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Abstract 

Human operators often experience large fluctuations in cognitive workload over seconds timescales that can lead 
to sub-optimal performance, ranging from overload to neglect. Adaptive automation could potentially address this 
issue, but to do so it needs to be aware of real-time changes in operators’ spare cognitive capacity, so it can provide 
help in times of peak demand and take advantage of troughs to elicit operator engagement. However, it is unclear 
whether rapid changes in task demands are reflected in similarly rapid fluctuations in spare capacity, and if so what 
aspects of responses to those demands are predictive of the current level of spare capacity. We used the ISO standard 
detection response task (DRT) to measure cognitive workload approximately every 4 s in a demanding task requiring 
monitoring and refueling of a fleet of simulated unmanned aerial vehicles (UAVs). We showed that the DRT provided 
a valid measure that can detect differences in workload due to changes in the number of UAVs. We used cross-valida-
tion to assess whether measures related to task performance immediately preceding the DRT could predict detection 
performance as a proxy for cognitive workload. Although the simple occurrence of task events had weak predictive 
ability, composite measures that tapped operators’ situational awareness with respect to fuel levels were much more 
effective. We conclude that cognitive workload does vary rapidly as a function of recent task events, and that real-time 
predictive models of operators’ cognitive workload provide a potential avenue for automation to adapt without an 
ongoing need for intrusive workload measurements.
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Public significance statement
Safety and productivity can be enhanced if adaptive auto-
mation is able to predict, and so more effectively man-
age, the effects of fluctuations in the cognitive workload 
experienced by operators in high-pressure tasks. We 
show that it is possible to learn to predict such fluctua-
tions based on immediate past events and actions taken 
by operators managing a simulated fleet of unmanned 
aerial vehicles.

Introduction
Modern computer interfaces provide operators with 
an unprecedented level of information and control over 
local and remote systems. When teamed with support-
ing automation that can take over routine functions or 
provide recommendations for the operator to action, 
these systems have the potential to support tremendous 
increases in productivity. However, they also come with 
challenges, one of the most prominent being variations 
in workload. Fluctuations in workload can be associated 
with sub-optimal performance, which can lead to poor 
outcomes or complete failures of control. Underload dur-
ing prolonged periods where automation takes care of all 
operations can cause mind wandering (Hawkins et  al., 
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2015), sometimes called “automation neglect,” leaving 
the operator ill prepared for emergencies (Quandt, 2017). 
Although automation can help to avoid overload, it lacks 
the situational awareness with respect to operators lev-
els of engagement that is often shared by human teams 
(Strayer et  al., 2017), so can make recommendations at 
times that strain the operator’s cognitive capacity and 
even create unnecessary failures by intruding at critical 
times with low-priority tasks. Thus, there has been great 
interest over the last half century in methods to moni-
tor operators’ cognitive engagement and workload in 
real time in order to enhance human-autonomy team-
ing through “adaptive automation” systems that better 
manage workload fluctuations (e.g., Groll-Knapp, 1971; 
Defayolle et al., 1971; Gomer, 1981; Sem-Jacobson, 1981; 
Humphrey and Kramer, 1994; Pope et  al., 1995; Byrne 
and Parasuraman, 1996; Prinzel et al., 2000, 2003; Aricò 
et al., 2016).

However, there are many barriers to effectively deploy-
ing adaptive automation beyond the laboratory. Even 
if measures are available that are sensitive to relevant 
aspects of cognitive workload, systems based on con-
tinually monitoring workload may not be accepted by 
users as they are obtrusive, either because they require 
responses that are not relevant to the primary task or 
equipment attached to the body that is uncomfortable 
or inconvenient. Here we explore a novel approach that 
has the potential to avoid these issues, short-term pre-
diction (i.e., over a scale of several seconds) of cognitive 
workload based on measures related to the state of the 
primary task, and primary task performance. Although 
predictive approaches have been used in related domains, 
these have been limited at longer timescales (i.e., min-
utes) because they have relied on blocked designs [e.g., 
to anticipate the effects of sleep deprivation and chronic 
sleep restriction on alertness and cognitive performance; 
Rajdev et al. (2013)]. Moreover, we are not aware of any 
previous research using demonstrably valid workload 
measures with the required temporal resolution for the 
short-term prediction of workload fluctuations. The 
development of such an approach is particularly relevant 
for operators of complex primary tasks where adaptive 
automation is needed to mitigate relatively rapid work-
load fluctuations.

Perhaps one reason this direction has not been 
explored previously is that research related to adaptive 
automation has mainly focused on validating retrospec-
tive workload measures. Typical studies (see Wickens 
et  al., 2013, Chapter  11) have assessed the ability of a 
given measure to accurately classify performance over 
some period in the immediate past as coming from 
one of a small set of conditions where workload dif-
fers for extended periods of time (e.g., blocks of time 

performing different primary tasks with disparate 
workload demands). Although suited to validating 
measures, such designs are of limited relevance to sce-
narios in which workload fluctuates within the same 
task. Retrospective evaluation is also of limited use to 
an adaptive system that needs to anticipate prospective 
workload in order to take timely compensatory actions. 
Whether these limitations can be overcome depends 
not only on methodological innovations but also on the 
answer to a fundamental theoretical question: Do fast 
fluctuations in task demands lead to correspondingly 
fast fluctuations in spare cognitive capacity or does 
capacity vary as a function of the average workload 
over a much longer timescale. To answer this ques-
tion, we assessed whether events and behavior in the 
last few seconds are predictive of the current level of 
cognitive workload. To the degree this is true, it sup-
ports the potential of real-world applications of adap-
tive automation.

The methodology we propose here to answer these 
questions differs from previous approaches in that it 
focuses on a single but complex primary task where dif-
ferent task events, and the effects of the past actions of 
the operator, could potentially be associated with peaks 
and troughs in cognitive workload. It then requires a gold 
standard for measuring current cognitive workload on a 
fast enough timescale to capture these fluctuations. For 
this purpose, we use the detection response task (DRT), 
which is recommended by the International Standards 
Organization (ISO) (ISO 17488, 2016) for measuring the 
effects of cognitive workload in driving (Bengler et  al., 
2012; Bruyas and Dumont, 2012; Harbluk et  al., 2012). 
The ISO DRT procedure involves presenting a simple 
stimulus (e.g., a light or vibrating buzzer) with a inter-
stimulus interval that varies randomly and uniformly 
between 3 and 5 s and requiring participants to respond 
with a button press when they detect the stimulus. As the 
workload imposed by the primary task increases, both 
the reaction time (RT) to the DRT stimulus and the likeli-
hood of failing to respond (i.e., omissions) increase (e.g., 
Strayer et al., 2015, 2016, 2017). The DRT is an example 
of a secondary-task methodology, an approach which has 
the longest history of any type of workload measurement 
(e.g., Welch, 1898; Welford, 1968). The secondary-task 
approach has been central to the development of psycho-
logical theories of attention (e.g., Posner and Boies, 1971) 
and derives its theoretical basis as a workload measure 
from the idea of a limit on shared cognitive operations 
that different types of tasks depend on. The limitation 
has chiefly been conceptualized in two way: in terms a 
finite pool of central processing capacity (Welford, 1958; 
Kahnamen, 1973), which can cause reduced performance 
when shared between tasks, or in terms of access to a 
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central processor (Posner, 1978; Welford, 1981), which 
can cause reduced performance through a bottleneck 
created because only one task can be serviced at a time 
(Pashler, 1984, 1994).

In our application, the DRT provides a criterion against 
which to evaluate the performance of different predictive 
models. As workload is a multifaceted construct (Wick-
ens, 1984) it is unlikely that any one measure can cap-
ture all aspects of the operator’s experience of it (Gopher 
and Donchin, 1986). There is an extensive literature on 
measuring cognitive workload that provides a plethora 
of workload measures that likely tap different aspects 
of this construct that can be relevant to automation. In 
the next section, we briefly review the different measures 
that have been proposed with two aims; motivating our 
use of the DRT and providing a context for later consid-
ering our methodology might use different measures. 
Our proposed methodology is not necessarily dependent 
on the DRT. It requires only that a measure or perhaps 
combination of measures provide a valid and sufficiently 
fine-grained workload assessment (both temporally and 
in terms of its level) that is relevant to aspects of the pri-
mary task which might be aided by automation. Further, 
the measure(s) need not be entirely unobtrusive as long 
as primary task performance does not become unrep-
resentative of real-world operating conditions. This is 
because workload monitoring is only needed in the ini-
tial training phase required to develop predictive mod-
els. As our aim here is simply to determine whether the 
approach is viable in theory through the examination of 
one particular case (albeit one which we hope is relevant 
to a range of applications), we only explore the initial 
training phase with the DRT providing our single meas-
ure of workload.

After the review of cognitive workload measures, we 
report the results of an experiment in which participants 
managed a team of simulated unmanned aerial vehicles 
(UAVs) whose fuel levels constantly decreased. Partici-
pants could sample the fuel level of each UAV by hover-
ing a mouse cursor over it and then could click to initiate 
refueling if that was deemed necessary. Similar multiple 
asset-monitoring tasks are presently of great applied 
interest as operators are increasingly being asked, with 
the aid of automation, to manage multiple agents (e.g., 
guiding and maintaining fleets of surveillance vehi-
cles). Our analysis first focused on the predictive ability 
of the occurrence of immediately preceding task events 
and then explored whether improvements in prediction 
could be obtained using measures of the likely difficulty 
of the task in the next few seconds and measures of the 
operator’s situational awareness with respect to achieving 
the goals of the task. Our assessment of these measures 
used cross-validation techniques that develop predictive 

models based on a subset of participants and then test 
their performance with other participants (i.e., “out-of-
sample” prediction). It showed that prediction, although 
difficult, is possible. Having established—to our knowl-
edge for the first time—that it is possible to predict short-
timescale fluctuations in cognitive workload, we finish 
by discussing the implications for applications. Although 
the successful predictive measures we developed are spe-
cific to our task, we believe that our results and method-
ology can be used as a basis to develop suitable predictive 
measures, not only for a variety of multiple-asset man-
agement tasks, but also for the many other tasks in which 
automation has the potential to play a beneficial role.

