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Diabetic retinopathy (DR) is prevalent among people with long-term diabetes mellitus (DM)
and remains the leading cause of visual impairment in working-aged people. DR is related
to chronic low-level inflammatory reactions. Pyroptosis is an emerging type of
inflammatory cell death mediated by gasdermin D (GSDMD), NOD-like receptors and
inflammatory caspases that promote interleukin-1b (IL-1b) and IL-18 release. In addition,
the retinal neurovascular unit (NVU) is the functional basis of the retina. Recent studies
have shown that pyroptosis may participate in the destruction of retinal NVU cells in
simulated hyperglycemic DR environments. In this review, we will clarify the importance
of pyroptosis in the retinal NVU during the development of DR.
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1 INTRODUCTION

Diabetes mellitus (DM) is a prevalent metabolic disorder syndrome causing multiple systemic
complications (1). According to the International Diabetes Federation, the global incidence of DM
will increase in the next few decades, from an estimated 9.3% in 2019 to 10.2% by 2030 and 10.9% by
2045 (2). DR is a common and progressive microvascular complication of DM that can cause
irreversible retinal damage (3) and it remains the main cause of impaired vision in working-aged
people (4). According to a meta-analysis, the global population with moderate or more severe vision
impairment due to DR was 2.6 million in 2015, and the number is predicted to increase to 3.2
million by 2020 (5). Thus, DR will impose a heavy economic burden on individuals and society
worldwide. DR is mainly caused by hyperglycemia. Long-term hyperglycemia can cause
characteristic pathological changes in the retina, such as thickening of the basement membrane
of the retinal microvessels, loss of vascular cells, increased vascular permeability, and
neovascularization (6). A better understanding of the pathogenesis in the retina is urgently
needed to develop interventions. According to the International Council of Ophthalmology, DR
falls into two categories: nonproliferative DR (NPDR) and proliferative DR (PDR, Table 1) (7).
NPDR is regarded as the early stage of DR and PDR is the advanced stage. When DR affects the
macula, it can cause diabetic macular edema (DME). DME can occur in any stage of DR and is the
most frequent cause of blindness in diabetic patients (8).
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The retina is a complex system consisting of the retinal pigment
epithelium (RPE) and the neurosensory retina.Generally, the retina
is comprised of ten layers, from the outside to the inside: RPE, rod
and cone layer, outer limitedmembrane (OLM), outer nuclear layer
(ONL), outer plexiform layer (OPL), internal nuclear layer (INL),
internal plexiform layer (IPL), ganglion cell layer (GCL), nervefiber
layer (NFL) and internal limited membrane (ILM) (9).
Histologically, neurons, glia, and blood cells in the retina are
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linked together to form an important structure named the retinal
neurovascular unit (NVU, Figure 1A) (10). The NVU consists of
retinal neurons (photoreceptors: cones and rods, horizontal and
bipolar cells, amacrine cells, and ganglion cells), glial cells (Müller
cells, astrocytes, and microglia) and blood cells (endothelial cells
and pericytes) (11). All components of the retinal NVU have
different distributions in the ten-layer structure of the retina
(Figure 1B) (9). Accumulating studies have suggested that these
factors are related to the pathogenesis of DR, namely, retinal
microangiopathy, retinal neurodegeneration and inflammation
(6). In recent years, chronic inflammation has been shown to be
the key to pathological changes in the NVU (12, 13). Pyroptosis is a
novel inflammatory form of regulated cell death that facilitates the
release of many proinflammatory factors, including interleukin-1b
(IL-1b) and IL-18 (14, 15). Multiple studies have revealed that
pyroptosis is relevant to the development of DR. This review
describes the currently available studies examining the effect of
pyroptosis in the retinal NVU on DR. We will focus on the retinal
NVU, pyroptosis, and the effect of the latter on the former.
2 RETINAL NVU IN DR

The NVU is an important structure of the retina. As mentioned
above, the retinal NVU mainly includes six components: retinal
neurons, endothelial cells and pericytes, Müller cells, astrocytes
TABLE 1 | Classification of Diabetic Retinopathy.

Classification Defining changes

Normal retina No abnormality
Mild NPDR Only microaneurysms
Moderate NPDR Microaneurysms and one or more of following findings:

Dot and blot hemorrhages
Hard exudation
Cotton wool spots

Severe NPDR Any one of these findings:
≥ 20 intraretinal hemorrhages in each quadrant
Beaded veins in two quadrants
IRMAs in one quadrant

PDR One or more of these changes:
Neovascularization
Preretinal hemorrhages
Vitreous hemorrhage
DR, diabetic retinopathy; NPDR, non-proliferative DR; IRMAs, intra-retinal microvascular
anomalies; PDR, proliferative DR.
A B

