor symp-
toms. Consistently, this abnormal cortical network activity is reduced
by antidromic activation of cortical neurons by subthalamic nucleus
high frequency stimulation. The authors suggest that the ‘calming’
desynchronization might result from activation of collaterals of layer V
neurons synapsing onto interneurons. Apparently, the stochastic activa-
tion of cortical output cells canbe sufficient to account for thedisruption
of the beta frequency activity [50]. Kang and Lowery [45] modelling
the action of antidromic driving of cortical networks, showed that



23G.W. Arbuthnott, M. Garcia-Munoz / Computational and Structural Biotechnology Journal 15 (2017) 21–25
frequency of 130Hz is themost effective stimulation rate for antidromic
spike production and disruption of beta oscillations. This result is inter-
esting since 130 Hz tends to be the most effective frequency in patients
[46] and 125 Hz in the rat animal model [50].

The interest in oscillatory activity associated to PD initiated in the
early years of the century, for reviews see [64,68] and now it seems to
be culminating in the claim that ALL treatments for the symptoms
reduce the increase in beta oscillatory activity [14,22]. In a recent
review, we propose that basal ganglia output to motor thalamus
and then to layer I, can modify layer V activity and oscillatory cortical
activity [35].

4.2. Cortical Layer V

The influence of the layer V cortical output to striatum is clearly
established in PD. We would like to think that the loss of dendritic
spines is an indication of cortical degeneration, but factors other than
a cortical loss maybe operating. Nonetheless, it is likely that the cortical
input, and not thalamic is drastically changed [72]. Antidromic activa-
tion of cortex produced by DBS may not be the only reason to consider
that the cortical output is altered in PD. Already we had presented
evidence that loss of striatal dopamine led to a decrease in dendritic
spines likely produced by a loss of excitatory synapses to medium
spiny neurons [41,43]. By 1998, our quantitative stereological results
confirmed that dopamine depletion induced the dendritic loss of spines,
on which the excitatory terminals synapsed [42]. Conditions of post-
mortem tissue occasionally impair adequate acquisition of tissue slices
for electron microscopy to verify all findings from animal models,
but in those cases for which post-mortem data is available it is clear
that spines are also missing [65,70]. Subsequently, and unexpectedly,
we observed that the major loss of spines was in the striatal projection
neurons that express dopamine D2 receptors. In the absence of
dopamine, striatal output neurons were expected to have an increased,
instead of a decreased, glutamatergic drive [3,15,19,33,56,57]. Several
possible explanations are available for the presence of increased activity
in dopamine-D2 neurons even when glutamatergic synapses on spines
and the spines themselves aremissing. For instance, a— the glutamater-
gic drive remains active on those neurons evenwith the loss of synaptic
sites in the dendritic spines [24,34] b— the size of some remaining
synapses onto D2 cells is enlarged (unpublished results), c— spillover
of glutamate from distant terminals reaches extrasynaptic A2A/D2
receptors located in the plasma membrane [32].

The important anatomical and functional changes in dendritic spines
in D2 striatal projection neurons underlines their importance, however,
itmust be also emphasized that striatal D1neurons are also significantly
altered. They play a role in the expression of sensitization to prolonged
administration of L-DOPA, in the dopamine denervated animals
that results in choreic, dystonic and ballistic movements called
L-dopa-induced dyskinesia [31,67].

4.3. Cortical Layer I

Layer I is significantly altered in PD, for instance, Gaspar et al. [36]
reported a loss in staining for the dopamine marker tyrosine hydroxy-
lase close to 70% in PD patients. When we traced the neuronal system
on whichwe expected themajor action of dopamine, the final pathway
led back to the cortex; it was a disappointing conclusion of years
of work: the ‘output’ returned within a few 100 μm of the origin in
layer V [4]. The final basal ganglia output projects to motor thalamus
(ventromedial nucleus —VM— in rodents). Tracing the terminal
distribution of those VM neurons in rats, led to layer I of the frontal
cortex [4]. A quarter of a century ago, when we were performing
those anatomical experiments, physiological methods to examine
those inputs were not available. As we previously discussed [35] now
inputs to layer I are becoming accessible. Moreover, we have observed
that layer I thalamocortical activity becomes synchronized and
increases during locomotion and administration of haloperidol [44] as
also seen in PD patients [40,61,69]. We argue that VM stimulation
activates inhibitory layer I interneurons that can directly contact apical
dendritic tufts of layer V pyramidal cells. This inhibitory influence on
pyramidal neurons is counter to the main idea that the thalamic output
from the basal ganglia is excitatory in cortex. However, considering that
decreased inhibition has been reported in motor cortex of animal
models of the disease [12,13] and in PD patients [49] restoration of
inhibition could improve proper execution of motor patterns.

The motor thalamus-layer I anatomical arrangement could underlie
the complex changes in cortical rhythms characteristic of distorted
output from the basal ganglia and be a source of the symptoms in PD
[35]. Since the long terminal branches in layer I can cover several
millimetres, a single axon could influence large areas in the rat cortex
[4]. Activation of the thalamic input to layer I over motor cortex,
probably leads to the successful extradural motor cortex stimulation
recently used in some patients as an alternative to DBS [9].

5. Optimistic Perspective

Lindenbach and Bishop [52] reviewed the influence of cortex on PD
and concluded that there are good clinical reasons to consider the
importance of cortex in the generation of symptoms and of effective
cortical stimulation as therapeutic in PD. Further experimental data is
needed, but the success of transcranial magnetic stimulation and
repetitive transcranial magnetic stimulation in relieving symptoms,
admittedly only short term and susceptible to placebo effect, is encour-
aging [71]. Similarly, and perhaps more consistent with our thesis, was
the evidence of recovery in monkeys made parkinsonianwithMPTP in-
jection after stimulation via an electrode over the dura in themotor sul-
cus [26] and reassuring, are the efforts to stimulate motor cortex in
patients with extradural electrodes [9].

6. A Touch of Reality?

Moving the problem from striatum to cortex does not make it any
easier! There are many fundamental questions about cortical networks
that we still need to understand. It could be that the only way to
influence the cortical networks effectively, is via antidromic driving
from subthalamus. Some obvious research questions include:

How do thalamocortical axons in layer 1 influence layer V neurons?
Is the beneficial effect of extradural stimulation a direct consequence

of layer 1 activation or are deeper layers involved?
Is the effect of extradural stimulation via layer 1 or through actions

in deeper layers?
Are particular subgroups of interneurons associated with beta

oscillations?
Can particular subgroups of interneurons be influenced pharmaco-

logically to produce a beneficial effect?
Finally, it is obvious that modification of the already damaged brain

may only alleviate the worst symptoms. The most important contribu-
tion will be to find a cure. To achieve that we first need to understand,
and actively influence, the cause or causes of dopamine cell death.
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