Cognitive‑workload measurement
In order to assess cognitive workload, prior research has 
typically employed some combination of primary- and 
secondary-task behavioral measures, physiological meas-
ures (either neurological, cardiovascular or ocular), and 
subjective workload assessments. These measures can 
be assessed against criteria such as sensitivity, selectivity, 
obtrusiveness, bandwidth (i.e., temporal resolution), and 
reliability (Wickens et al., 2013).

Primary task measures assume that performance on the 
operator’s main task degrades when workload increases. 
For example, operating a motor vehicle often worsens as 
cognitive workload increases either due to an increase in 
the complexity of the task (e.g., changes in traffic density 
or roadway complexity) or with the addition of a sec-
ondary task (e.g., a concurrent phone call). If there are 
no data limits (e.g., stimulus characteristics which affect 
performance), primary task measures can provide a reli-
able measure of workload [but see Medeiros-Ward et al. 
(2014)]. However, it may be difficult to identify appropri-
ate primary-task measures and they tend to be quite spe-
cific to the task at hand. Moreover, simple primary-task 
measures such as the frequency of certain task events 
used in earlier research [e.g., changes in the number of 
aircraft an air traffic controller has to monitor; Ayaz et al. 
(2012)] often lack the necessary resolution to predict 
short-term fluctuations in workload. Our approach can 
be seen as a methodology to make such identifications 
in terms of measures that are predictive of workload in 
the near future rather than indicative of current work-
load. However, in order to bootstrap this process we need 
a workload measure that can a priori be assumed to be 
valid, and ideally one which might be used across a num-
ber of different primary tasks, rather than having to be 
developed for each new task.

Subjective approaches are perhaps the most common 
and easily administered type of workload assessment. 
Typically, they involve some sort of rating scale or scales. 
The NASA TLX questionnaire (Hart, 2006) is a widely 



Page 4 of 29Boehm et al. Cogn. Research            (2021) 6:30 

used example, requiring users to retrospectively rate their 
subjective experience after performing a task. The ratings 
address six dimensions: physical and mental demands, 
time pressure, success, hard work, and stress. One prob-
lem with this approach for our purposes is low tempo-
ral resolution. Higher sampling frequencies are possible 
[e.g., Teh et  al. (2014) obtained a single 10-point rating 
every 8 s in a driving task], but are likely to interfere with 
primary-task performance. A second problem is that an 
operator’s feelings about workload may not align with the 
aspects of workload that determine primary-task perfor-
mance [e.g., Wickens et al. (2013) uses the example of a 
heuristic solution feeling easier but being less accurate 
than an algorithmic solution].

Physiological workload measures are a common 
approach in the context of adaptive automation. They 
involve recording biological measures, with examples 
including: optical imaging of cerebral blood flow (e.g., 
Le et  al., 2018) and more general thermal imaging (e.g., 
Abdelrahman et al., 2017); blood pressure and electrocar-
diographic (ECG) recordings (particularly with respect to 
heart rate measures; e.g., Heine et  al., 2017); eye move-
ments and pupilometry, (e.g., Duchowski et  al., 2018), 
as well as electrooculography (EOG), and more gener-
ally electromyography (EMG; i.e., electrical activity in 
muscles) recordings; electrodermal activity (EDA); e.g., 
Visnovcova et al., 2016); and perhaps most prominently, 
event-related potential (ERP) and more generally elec-
troencephalographic (EEG) recordings (Pergher et  al., 
2019). Lohani et  al. (2019) provide a recent review that 
is particularly relevant here as it also considers the prac-
tical difficulties associated with deploying each measure 
in the context of driving, which are frequently marked. 
Physiological measures are attractive because they are 
often continuous, or nearly so, both in time and effect 
magnitude. They are also often unobtrusive in the sense 
that they do not interfere with primary task performance, 
although some types may be physically cumbersome. 
Remote sensing offers a potential solution to the latter 
problem, but may be plagued by noise due to fluctuations 
in environmental conditions (e.g., ambient light fluctua-
tions in pupilometry). However, continual improvements 
in technology have lessened many of these barriers and 
have also increasingly made it possible to combine dif-
ferent types of measures (e.g., Borghini et al., 2014; Chen 
et al., 2017; Liang and Lin, 2018).

Even by the 1990s, technological advances were suffi-
cient to inspire increasing optimism about the potential 
of physiological measurements in adaptive automation 
(e.g., Byrne and Parasuraman, 1996), with Gevins et  al. 
(1995) even suggesting that “it is reasonable to expect 
that in the near term a basic enabling technology will be 
deployed that will permit routine measurement of brain 

function in operational environments” (p. 169). Hum-
phrey and Kramer (1994) first addressed an important 
question for real-time measurement; how much physi-
ological data are required for accurate classification of 
different workload conditions? They noted that previous 
ERP-based studies—which typically collected 50 to 100 
single trial ERPs whose average was used to discriminate 
among different workload conditions—could not answer 
this question. They developed a test based on comparing 
single and dual-task conditions involving an arithmetic 
task and a monitoring task similar to our task in which 
participants had to click on gauges to determine their 
state, and if necessary take a corrective action. Workload 
was assessed based on ERPs to task events (gauge sam-
pling and the presentation of arithmetic operands), using 
off-line analysis to obtain various measures based on  1.3 
s segments of EEG. Pools of odd and even numbered 
events were created and a bootstrap analysis performed 
on average vectors of ERP measures from one or more 
trials. For each of 12 participants, a linear discriminant 
function was estimated to classify low vs. high workload 
conditions based on one pool of trials then tested on the 
participant’s other pool of trials. Performance improved 
as the number of trials increased, with a cross-validation 
accuracy of 90% achieved between 5 and 12 trials for all 
participants.

These results were sufficiently encouraging to inspire a 
great deal of research along similar lines with EEG-based 
measures, including ERPs based on events associated 
with secondary tasks such as tone counting and oddball 
detection (e.g., Sirevaag et al., 1993; Kramer et al., 1995; 
Allison and Polich 2008). Frequency-based EEG meas-
ures, which are attractive because they do not require a 
link to primary- or secondary-task events, used increas-
ingly sophisticated analysis approaches, such as individ-
ual participant multivariate analyses (e.g., Gevins et  al., 
1998) and analyses addressing problems with non-sta-
tionarity (e.g., Murata 2005), and were applied to a broad 
array of tasks and settings taking advantage of the pos-
sibility of more mobile recording (e.g., De Massari et al., 
2014; Smith et  al., 2001; Mijović et  al., 2017). EEG has 
been used as a basis for adaptive automation in a closed-
loop system (Pope et al., 1995; Prinzel et al., 2000) with a 
more recent implementation switching to ERPs because 
of their greater specificity to cognitive workload (Prinzel 
et al., 2003).

The final approach, secondary-task workload meas-
ures, requires participants to perform another task at 
the same time as they perform the primary task. On 
the assumption that the primary and secondary tasks 
share a limited central processing capacity or are 
subject to a shared bottleneck due to having compo-
nents that must access a central processor, changes in 
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primary-task cognitive workload should be associated 
with opposite changes in secondary-task performance. 
This broad theoretical basis makes the secondary-task 
technique potentially widely applicable, although it is 
important to recognize that there are cases in which 
tasks do not share a bottleneck or resources (Wickens 
1984). A variety of secondary tasks have been used, 
including temporally related measures such as rhyth-
mic tapping, interval production and time estimation, 
but by far the most common is the probe reaction time 
task (Wickens et al., 2013), of which our focus here, the 
DRT, is a prominent example. The DRT has has several 
advantages for our purposes. It is easy to implement 
and produces results that are easy to analyze. Further, 
it is sensitive to dynamic changes in workload (e.g., 
Strayer et al., 2017) and does not produce consequen-
tial interference on primary driving-related tasks (Cas-
tro et al., 2019; Palada et al., 2019). Strayer et al. (2015) 
directly compared the DRT with subjective (NASA-
TLX), and physiological (ERP, time locked to the DRT 
stimulus) measures of cognitive workload in both sim-
ulated and on-road driving. Participants were asked 
to perform a number of concurrent secondary tasks 
that varied in difficulty. All measures varied signifi-
cantly with cognitive workload; however, the degree 
of sensitivity differed, being marginally greater for the 
subjective measure (partial η2 = .95 ) than the DRT 
(partial η2 = .76 ), both of which were substantially bet-
ter than the physiological measure (partial η2 = .33). 
Given that subjective measures do not provide a suffi-
ciently high temporal resolution, these results support 
the use of the DRT as our gold-standard measure of 
cognitive workload. As previously noted, however, our 
approach  can be used with other workload measures, 
or with combinations of measures, as long as they have 
sufficient resolution.

In order to check the validity of the DRT in our par-
ticular application, our design included three variants 
of the task where difficulty, and hence average work-
load, differed over periods of several minutes due to 
the requirement to manage either 3, 5, or 7 UAVs. The 
increase from 3 to 5 UAVs and the increase from 5 to 7 
UAVs both produced large decrements in primary task 
performance indicative of substantially increased work-
load. Hence, if the DRT is a valid measure, it should 
increase reliably with the number of UAVs. These con-
ditions also provided a yardstick to calibrate the DRT 
so we could judge the importance of short-term work-
load fluctuations within a condition. If the size of the 
changes in DRT performance associated with short-
term fluctuations is comparable to the changes in DRT 
performance associated with the manipulations of the 
number of UAVs, it will be clear that the short-term 

fluctuations are having a substantial impact of work-
load in an absolute sense.

Experiment
We used a version of the DRT where participants 
responded to tactile stimulation from a buzzer using 
a foot peddle. The primary task required participants 
to monitor and refuel a fleet of UAVs. UAVs moved in 
straight trajectories, reflecting at screen boundaries, 
and were clearly visible against a homogeneous ocean 
background. Similar to a multiple-object tracking task, 
UAVs were not labeled and moved at a pace that made 
it easy to track a single UAV, with difficulties arising 
only when simultaneously following multiple UAVs. 
Pilot testing confirmed that the difficulty manipula-
tion (i.e., managing 3, 5 or 7 UAVs) caused the task 
to vary from engaging but manageable to extremely 
demanding. Fuel levels, which could be monitored by 
hovering over a UAV with a mouse cursor, drained at a 
constant rate, and UAVs could only be refueled below 
a critical level. When a UAV ran out of fuel, it crashed 
and exploded and was replaced by a new UAV that 
appeared from the side of the screen with a high but 
variable fuel load and a randomly oriented trajectory. 
A clock was not provided on the screen so participants 
had to judge the passage of time subjectively in order to 
know when refueling might be required. Crashes could, 
therefore, occur because of event-based prospective 
memory errors (i.e., failing to ever check fuel level for a 
new UAV) time-based prospective memory errors (i.e., 
failing to refuel at the right time) and tracking errors 
(i.e., failing to be able to find a UAV due for refueling). 
Points were awarded for checking fuel levels during 
the critical period, and for successfully refueling, and 
points were subtracted for monitoring or refueling at 
the wrong time, and for UAVs exploding.

Participants were instructed that hovering over a UAV 
before its refuel window would result in a slight loss of 
points and doing so within the window would result in a 
small gain in points. Attempting to refuel a UAV outside 
of its refuel window would result in a larger loss of points, 
failing to refuel a UAV would result in the largest loss of 
points, and successfully refueling a UAV would result in 
gaining the most points. Every time the participant com-
pleted one of these actions, the number of points gained 
or lost would appear briefly on screen at the location 
of the action. No tangible reward was associated with 
these points, but they accumulated over the course of 
the blocks. Although demanding, the task was relatively 
simple, so participants could begin to develop expertise, 
as evidenced by improved performance over the course 
of the experiment. Measurement over a second one-hour 
session performed on a subsequent day allowed us to 
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examine the moderating effects of participants develop-
ing expertise, in terms of an understanding of the points 
associated with different event combinations, and strate-
gies and associated skills that enabled them to maximize 
points gained.

In an initial analysis, we determined participants’ sen-
sitivity to the payoff scheme by examining how their 
scores, and the frequency of the five possible task events 
(e.g., successful or failed monitoring, successful or failed 
refueling, and a UAV explosion) changed from the first 
to the second session. We then examined the effect of 
the difficulty manipulation on DRT performance, with 
the hypothesis that clear increases in RT and omissions 
with increased difficulty would validate its sensitivity to 
cognitive workload. These analyses set the stage for our 
main aim, to assess whether and how we could predict 
real-time fluctuations in cognitive workload as measured 
though the proxy of DRT performance, both in terms of 
RT and omissions. Note that participants were explicitly 
instructed that, although they should respond to the DRT 
stimuli whenever possible, the UAV task should take 
priority.

We first examined whether the prior occurrence of 
five types of simple task events had any predictive abil-
ity for short-term fluctuations in workload, and on what 
timescale these task events might affect DRT monitor-
ing (3–5 s). Our analyses also took account of potential 
learning and fatigue effects over the course of a session. 
In a second analysis, we investigated whether refined 
predictors, most of which aimed to index the operator’s 
situational awareness with respect to the fuel levels of the 
UAVs, were more predictive of short-term fluctuations 
in workload. Although the initial analysis did not reveal 
any strong relationships, it did provide guidance for the 
development of the set of refined predictors.

Because of a focus on prediction, our primary method 
of inference in both cases was cross-validation. This anal-
ysis differed from that of Humphrey and Kramer (1994) 
discussed previously in that we used less data (i.e., single 
vs. multiple trials) to predict a fine-grained measure of 
workload (i.e., predicting the continuous DRT RT meas-
ure vs. classifying discrete conditions), although we also 
predicted a binary omission measure. Their cross-valida-
tion was post hoc and within subject, whereas ours was 
more demanding, both because it involved genuine pre-
diction (albeit over a short timescale) and was between 
subjects. In particular, we fit linear mixed-effect models 
of DRT RT and omission rates to data from five mutually 
exclusive groups each consisting of around 20% of the 
participants and the models were assessed by their abil-
ity to predict corresponding DRT performance for the 
left-out groups of 80% of participants. Between-subjects 
cross-validation is a particularly rigorous test because it 

is known to be more difficult than with-subjects cross-
validation (e.g., Gevins et  al., 1998). We assessed the 
stability of these predictions over participants by com-
parisons among results for the five “folds.” As we were 
interested in which predictor or group of predictors per-
formed best, we used model selection techniques to com-
pare a large number of models with different predictor 
sets.

Methods
Participants
Forty-six participants were recruited from a participant 
pool database maintained by the University of Utah. Par-
ticipants were compensated $40 for completing the full 
study, which consisted of two one-hour sessions on dif-
ferent days.

Equipment and task software
Four Windows 7 desktop computers, equipped with 
second-generation i7 processors with integrated graph-
ics processors and 21-inch high-definition screens, pre-
sented the primary tracking task. In pilot testing, these 
systems were verified as presenting the UAV task at a 
steady 35 frame per second. Each computer interfaced 
with DRT hardware, which included a millisecond-
accurate controller box running an Advanced Reduced-
Instruction-Set-Computer (RISC) Machine (ARM) 
embedded processor and a rubberized vibrotactile motor 
for tactile alerting. Participants used their preferred hand 
to interact with the UAV task by operating a Microsoft 
Basic Optical Mouse connected via USB. The other hand 
was held at rest on the desk and used to collect Galvanic 
Skin Response (GSR) data. GSR readings are not ana-
lyzed in the present report.

DRT units followed the performance specifications 
outlined in ISO 17488, with the exception that a foot 
pedal switch was used to collect responses rather than 
the finger mounted micro-switch. Responses were 
recorded on a TEMCo Heavy Duty cast aluminum foot 
switch. A small vibration motor provided the stimuli to 
be detected. The motor was fastened to participants’ left 
shoulder using medical tape. When the motors are active, 
they provide a gentle vibration every 3-5 s that lasted 
for 1  s or until a response was made. After a recorded 
response, the next stimulus onset was selected randomly 
from a uniform distribution between 3 and 5  s. Partici-
pants were instructed to press a foot pedal switch as soon 
as they detected the vibration stimulus. The DRT task 
was active throughout the experiment. Reaction times 
collected from the DRT units were gathered on a micro-
controller that provided sub-millisecond accuracy. Each 
reaction-time event was timestamped using the host 
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computer’s clock. These timestamps were used to syn-
chronize with data generated by the UAV task.

The UAV task was developed using the Unity® game 
engine (Unity Technologies, 2017). The core objective of 
the task is to refuel small UAV targets that moved around 
the computer screen at a relatively slow speed of 75 pix-
els-per-second (i.e., about 1/25-th of the screen width of 
a standard 1080p monitor at a resolution of 1920 × 1080 
pixels). An illustration of a version of the task is available 
at https:// youtu. be/ QcGem 6FwnMQ. The task is pre-
sented from a birds-eye perspective with a static ocean 
image shown in the background. UAVs appear as small 
gray planes seen from above, randomly moving about the 
full space of the screen (see Fig. 1). Fuel levels depleted 
at a rate of 5% per second. Clicking on the UAV when 
fuel entered the lower 25% of the gauge (a “Hit refuel”) 
refueled the plane and resulted in a score increase. Click-
ing on a UAV when fuel levels were above 25% (a “False-
Alarm Refuel”) resulted in a score deduction. If the fuel 
fully depleted (a “Miss Refuel”), the UAV crashed, the 
score was reduced, and a new UAV immediately entered 
the screen. When a new UAV entered the screen, it began 
with 70-100% fuel level. Each time a refuel event occurred 
the refueled plane gained between 50% and 100% of their 
full tank. When hovered over with the mouse cursor for 
at least 0.3s a circular fuel-gauge appeared around the 
UAV depicting the level of remaining fuel in that vehi-
cle and its optimal refueling zone. Participants were 
allowed one hover-over event to gauge initial fuel levels. 

Subsequent hover-over events rewarded points (a “Hit 
Hover Over”) if the remaining fuel level was under 25% 
or penalized points (a “False-Alarm Hover Over”) if it 
was over. Each scoring event was briefly presented as a 
signed points number above the relevant UAV while the 
total score (shown in the bottom right) was updated. 
Table 1 shows the points associated with the five different 
game events. As can be seen, payoffs were maximized by 
increasing the number of well-timed refuels and decreas-
ing the number of exploding UAVs.

Design and procedure
A 3 (task difficulty) x 2 (session) repeated-measures 
design was used. Task difficulty was varied by adjust-
ing the number of UAV targets that are simultaneously 
present on the screen. Sessions consisted of 21 blocks. 
Task difficulty was varied in pseudo-random order across 
blocks, with each consecutive subset of 3 blocks contain-
ing an easy (3 UAV), medium (5 UAV), and hard (7 UAVs) 

Fig. 1 Task display with seven UAVs. Hovering the mouse over a UAV displays the fuel gauge which shows that the fuel level (yellow bar) is not yet 
in the green region where it can be refueled. The time remaining in the block is displayed at the top, the difficulty at the bottom left, and the score 
at the bottom right of the screen

Table 1 Payoff scheme

Task event Points

False-Alarm Hover Over (FAHO) − 50

False-Alarm Refuel (FAR) − 500

Hit Hover Over (HHO) 50

Hit Refuel (HR) 2000

Miss Refuel (MR) − 1000

https://youtu.be/QcGem6FwnMQ
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block. Blocks lasted 2 minutes, allowing for a short break 
of 15 s between blocks, during which the score for dif-
ferent task events was tallied. Participants were given a 
countdown 5 s to the start of the next block. Three prac-
tice blocks were given at the beginning of each session in 
a fixed easy, medium, hard order, and these were not ana-
lyzed. We define a “trial” as the time period between two 
DRT prompts; hence a trial ranges randomly from 3-5 s 
according to a uniform distribution.

Upon arrival at the first session of the study, par-
ticipants were provided with a consent form to sign, 
acknowledging the purpose of the study and their level 
of compensation. They were then introduced to the GSR 
sensors and the DRT task. Instructions were given fol-
lowing the International Standards Organization pro-
tocol for DRT measurement of cognitive workload (ISO 
17488, 2016). ISO 17488 specifies that participants are 
instructed to prioritize the primary task (i.e., the UAV 
task) and the instructions referred to the DRT as the sec-
ondary task. For example, participants were instructed 
to “Please do your best to pay attention to both tasks but 
recall that your primary task is to monitor the UAVs.” Par-
ticipants were further read a script that informed them of 
their goal to refuel each unmanned aerial vehicle (UAV) 
by hovering to check the fuel level and then left-clicking 
to refuel, the difficulty levels (easy, medium, hard), and 
the number of UAVs that pertained to each level (3, 5, 
and 7, respectively). Participants were also informed that 
the experiment would consist of 3 practice blocks, during 
which time they would be allowed to ask questions and 
receive additional instruction or clarification, followed 
by 21 test blocks, during which time they would not be 
allowed to communicate with the experimenter. Finally, 
they were informed that the blocks would persist for two 
minutes at a time that the experiment would last approxi-
mately 1 h and that they were free to stop for any reason 
at any time and still receive full compensation of $20 per 
hour. Following this, participants completed the prac-
tice block and the seven experimental sets consisting of 
an easy, a medium, and a hard block. The second session 
occurred between one and three days after the first ses-
sion and consisted only of the practice and experimental 
blocks. When complete, participants were compensated 
for their time and thanked for participation.

Results
Points and task events
The goal of our first analysis was to establish whether 
participants were sensitive to the payoff structure of the 
UAV task. If they are sensitive to payoffs, over the course 
of the two experimental sessions participants should 
learn to avoid task events that are associated with a large 
loss in points and to seek strategies that maximize the 

points they earn. This analysis was based on the com-
plete data of 46 participants performing 21 experimental 
blocks on each of two testing days. Note that the num-
ber of task events naturally tends to increase with diffi-
culty simply because there are more UAVs on the screen; 
hence, the effect of difficulty is not of primary interest in 
this analysis except to the degree that it interacts with 
day. The same is true of points, beyond the observation 
that participants were on average able to make use of the 
greater number of opportunities to earn points as diffi-
culty increased and so the average score increased with 
difficulty.

Figure  2 summarizes different aspects of participants’ 
performance in the UAV task. The top left plot shows the 
average number of points participants earned in each 
experimental block on day 1 and day 2 in each of the 
three difficulty conditions. As can be seen, the number 
of points earned increased over days in all three difficulty 
conditions, with average increases being largest in the 
most difficult condition.

We tested these observations statistically using linear 
mixed effects models (LMMs; Pinheiro and Bates, 2000). 
To this end, we created three models with the average 
number of points earned per block as the dependent 
variable and a random intercept for each participant. The 
first model, Mdiff  , only included difficulty as a predic-
tor, the second model, Mdiff+day , additionally included 
an additive effect of day, and the third model, Mdiff×day , 
furthermore allowed for an interaction between difficulty 
and day.

We used the Akaike information criterion (AIC; 
Akaike, 1973) and the Bayesian information criterion 
(BIC; Schwarz, 1978) to compare the different candidate 
models. The two model selection criteria differ in their 
assumptions about the true data-generating model; while 
BIC assumes that the true model is among the candi-
date models, AIC does not assume that the true model 
is included in the set of candidate models. As a conse-
quence, BIC penalizes model complexity more heavily 
and tends to prefer simpler models (see Aho et al., 2014 
for a discussion). In most of the model comparisons pre-
sented below, both model selection criteria preferred 
the same model. As the models we consider here are 
relatively simple, in cases where the two criteria prefer 
different models, the model preferred by AIC might be 
provided a better approximation to the true data gen-
erating model. Both information criteria can be inter-
preted in terms of the deviation of the AIC/BIC value of 
each model in a set of candidate models from the small-
est AIC/BIC. As a rough guideline for the interpretation 
of AIC/BIC, differences between 2 and 7 typically indi-
cate that the candidate model is somewhat supported by 
the data, and differences larger than 7 indicate that the 
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candidate model is not supported by the data (Burnham 
et al., 2011).

The AIC and BIC values for the different models are 
presented in Table  2. As can be seen in the first line of 
the table, AIC and BIC were smallest for Mdiff×day , 

which confirms that the average number of points earned 
increased from day 1 to day 2, with gains being larger in 
the most difficult condition.

The second plot in the top row of Fig. 2 shows the aver-
age number of “False-Alarm Hover Over” (FAHO) events 

Fig. 2 Overview of points earned and frequency of different task events (see Table 1 for definitions) per block for both testing days and the three 
difficulty conditions. Error bars without caps show mean ±1.96 SEM

Table 2 Results of model comparison for effect of testing day and difficulty on points and task events (see Table 1 for definitions)

Values in bold indicate the best-fitting model

Dependent variable AIC BIC

Mdiff Mdiff+day Mdiff×day Mdiff Mdiff+day M

diff×day

Average Points 41398 41306 41272 41426 41339 41316
FAHO 13916 13913 13914 13938 13941 13953

FAR 12167 12169 12137 12189 12197 12176
HHO 11924 11923 11915 11946 11950 11954

MR 8579.6 8446.3 8431.3 8601.8 8474.2 8470.3
HR 11076 11038 11036 11098 11066 11075
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per experimental block on day 1 and day 2 in each of the 
three difficulty conditions. As can be seen, the number 
of FAHOs did not change across days. We used general-
ized linear mixed effects models (GLMs) to assess this 
observation statistically. Specifically, we fitted the aver-
age number of FAHOs using Poisson family models with 
a logarithmic link function. Similar to the analysis for 
the average number of points earned, we created three 
models that allowed for a random intercept for each par-
ticipant. The results of the formal model comparison are 
shown in the second row of Table 2. The AIC indicated 
a slight advantage of Mdiff+day over the other two mod-
els, while BIC indicated strong support for the simplest 
model, Mdiff  . These formal results align with the obser-
vation that the number of FAHOs did not change sub-
stantially across days.

The third plot in the top row of Fig. 2 shows the aver-
age number of “False-Alarm Refuel” (FAR) events per 
experimental block across difficulty conditions and days. 
The plot shows that the number of FARs did not change 
systematically across difficulty conditions, but rather 
increased in the easiest condition and decreased in the 
hardest condition. We again tested these observations 
using Poisson family GLMs that were specified as for 
the analysis of the FAHOs. The results of formal model 
comparison, shown in the third row of Table  2, show a 
strong preference for Mdiff×day . However, as Mdiff+day 
performed worse than Mdiff  in terms of AIC as well as 
BIC, the latter effect is solely driven by the interaction of 
day and difficulty. Due to the absence of a main effect of 
difficulty this interaction effect should not be interpreted. 
These results mean that there was no statistically reli-
able change in the number of FAR events between testing 
days.

The first plot in the bottom row of Fig.  2 shows the 
average number of “Hit Hover Over” (HHO) events per 
experimental block across difficulty conditions and days. 
There only appears to be a difference between day 1 and 
day 2 in the easy condition but not in the remaining dif-
ficulty conditions. Our statistical analysis used three 
GLMs that were specified as the models for the FAHO 
events. The results of the model comparison are shown 
in the fourth row of Table  2. AIC was equal for Mdiff  
and Mdiff+day . That is, there was no evidence for a main 
effect of day. BIC, on the other hand, was smaller for 
Mdiff  than for the two alternative models. These results 
confirm that there was no change in the number of HHO 
events between testing days.

The second plot in the bottom row of Fig. 2 shows the 
average number of “Miss Refuel” (MR) events per experi-
mental block across difficulty conditions and days. The 
average number of MRs decreased from day 1 to day 2 
in all difficulty conditions, with decreases being largest 

in the most difficult condition. We again tested these 
observations statistically by comparing three GLMs. This 
model comparison confirmed the qualitative observa-
tions; both AIC and BIC were substantially smaller for 
Mdiff×day compared to the other models.

Finally, the third plot in the bottom row of Fig. 2 shows 
the average number of “Hit Refuel” (HR) events per 
experimental block across difficulty conditions and days. 
The average number of HRs increases from day 1 to day 
2, with gains being largest in the most difficult condition. 
A formal model comparison confirmed these observa-
tions. AIC indicated a strong advantage of Mdiff+day over 
Mdiff  but only a negligible advantage of Mdiff×day over 
Mdiff+day . BIC indicated a strong advantage of Mdiff+day 
over both competitor models.

Taken together, the analysis of the task data indi-
cates that participants learned to improve the number 
of points earned. This increase from day 1 to day 2 was 
principally driven by those UAV-task events that were 
associated with considerable penalties and rewards, indi-
cating that participants adjusted their behavior according 
to the payoff manipulation. Subsidiary analyses of arc-
sine-transformed mean number of events per participant 
using Bayesian ANOVAs confirmed these conclusions 
(see Supplementary Materials).

Detection‑response task
We carried out our analysis of the DRT data in two steps. 
In a first step, we evaluated whether DRT behavior was 
sensitive to the workload manipulation in the UAV task. 
In a second step, we explored the relationship between 
UAV-task events and DRT behavior. We were interested 
in how different types of task events affect RTs and omis-
sions on the DRT, and how these relationships evolve as 
participants gain more experience with the UAV task.

Difficulty manipulation
Figure 3 shows the effect of the number of UAVs on mean 
RTs and omission rates. As can be seen, both mean RTs 
and omission rates increased as the number of UAVs 
increased, which suggests that the increased difficulty in 
the UAV task reduced participants’ DRT performance. 
Moreover, RTs and omission rates decreased from day 
1 to day 2 in all difficulty conditions, suggesting that 
cognitive workload decreased as participants became 
more skilled at the task. RTs, for instance, decreased on 
average by 5.4% in easy blocks and by 3.7% in medium 
and high difficulty blocks. We tested these qualitative 
observations statistically using LMMs for the log-RTs 
and binomial family GLMs for the omission rates. We 
specified the same three models of each type as in ear-
lier analyses that included random intercepts for partici-
pants and used log-RTs or omission rates as dependent 
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variable. The results of the model comparison are shown 
in Table 3. For log-RT (top row), both AIC and BIC indi-
cated Mdiff+day as the best model, which supports the 
observation that log-RT decreased across days and was 
longer for more difficult conditions but the change in log-
RT between days was comparable for all difficulty condi-
tions in a proportional sense (as additivity on a log scale 
indicates a constant proportional difference).

For omissions (bottom row in Table 3), AIC preferred 
Mdiff+day over Mdiff  and Mdiff×day over Mdiff+day , 
which suggests that omission rate increased with increas-
ing task difficulty and decreased across days, but the 
decrease was differently affected by different difficulty 
conditions. BIC, on the other hand, suggests Mdiff+day 
as the best fitting model. Nevertheless, both model selec-
tion criteria agree that task difficulty and testing day both 
affected omission rates.

Taken together, these results confirm that partici-
pants’ DRT performance was sensitive to the difficulty 
manipulation, with higher workload in the more diffi-
cult condition resulting in decreased DRT performance. 
Moreover, there appear to be clear practice effects 
reflected in improved DRT performance on day 2 com-
pared to day 1.

Predicting workload fluctuations
In the second step of our analysis, we investigated how 
the UAV task affects cognitive workload on a real-time 

basis, as reflected in fluctuations in DRT performance. 
In particular, we were interested in predicting cognitive 
workload based on recent events in the UAV task. As 
advocated by several authors in recent years (Hastie et al., 
2009; Koul et  al., 2018; Yarkoni and Westfall, 2017), we 
took a cross-validation approach to our statistical analy-
sis to safeguard generalizability of our results. We first 
identified a number of observable task events that might 
potentially affect workload as measured by the DRT. Sub-
sequently, we refined and complemented these predic-
tors with other variables that should reflect psychological 
influences on participants’ cognitive workload. To guar-
antee that sufficient data were available for all these anal-
yses, we removed the data of all participants who failed 
to respond to more than 45% of DRT prompts in two or 
more difficulty conditions. This resulted in the removal of 
seven participants on day 1 and five participants on day 
2.

Time on task
Before performing the predictive analysis, we inves-
tigated time on task, as we expected that fatigue might 
affect DRT performance independent of specific UAV 
task events and cognitive workload. Figure  4 shows the 
development of DRT performance across blocks. The 
top row shows how mean RT changes across experi-
mental blocks on day 1 (left) and day 2 (right). There 
does not appear to be a systematic relationship between 
experimental block and RT on day 1, but on day 2 mean 
RT appears to increase across blocks, consistent with a 
fatigue effect. The apparent lack of a relationship between 
RT and block on day 1 might be due to any fatigue effect 
being masked by learning in the UAV task that decreased 
its cognitive demands.

The bottom row shows how mean omission rate 
changes across experimental blocks. There appears to be 
a slight increase in omission rate across blocks on both 
days. However, this tendency is difficult to interpret due 
to the high standard errors in the observed mean omis-
sion rates.

To assess these observations statistically, we used 
LMMs models to test the relationship between RT and 

Fig. 3 Mean response time (RT) and omission rate for the three task 
difficulty levels, separately for the two testing days. Error bars show 
mean ±1.96 SEM

Table 3 Results of model comparison for effect of testing day and difficulty on DRT performance

Values in bold indicate the best-fitting model

Dependent variable AIC BIC

Mdiff Mdiff+day Mdiff×day Mdiff Mdiff+day M

diff×day

Log-RT 61493 61399 61403 61536 61451 61472

Omissions 43725 43577 43569 43761 43621 43632
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block, and binomial family GLMs to test the relation-
ship between omission rate and block. In light of the 
results for the relationship between difficulty and RT/ 
omission rate above, we considered three different mod-
els with RT/ omission rate as dependent variables and 
random intercepts for each participant. The first model 
Mdiff+day only used day and difficulty as predictors. The 
second model, Mdiff+day+block , additionally allowed for 
an effect of block. The third model Mdiff+day×block , fur-
thermore allowed for an interaction effect between block 
and day. The results of the model comparisons are shown 
in Table 4. For the models with RT as dependent varia-
ble, shown in the top row, AIC indicated Mdiff+day×block 
as the best model, supporting an effect of block on RT, 
but only on day 2. BIC, on the other hand, preferred 
Mdiff+day+block , which suggests that block affected RT 
equally on both days. The results for the models with 

omissions as dependent variable are shown in the bot-
tom row of Table  4; both AIC and BIC indicate that 
Mdiff+day+block accounts best for the observed data, 
which means that omission rates increased equally across 
blocks on both days.

Taken together, these results suggest the presence of 
fatigue effects that led to a decline in DRT performance 
across blocks. The effect of block on RT might have been 
mitigated by learning effects on day 1, leading to an inter-
action between block and testing day.

Prediction from UAV‑task events occurring at different 
timescales
The goal of our first cross-validation analysis was to 
identify which observable UAV-task events signifi-
cantly affected subsequent cognitive workload. The out-
comes of this analysis were then used to generate refined 

Fig. 4 Development of DRT performance across blocks. Top row: mean RT across blocks. Bottom row: mean omission rate across blocks. Error bars 
show mean ±1.96 SEM

Table 4 Results of model comparison for effect of block on DRT performance

Dependent variable AIC BIC

Mdiff+day Mdiff+day+block Mdiff+day×block Mdiff Mdiff+day Mdiff×day

Log-RT 57652 57641 57620 57704 57701 57689

Omissions 34573 34541 34541 34617 34594 34602
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predictors that not only used observable task events but 
also included proxies of participants’ dynamic internal 
representation of the UAV task. For this initial analysis, 
we considered the UAV-task events FAHO, HHO, FAR, 
MR, and HR. These predictors were defined as in our 
previous analysis and were based on the occurrence or 
non-occurrence of the relevant task event in a predefined 
time period.

There is no a priori way of determining the timescale 
on which task events affect workload. That is, we do not 
know whether the occurrence of a task event will increase 
cognitive workload and hence affect DRT performance, 
3, 4, or even 5 s later. Therefore, we repeated our analysis 
three times, once for RT and omissions if an event of a 
specific type occurred up to 3 s prior to the DRT prompt, 
once for the case that an event occurred up to 4 s prior 
to the DRT prompt, and once for the case that an event 
occurred up to 5 s prior to the DRT prompt. We focused 
on the 3-5-s intervals because they spanned the range of 
intervals between DRT stimuli.

Figure  5 shows how different UAV events affect RT 
on different timescales. Each plot shows the difference 
in mean RT between trials on which the specific event 
occurred and trials on which the event did not occur, for 
day 1 and day 2. The top row shows the results for events 
occurring up to 3 s prior to the DRT prompt, the middle 
row shows the results for a 4-s time window, and the bot-
tom row shows the results for a 5-s time window. As can 
be seen, on both days the occurrence of any event dur-
ing any of the three time windows appears to delay the 
detection response. Differences between different classes 
of events appear to be relatively small and differences 
between day 1 and day 2 for the same type of event seem 
negligible. However, it should be noted that different 
types of events might be considerably correlated, either 
because some types of game events logically precede oth-
ers, or because several different events occur within the 
same time window. We will, therefore, rely on multivari-
ate statistical analyses to disentangle these correlations.

Figure 6 shows how different UAV events affect omis-
sion rates on different timescales. Each plot shows the 
difference in mean omission rate between trials on which 
the specific event occurred and trials on which the event 
did not occur, for day 1 and day 2. Similar to the results 
for the effect on RT, all event types except for FAHO 
and HHO seem to affect omissions to the same extent 
on both days, and differences between these event types 
seem negligible. FAHO and HHO, on the other hand, 
appear to influence omissions more on day 2 than on day 
1. However, we again note that the occurrence of different 
event types is highly correlated and a multivariate analy-
sis approach is needed to disentangle these correlations.

As we found clear learning effects over days, which 
may change what events, if any, are predictive, we ana-
lyzed the data for each testing day separately. We split 
the available data of all participants for each day into five 
non-overlapping subsets of participants, the cross-vali-
dation folds. The data were split into folds with approxi-
mately equal numbers of participants. Each fold served 
in turn as the training set and the remaining four subsets 
served as cross-validation sets.

The two outcome variables of the DRT, RTs, and omis-
sions are known to be intricately linked (e.g., Wickel-
gren, 1977; Ratcliff, 1978) and statistical models should 
ideally account for both quantities simultaneously. One 
approach to simultaneous modeling is offered by two-
part models (TPMs) for semi-continuous data (Aitch-
ison, 1955; Farewell et al., 2017). For our DRT data, such 
a model would assume a log-normal distribution for the 
RT data and represent omissions as a point-mass at zero. 
Unfortunately, easy-to-use software implementations 
for such log-normal TPMs have only become available 
recently and lack the capabilities required for our cross-
validation analyses. The GLMMadaptive R-package 
(Rizopoulos, 2020), which we will use here, implements 
maximum-likelihood fitting routines for log-normal 
TPMs. However, predictions for new cases can only be 
generated for the log-normal intensity variable (i.e., log-
RTs) but not for the occurrence variable (i.e., omissions), 
which means that our cross-validation analysis is limited 
to the RT data. We therefore also consider a second anal-
ysis approach that applies cross-validation separately to 
LMMs for the log-RTs and to binomial-family GLMs for 
the omissions.

In our first set of analyses, we consider five types of 
UAV-task events as predictors (FAHO, HHO, FAR, MR, 
and HR) that might influence cognitive workload and 
thus affect log-RT and omissions. We considered experi-
mental block as a potential proxy for learning and fatigue 
effects that might influence log-RT. Moreover, based on 
the results of our previous analyses, we also included 
difficulty as a potential predictor. These seven potential 
predictors can be combined into 28 = 128 different sets 
of predictors. This would yield a total of 1282 = 16384 
models that implement only the possible additive (i.e., 
no interactions) combinations of fixed effects and ran-
dom intercepts. Further computational issues arise from 
the fact that most of our predictors are discrete with only 
a small numbers of observations in some cells, which 
means that estimates of interaction effects are notori-
ously numerically unstable. Hence, to keep the com-
putational costs at a manageable level and guarantee 
numerical stability, we only used models with additive 
fixed effects and random subject intercepts. Moreover, 
we only considered all possible combinations of the five 
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UAV-task events as predictors, with difficulty and experi-
mental block always included as predictors. In addition, 
we considered four baseline models that included only 
block and difficulty, only block, only difficulty, or only an 
overall intercept as predictors.

We fit each model to the training set consisting of 
four of the cross-validation folds and used the resulting 
parameter estimates to predict the data of the remaining 
fold. To measure predictive performance, we computed 
the mean squared deviation (MSD) between observed 
and predicted log-RT or omission rate for each cross-
validation fold, and normalized it by subtracting the aver-
age MSD across all five folds (NMSD). Lower values of 
NMSD indicate better predictive performance. This anal-
ysis was repeated for time windows of 3 s, 4 s, and 5 s 
prior to the DRT prompt.

Figure  7 shows the results of the cross-validation 
analysis based on TPMs for different time windows and 

testing days. Results are displayed in order of increas-
ing mean NMSD across folds. A ‘+’ in the label below 
each data point indicates that the corresponding vari-
able was included as a predictor in the model. NMSD 
showed similar patterns on both testing days and across 
time windows, which suggests that UAV-task events 
can affect DRT performance over a time span of several 
seconds. NMSD was considerably lower for models that 
included difficulty and experimental block as predictors 
than for the baseline models that did not include these 
predictors. This means that both predictors convey 
essential predictive information. Among the five UAV 
events, only FAR appears consistently in all models 
with good predictive performance, for all time windows 
and testing days. FAR should therefore be considered 
an essential predictor in the context of TPMs. For time 
windows of 3s and 4s, HHO is also included in a large 
number of models with low NMSD on day 2 and FAHO 

Fig. 5 Effect of different UAV-task events on response time (RT) for different time windows prior to the DRT prompt. Top row: 3-s time window; 
middle row: 4-s time window; bottom row: 5-s time window. Error bars show mean difference ± 1.96 SEM
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consistently appears in the best models models on day 
2 for the 5s window. Overall, these patterns were con-
sistent across cross-validation folds.

Figure  8 shows the results of the cross-validation 
analysis based on LMMs for different time windows 
and testing days. Similar to the TPMs, NMSD showed 
comparable patterns on both testing days and across 
time windows. Moreover, NMSD was again consider-
ably lower for models that included difficulty and experi-
mental block as predictors than for the baseline models 
that did not include these predictors. This confirms that 
both predictors convey essential predictive information. 
Among the five UAV events, only FAHO appears consist-
ently in all models with good predictive performance, for 

all time windows and testing days. HR is also included 
in a sizeable number of models with low NMSD on day 
1, but also appears in some models with high NMSD, 
particularly on day 2. We also note that fold 4 produced 
results that were inconsistent with the other folds for the 
analysis of day 2 (Fig. 8).

Figure 9 shows the results of the cross-validation analy-
sis based on binomial-family GLMs for different time 
windows and testing days. Predictive performance was 
measured in terms of NMSD between the observed and 
predicted probability of an omission. As for the TPMs 
and LMMs, the NMSD showed similar patterns on both 
testing days and across time windows. However, in con-
trast to the TPMs and LMMs, none of the task events 

Fig. 6 Effect of different UAV events on omissions for different time windows prior to the DRT prompt. Top row: 3-s time window; middle row: 4-s 
time window; bottom row: 5-s time window. Error bars show mean difference ± 1.96 SEM
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were consistently included in the models with low 
NMSD. In fact, task events that were good predictors 
for log-RTs, FAHO, HHO, and FAR performed poorly 
for omissions. The models with the lowest NMSD only 
included difficulty and experimental block as predictors.

Taken together, the results of our first set of cross-val-
idation analyses suggest that participants’ DRT perfor-
mance is strongly influenced by global levels of difficulty 
and fatigue. Of the UAV events considered, only FAHO, 

HHO, and FAR seems to have a moderate influence on 
RTs in the DRT. A possible interpretation of this effect 
is that, as their workload increases, participants tend to 
lose track of the state of the different UAVs. To compen-
sate for this loss of situational awareness, they need to 
hover over the UAVs to update and refresh their mental 
representation of the situation. In the next section, we 
investigate this suggestion by investigating the predictive 

Fig. 7 Cross-validation results based on TPMs for different UAV-task event predictors of log-RT. Normalized mean squared deviations for different 
LMMs for different time windows prior to the DRT prompt are shown. Top row: 3-s time window; middle row: 4-s time window; bottom row: 5-s 
time window. Left column: results for day 1; right column: results for day 2. Red squares show the mean across folds
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ability of statistics constructed to measure participants’ 
situational awareness with respect to fuel load.

Refined predictors
We considered six new predictor variables in our sec-
ond cross-validation analysis, in addition to difficulty 
and block. As the results of the previous cross-validation 
analysis were similar for different time windows, and 
were slightly more stable across folds for shorter time 

windows, we considered only events within a 3-s time 
window.

Our initial cross-validation analysis suggested that 
requesting fuel information is indicative of increased 
cognitive workload. More fine-grained information 
about a participant’s cognitive workload might be pro-
vided by the frequency with which that person requests 
fuel information. Participants might attempt to compen-
sate for a loss of situational awareness by requesting fuel 

Fig. 8 Cross-validation results based on LMMs for different UAV-task event predictors of log-RT. Normalized mean squared deviations for different 
LMMs for different time windows prior to the DRT prompt are shown. Top row: 3-s time window; middle row: 4-s time window; bottom row: 5-s 
time window. Left column: results for day 1; right column: results for day 2. Red squares show the mean across folds
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information more frequently, which should result in an 
increased number of HHO and FAHO events within a 
certain time period. Therefore, we considered the num-
ber of HHO events within the last 3 s, “#HHO3s,” and the 
number of FAHO events within the last 3 s, “#FAHO3s” 
as new predictors. Our initial cross-validation analy-
sis further suggested that falsely attempting to refuel 
UAVs that have not yet reached a critical fuel level. The 

frequency of such FAR events within a given time win-
dow might again provide more fine-grained information 
about cognitive workload. We therefore included the 
number of FAR events within the last 3 s, “#FAR3s,” as 
another predictor.

The fourth and fifth potential predictors were also 
related to participants’ knowledge of fuel levels, but 
focused on the fact that as participants received a 

Fig. 9 Cross-validation results based on binomial-family GLMs for different UAV-task event predictors of omissions. Normalized mean squared 
deviations for different binomial family generalized linear mixed effect models for different time windows prior to the DRT prompt are shown. Top 
row: 3-s time window; middle row: 4-s time window; bottom row: 5-s time window. Left column: results for day 1; right column: results for day 2. 
Red squares show the mean across folds
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particularly high penalty for exploding UAVs, so their 
workload should mostly be driven by the UAVs with 
the lowest fuel levels. If they maintain an accurate men-
tal representation of the current situation, participants 
should mostly request fuel information for the UAVs with 
the lowest fuel levels. Hence, our fourth potential predic-
tor was the ordinal position of the UAV participants hov-
ered over most recently, “OrdFuel.” That is, did the last 
UAV checked in the 3 s before a DRT response have the 
lowest fuel (OrdFuel = 1), the second lowest (OrdFuel = 
2), and so on.

Multiple UAVs reaching a critical fuel level in a short 
period of time should increase participants’ cognitive 
workload considerably more than a single UAV reach-
ing a critical fuel level, as that might leave insufficient 
time to refuel all of them before one or more crashed. 
Our fifth new predictor combines the fuel level of all 
UAVs on screen, but gives more weight to lower fuel lev-
els, “WeightFuel.” This computation was based on the 
Minkowski distance of the vector of fuel levels from 0, 
normalized by the number of UAVs:

where K is the total number of UAVs on screen and fk is 
the fuel level of the kth UAV. Here we set p = 1/4 (we 
discuss this choice further below).

We added one final, and somewhat different, potential 
predictor, whether there was a omission on the previ-
ous DRT trial, “MissPrevDRT,” in response to the over-
all poorer prediction of DRT omissions in the previous 
cross-validation analysis. An omission on the previous 
trial might predict an omission or a slower RT on the 
present trial, due to a period of sustained higher work-
load. However, an omission on the present trial might 
also be due to reasons not directly related to workload, 
such as the occurrence of periods where participants 
neglected instructions to respond to the DRT and instead 
responded only to the UAV task. To the degree that the 
latter process was in play, we might expect MissPrevDRT 
to predict omissions but not RT.

As information about the preceding trial was not avail-
able for the first trial of each block, we excluded these 
trials from all further analysis steps. Moreover, the data 
recording system used for the experiment only logged 
information about UAVs when participants interacted 
with a UAV. This means that we could only compute the 
new predictor variables for trials on which participants 
had interacted with a UAV within a period before being 
presented the DRT prompt. We therefore removed all tri-
als on which participants had not interacted with a UAV 
or on which the last interaction with a UAV occurred 

(1)WeightFuel =

(

K
∑

k=1

f
p
k

K

)1/p

,

more than 100s before the DRT prompt. This resulted 
in the removal of only a small number of trials, a total of 
280 from the dataset for day 1 and a total of 253 from the 
dataset for day 2.

We used the same cross-validation setup as in the pre-
vious analysis to test whether any of the five predictors 
conveys additional information about participants’ DRT 
performance. We again considered all possible combi-
nations of the six predictors together with difficulty and 
experimental block. In addition, we considered four base-
line models that included only difficulty and experimen-
tal block as predictors, only difficulty, only experimental 
block, or only an overall intercept.

Figure 10 shows the results for the TPMs. Models are 
ordered by increasing average NMSD. As can be seen, 
models that included block and difficulty in addition to 
the refined predictors performed better than the base-
line models that did not include any refined predictors. 
Among the refined predictors, #HHO3s, #FAR3s, and 
WeightFuel were consistently included in the models 
with the lowest average NMSD on both testing days. 
These results hold across all cross-validation folds on 
day 1. On day 2, however, this pattern only holds for four 
of the five folds. In fold 4, the best models consistently 
included OrdFuel and #FAR3s as predictors.

Figure  11 shows the LMM results for predicting log-
RT. The results match those for the TPMs closely. Among 
the refined predictors, #HHO3s and WeightFuel were 
consistently included in the models with the lowest aver-
age NMSD on both testing days. These results again hold 
across all cross-validation folds on day 1. However, on 
day 2 fold 4 again showed a deviating pattern; the best 
models only consistently included #FAR3s. Nevertheless, 
by and large, #HHO3s and WeightFuel were most con-
sistently included in the models with the lowest NMSD 
across folds.

The results for predicting omissions are shown in 
Fig.  12. Similar to the results of our initial analysis, the 
best models for predicting omissions only included block 
and difficulty as predictors. Additionally including any of 
the refined predictors led to a steep increase in NMSD. 
These patterns were consistent across testing days and 
folds.

Figure  13 shows approximate effect sizes for the 
three refined predictors that performed best for log-
RT and/or omissions, and for block and difficulty. The 
left panel shows the unstandardized beta weights from 
a log-normal TPM with RT as dependent variable and 
WeightFuel, #HHO3s, #FAR3s, block, and difficulty as 
predictors, and a random intercept for each participant. 
WeightFuel, #HHO3s, and #FAR3s were z-standardized 
within each participant so that beta weights indicate 
the change in predicted log-RT if the predictor value 
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increases by 1 SD. Difficulty was entered as a factor 
with the case of 3 UAVs as the reference level, which is 
absorbed in the intercept term of the model, and levels 
+2UAVs and +4UAVs representing the cases of a total 
of 5 and 7 UAVs, respectively. The bar for block shows 
the total effect size for completing 21 blocks. Black bars 
show the beta weights for day 1, and gray bars show the 
beta weights for day 2.

As can be seen, effects were similar in size on both 
testing days for all predictors except for WeightFuel and 
difficulty. WeightFuel had a negative effect on RT, with 
a one standard deviation increase in weighted fuel lev-
els decreasing log-RT by about 40ms on day 1 and by 
about 60ms on day 2. #HHO3s and #FAR3s had a slightly 
positive effect, with each additional HHO and FAR event 
increasing log-RT by about 40ms. Block had a negligible 
effect on RT on day 1 and a considerable positive effect 
on RT on day 2, resulting in an increase in log-RT by 
about 75ms after 21 blocks. Increasing the number of on 
screen UAVs by 2 to a total of 5 increased RT by about 
45ms, and increasing the number of on-screen UAVs by 

4 to a total of 7 increased RT by 67ms on day 1 and 57ms 
on day 2.

The middle panel of Fig. 13 shows the unstandardized 
beta weights from a LMM with log-RT as the dependent 
variable and the same predictors as in the TPM. The pat-
terns and effect sizes for all predictors matched those for 
the TPM to four decimal places.

The right panel of Fig.  13 shows the unstandardized 
beta weights from an binomial family GLM with log odds 
of omission as the dependent variable.1 Predictors were 
specified as for the LMM. Results were similar to those 
for log-RT. WeightFuel had a sizeable negative effect on 
the log-odds of an omission that was more pronounced 
on day 2 than on day 1. Experimental block, +2UAVs, 
and +4UAVs considerably increased the log odds of an 
omission, and these effects were more pronounced on 
day 2. Finally, increases in the number of HHO and FAR 

Fig. 10 Cross-validation results for predicting log-RT with a log-normal TPM based on refined predictors

1 The log odds of an omission are computed as log(p/(1− p)) , where p is 
the probability of an omission. Although the mapping is not linear in p, it 
is strictly increasing, which means that larger beta weights correspond to a 
higher probability of an omission.
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events had a comparatively smaller effect on the log odds 
of an omission.

We used TPMs to directly compare the predictive qual-
ity of our refined predictors to the event-based predic-
tors from our initial analysis. Within the framework of 
our experimental task, a direct manifestation of cogni-
tive overload is the explosion of a UAV. Participants are 
most heavily penalized for failing to refuel a UAV in time 
and should therefore prioritize refueling above all other 
game activities. Hence, the number of exploded UAVs is 
an observable indicator of cognitive overload. We used 
TPMs to assess whether our refined predictors were bet-
ter able to predict cognitive overload than the simple 
event-based predictors used in our initial analysis. To this 
end, we formally compared Poisson-family zero-inflation 
models that used either the best event-based predictors 
or the best refined predictors to predict the number of 
exploded UAVs within a 5-s time window after the DRT 
prompt had been presented. The first model included the 
event-based predictors that indicated whether at least 
one HHO, FAHO, FAR, or HR event had occurred 3s 
prior to the DRT prompt. The model additional included 
experimental block and difficulty as predictors to control 

fatigue effects and the effect of task difficulty. The second 
model included WeightFuel and the number of HHO and 
FAR events within a 3-s time window prior to the DRT 
prompt. The model again included experimental block 
and difficulty as predictors to control fatigue effects and 
the effect of task difficulty. Both models were compared 
separately for each testing day. For day 1, the formal 
model comparison yielded an AIC value of 32899 and a 
BIC value of 32934 for the simple event-based predic-
tors, and an AIC value of 24547 and a BIC value of 24578 
for the refined predictors. That is, the refined predictors 
were considerably better at predicting cognitive over-
load up to 5s after the DRT prompt. For day 2, the formal 
model comparison yielded an AIC value of 29025 and a 
BIC value of 29060 for the simple event-based predictors, 
and an AIC value of 21976 and a BIC value of 22007 for 
the refined predictors. This again shows that the refined 
predictors were considerably better at predicting cogni-
tive overload 5s after the DRT prompt.

One final question that remains is the influence our 
choice of the exponent of the Minkowski distance in 
Eq.  (1) has on the predictive performance of WeightFuel. 
Our choice of p = 1/4 was based on the assumption that 

Fig. 11 Cross-validation results for predicting log-RT with a LMM based on refined predictors
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participants attach higher importance to UAVs with lower 
fuel levels. According to this reasoning, computing the 
predictor with a different exponent p < 1 should yield 
similar results, but using an exponent p > 1 should yield 
worse predictive performance. To test this hypothesis, we 
repeated the cross-validation analysis for log-RTs with four 
different values of p: p = 1/8 (with corresponding Weight-
Fuel predictor WF p = 1/8), p = 1/4 (WF p = 1/4), p = 2 
(WF p = 2), and p = 4 (WF p = 4). The results of the anal-
ysis based on TPM are shown in Fig. 14, and the results of 
the analysis based on LMMs are shown in Fig. 15.

Models in both figures are again presented in order of 
increasing average NMSD. As can be seen, for the two 
values of the exponent smaller than 1, the corresponding 
WeightFuel predictor is consistently included in the mod-
els with the lowest average NMSD, both in the TPMs and 
in the LMMs. For the two values of the exponent greater 
than 1, on the other hand, the corresponding WeightFuel 
predictor is included in several of the worst models.

Discussion
Managing the effects of different levels of cognitive 
workload is important for both safety and productiv-
ity. Here we examined issues related to the ability of 

adaptive automation to undertake such management. 
We believe that for this approach to be most effective 
it is desirable to move beyond measuring past or pre-
sent workload and instead predict future workload. For 
the first time to our knowledge, we explored the possi-
bility of predicting real-time fluctuations in cognitive 
workload on short timescales (several seconds) based 
only on knowledge of factors related to the primary task 
and primary task performance. To do so, we had opera-
tors manage the refuelling of a fleet of unmanned ariel 
vehicles (UAVs), performing this task broken up into 
24 two-minute blocks in each of two sessions occurring 
on different days. In order to develop and validate the 
predictive models we used the detection response task 
(DRT), an ISO standard (ISO 17488, 2016) methodology, 
to quantify cognitive workload in terms of responses to 
tactile stimulation occurring every 3-5 s. DRT perfor-
mance is defined along two related dimensions, response 
time (RT) and omissions. We combined two linear mixed 
model analysis approaches, two-part models (TPMs) 
(Aitchison, 1955; Farewell et  al., 2017) capable of mod-
eling RT and omissions simultaneously and separate 
models of RT and omissions in order to identify potential 
predictors of cognitive workload. The separate models 

Fig. 12 Cross-validation results for predicting omissions based on refined predictors
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were required as current implementations of TPMs are 
limited in their ability to generate predictions for new 
cases based on estimates of the model coefficients from 
a separate dataset. Our aim was to determine if DRT RT 
and/or omission rates, both of which increase with cog-
nitive workload, could be predicted from the recent his-
tory of the UAV task and the operator’s interactions with 
it. It is important to note that although our methodology 
required workload measurement to develop the predic-
tive model, workload measurement is not required for 
an ongoing deployment, avoiding potential difficulties 
associated with user acceptance and interference with 
primary-task performance.

Preliminary analyses showed that over the two days 
of practice operators improved their performance in 
response to a payoff scheme, increasing occurrences of 
the two types of positive task events–checking for and 
replenishing fuel when it was low–and reducing occur-
rences of the three types of negative events–check-
ing fuel and trying to refuel when the level was high, 
or allowing a UAV to run out of fuel so that it crashed. 
Both DRT omissions and RTs increased strongly with 
task difficulty, which was manipulated by varying the 
number of UAVs that had to be managed. In contrast, 
these measures decreased from day 1 to day 2, indicat-
ing that the cognitive demands of the task decreased with 

practice, although the difficulty effect remained clearly 
present on the second day. There was also a clear effect 
of blocks within sessions (i.e., time-on-task) with omis-
sions increasing over the course of the sessions on both 
days. The same effect was seen on RT during day 2, but 
not on day 1, which may have been due to an underlying 
increase due to fatigue being mitigated by a decrease due 
to learning.

Our initial analysis assessed whether the occurrence of 
each of five task events in the last 3, 4, or 5 s predicted 
cognitive-workload fluctuations. We were not merely 
interested in assessing whether DRT performance dif-
fered significantly as a function of whether an event 
occurred or not. Instead, because of our focus on predic-
tion, we used a much more demanding between-subject 
cross-validation test, which assessed whether includ-
ing a task-event predictor in a model fit to DRT perfor-
mance from one (training) subset of participants would 
enable that model to better predict DRT performance 
for another (test) set of participants. In all models, we 
included difficulty and time-on-task as predictors and 
then compared the effects of adding all possible combina-
tions of the five events. This was repeated for five differ-
ent folds—divisions of our participants into training and 
test sets—to assess the stability of predictions over indi-
vidual differences.

Fig. 13 Approximate effect size of different predictors on log-RT and log odds of omissions. Bars show the unstandardized beta weights from a 
log-normal TPM for response time (log-RT), from a LMM for response time (log-RT) and a GLM for log odds of omissions. Predictors WeightFuel, 
#HHO3s and #FAR3s were z-standardized within each participant
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The initial analysis confirmed that difficulty (“D”) and 
time-on-task (block; “B”) needed to be included. For 
the prediction of RT, the task events checking the fuel 
level, either successfully (i.e., when the UAV was ready 
for fueling; “HHO”) or unsuccessfully (“FAHO”), and 
attempting to refuel a UAV, either successfully (“HR”) of 
unsuccessfully (“FAR”), had predictive ability, with little 
variation in its performance across the three time inter-
vals. For omissions, none of the task events had added 
predictive value. We took the effect of checking fuel as 
suggesting that, as workload increases, participants lost 
track of the UAV’s fuel level, and in order to compensate 
for this loss of situational awareness they needed to more 
frequently check their fuel levels.

We used the results of the initial analysis to create a 
refined set of six predictors, and focused on only the 

last 3 s as that provided slightly more consistent results 
in the initial analysis. Five predictors sought to bet-
ter measure awareness about fuel load. The first three 
simply refined the most successful measures from the 
initial analysis, by counting the number of times fuel 
levels were checked successfully (“#HHO3s”), unsuc-
cessfully (“#FAHO3s”), and the number of times UAVs 
were refuelled prematurely (“#FAR3s”). The fourth pre-
dictor was based on the rank of the fuel load of the last-
checked UAV (from lowest to highest; “OrdFuel”), and 
was created with a similar rationale (i.e., that higher 
ranks corresponded to reduced situational aware-
ness). The fifth was the average fuel levels of all UAVs 
(“WeightFuel”) with a higher weight given to lower 
loads because they were more indicative of an incipi-
ent UAV crash. Finally, we used a sixth predictor in the 

Fig. 14 Cross-validation results for predicting log-RT from a TPM based on refined predictors with different exponents for the weighted average 
fuel-load predictor. Note that in order to make comparison easy the results in the top right panel repeat those in Fig. 11
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hope of specifically improving the poorer and more 
variable prediction performance for omissions that we 
found in the initial analysis, the occurrence of an omis-
sion for the previous DRT stimulus (“MissPrevDRT”). 
We speculated that omissions might occur in periods 
where participants forgot to respond to the DRT task, 
so an omission for the present DRT stimulus might be 
indexed by a previous omission. A previous omission 
might also predict a current omission occurring due to 
a prolonged period of high workload, in which case it 
would also predict RT, whereas forgetting arguably pre-
dicts a selective influence on omission rate.

The results of the second analysis were more encour-
aging for the prospect of developing real-time predic-
tions. Once again difficulty (“D”) and time-on-task 
(block; “B”) were included in the best models for both 

RT and omissions. For RT there was also clear support 
for the refined version of the best predictors in the ini-
tial analysis, the number of successful fuel checks in the 
last 3 s (“#HHO3s”) and the number of premature refu-
elling attempts in the last 3 s (“#FAR3s”). Moreover, 
the weighted average fuel load (“WeightFuel”) was also 
strongly supported as a predictor. In contrast to the first 
analysis, the pattern of results was stable over folds. For 
omissions none of the refined predictors provided addi-
tional predictive information. Estimates of effect sizes 
suggested that a one standard deviation decrease in the 
weighted fuel level, and a one standard deviation increase 
in the number of successful fuel checks or the number 
of premature refuelling attempts had approximately the 
same effect on RT as an increase of 2 UAVs.

Fig. 15 Cross-validation results for predicting log-RT from a LMM based on refined predictors with different exponents for the weighted average 
fuel-load predictor. Note that in order to make comparison easy the results in the top right panel repeat those in Fig. 11
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In a final analysis, we compared the ability of the best 
event-based predictors (HHO, FAHO, HR, FAR) and the 
best refined predictors (WeightFuel, #HHO3s, #FAR3s) 
in combination with difficulty (D) and time-on-task 
(B) to predict the worst game outcome, the number of 
exploded UAVs, during the 5-s time window following 
the DRT prompt. This analysis confirmed that the refined 
predictors were considerably better at predicting the 
worst game outcome that indicates complete cognitive 
overload and loss of situational awareness.

In summary, we identified task difficulty, time-on-
task, weighted fuel load, and the number of successful 
fuel level checks and unsuccessful refuelling attempts 
as essential predictors of cognitive workload. We found 
that the refined predictors were able to account for the 
same sort of substantial change in cognitive workload as 
a consistent increase in the level of difficulty over several 
minutes, but where those changes occurred on a much 
shorter timescale. Thus, we were both able to confirm 
that fast fluctuations in task demands lead to correspond-
ingly fast fluctuations in spare cognitive capacity and to 
identify a promising set of candidate measures that could 
be used to guide adaptive automation in real-world set-
tings. We conclude by considering how these theoretical 
and practical results can form the basis of future research 
and applications.

Limitations and future directions
A potential limitation of our results it that the link 
between events predictive of an increase in future work-
load and DRT performance may be mediated by an 
increase in the priority participants gave to the primary 
task, and hence a reduction in the capacity available for 
the DRT. This increase in priority might also result in an 
increase in the rate of user driven task events. Because 
we selected DRT responses to analyze based on proxim-
ity to task events [see Humphrey and Kramer (1994) for 
a similar methodology with ERPs] they would be likely to 
come from periods of higher primary task priority. Fortu-
nately, although this could cause a range restriction that 
reduces predictive ability, it does not compromise the 
ability of the DRT to measure cognitive workload nor the 
fact that certain events are predictive of the DRT because 
they cause a change in cognitive workload associated 
with the primary task.

For omissions, the effect of failing to respond to a pre-
vious DRT stimulus had an even greater effect than the 
addition of two UAVs. In this case, the fact that this effect 
was selective to omissions suggests that it might index 
a somewhat different mechanism to the other predic-
tors, perhaps related to goal neglect with respect to DRT 
responding. This might, in turn, be related to cognitive 
workload, but could also have other potential causes. The 

effect of the number of fuel checks was also selective, 
but for RT, suggesting that omissions and RT may have 
partially different drivers. Given that there was some 
divergence between RT and omission effects it would 
be desirable in future work using the DRT to attempt to 
develop an analysis that simultaneously accounted for 
both measures in a more theoretically principled way 
than our descriptive two-part models. In a future investi-
gation we plan to use the reduced set of candidate predic-
tors in combination with evidence-accumulation models 
(e.g., Tillman et  al., 2017) to simultaneously model RT 
and omission data, in order to assess whether this yields 
better real-time prediction.

We used between-subject cross-validation here 
because we were interested in determining if primary-
task characteristics could be predictive for all partici-
pants, and hence whether it is viable to develop a general 
predictive model for a given task that can be applied to 
new users without needing to collect workload measure-
ment for them. Although we did find this to be the case 
to a large degree, there were also clear individual differ-
ences. It may, therefore, be illuminating to also perform 
variable-selection based on within-subject cross-valida-
tion. Performance is likely to be better, but more inter-
esting would be the possibility of individual differences in 
the best predictors. If they occurred then it would sug-
gest that it would be useful to calibrate predictive models 
for individual operators not only in a quantitative sense, 
but also in terms of the predictors used. Our results 
also suggest that predictive models might need to take 
account of changes within users over time, such as those 
associated with skill acquisition. In order to tune the pre-
dicative model in an ongoing manner, it might be useful 
to consider a role for an embedded secondary task (Raby 
and Wickens 1994), a relatively frequent but low priority 
response that is a legitimate part of the operator’s duties.

More effective prediction might also be obtained based 
on different or additional workload measures. This might 
be particularly desirable where successful performance in 
the primary task depends on multiple cognitive resources 
determining workload, or on factors other than cognitive 
workload. One possibility is to use a set of different sec-
ondary-task measures that address the different relevant 
cognitive resources (Schlegel et al., 1986). Another possi-
bility is to use either one or more physiological measures 
either with or without secondary-task measures. Devel-
oping predictive models based on physiological measures 
may be particularly appropriate where it is desirable for 
adaptive automation to take account of other factors such 
as stress or fatigue, and because of their potential to be 
less obtrusive physiological measures may have utility in 
ongoing tuning of predictive models.
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Although our second variable-selection analysis 
explored only a relatively small number of predictors, so 
that we cannot rule out that other better predictors exist, 
it does at least confirm that real-time prediction based on 
factors related to the primary task appears viable. These 
results also suggest that, at least for the present task, 
there are relatively rapid fluctuations of cognitive work-
load that have a sufficiently substantial magnitude to 
make them a worthwhile target for adaptive automation. 
The same methodology used here—benchmarking the 
magnitude of short-term fluctuations against difficulty 
manipulations that are clearly related to cognitive work-
load—can be used to establish if fluctuations in other 
tasks are similarly large.

The results of the refined variable-selection analysis are 
also salutatory for applying our methods more generally. 
They suggest that at least one route to successful predic-
tion relies on quantifying factors related to the mental 
states that operators require to enable successful con-
trol, which in the case of our task was situational aware-
ness about UAV fuel levels. As maintenance of control 
is a characteristic common to many tasks, this suggests 
potential for generalizing the current approach to a broad 
range of other tasks. To do so successfully, it seems likely 
that researchers should consider as predictors primary 
task characteristics that are related to attaining the task’s 
goals. The results of such analyses could also have util-
ity beyond guiding adaptive automation, by identifying 
aspects of task design that might be improved to reduce 
cognitive workload.

To sum up, the aim of the present work was to develop 
a method for predicting short-term fluctuations in cog-
nitive workload in a complex monitoring task. Using a 
cross-validation approach with performance on a sec-
ondary DRT task as criterion, we identified primary task 
events that were predictive of users’ cognitive workload 
in a 3 to 5-s time window. The success of this approach in 
a relatively complex simulated task environment suggests 
that it might also be successfully generalized to complex 
real-world domains. A particularly attractive feature of 
our method is its reliance on primary task events, which 
minimizes interference with ongoing task performance 
and opens up the possibility of noninvasive real-time pre-
diction of rapid workload fluctuations.
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