FIGURE 1 | (A) The composition of the retinal NVU. Neurons, Müller cells, astrocytes, microglia, endothelial cells and pericytes are linked together to form the retinal
NVU. (B) Structure of the retina and the distribution of retinal NVU components in the retina. The retina is generally divided into ten layers. Retinal neurons, various
glial cells and blood cells are distributed in the corresponding layers in the retina. NVU, neurovascular unit; RPE, Retinal pigment epithelial; R and C, rod and cone;
OLM, outer limited membrane; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, internal nuclear layer; IPL, internal plexiform layer; GCL, ganglion cell layer;
NFL, nerve fiber layer; ILM, internal limited membrane.
October 2021 | Volume 12 | Article 763092

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meng et al. Pyroptosis in DR
and microglia. Each component of the retinal NVU has different
physiological functions, but a close relationship exists among
them. As more in-depth research on DR has been conducted, it
has come to be regarded as a NVU disease (16). During the
development of DR, many mechanisms lead to pathological
changes in the retina, including oxidative stress, endoplasmic
reticulum stress and inflammation (17–20).

2.1 The Retinal NVU
The retinal microvascular system is an indispensable constituent
of the normal ret ina (21). The distribution of the
microvasculature in the retina is specific, not spread through
all layers of the retina. Currently, the microvasculature is found
in four layers of the retina: (1) the deep part of the INL, (2) the
border of the shallow INL and deep IPL, (3) the shallow part of
the IPL and the RGCL, and (4) the NFL, and the photoreceptor
layer is devoid of retinal blood flow (22, 23). Vascular endothelial
cells and pericytes are important components of the retinal
microvasculature, sharing a common basement membrane
(24). The structure and function of the microvasculature rely
on interactions between pericytes and endothelial cells, which are
disturbed in some retinal vascular diseases, such as DR, retinal
vascular occlusion and retinopathy of prematurity (21).
Additionally, pericytes and endothelial cells are important
components of the retinal NVU, and interactions between the
two types of cells are necessary for the complete structure and
normal function of the retinal NVU (21). In addition, the
pericyte-endothelial interaction is an essential component of
the internal blood retina-barrier (BRB), which is a highly
selective barrier protecting the retina from the blood
circulation (25, 26).

Retinal neurons are sensitive cells of various types in the
retinal NVU. Retinal neurons include five major cell types:
photoreceptors, horizontal cells, bipolar cells, amacrine cells
and ganglion cells (27). Photoreceptors are light-sensing cells
that are categorized into cone and rod cell types (28). The ONL
contains the cone and rod photoreceptor cell bodies, the INL
contains the cell bodies of amacrine, bipolar and horizontal cells,
and the GCL mainly consists of ganglion cell bodies (29).
Photoreceptor cells are in contact with secondary neurons
(bipolar and horizontal cells), which in turn are in contact
with ganglion cells in the IPL. In the retina, ganglion cells are
the output neurons integrating information (30). Axons of
ganglion cells comprise the NFL that sends the visual signal to
the visual cortex through the optic nerve (31, 32).

Müller cells and astrocytes are two types of macroglia in the
retina (33). Müller cells are the most abundant, accounting for
90% (34). In addition to their larger number, the distribution of
Müller cells is also wide. Müller cells penetrate almost all layers of
the retina and contact a variety of retinal cells (35). Due to their
unique position, the normal function of Müller cells is necessary
to maintain retinal homeostasis. Müller cells participate in
structural support and metabolic nutrition in a healthy retina.
For instance, Müller cells participate in the regulation of
nutrition metabolism and protection of neurons (35). In
comparison, retinal astrocytes are found only in the NFL and
GCL (36). Astrocytes play a pivotal role in the metabolism and
Frontiers in Immunology | www.frontiersin.org 3
mechanical support of the neurons and serve as an essential
component in the internal BRB (34, 36, 37).

In the brain and retina, microglia are resident immune cells
that monitor their surroundings (38). Under normal
circumstances, microglia spread over the NFL, GCL, IPL, INL,
and OPL of the retina (34). According to recent research,
microglia are present in the ONL only under pathological
conditions (38). As immune cells of the central nervous system
(CNS) (39), the functions of microglia are subdivided into six
major categories: (1) Phagocytosis: Microglia predominantly
clear cellular waste from the retina (40). (2) Immune
Functions: Microglia are thought to participate in antigen
presentation, inflammatory reactions and complement
activation during defense against infectious substances and to
facilitate tissue repair and immune regulation in the retina (38).
(3) Microglia participate in regulating progenitor cell
proliferation, differentiation, and neuronal survival (41). (4)
Microglia are necessary to maintain synaptic transmission
based on the synaptic structure and normal visual function in
the adult retina (42). (5) Microglia have an essential role in
angiogenesis. (6) Microglia are necessary to maintain retinal
homeostasis (43).

Generally, the retinal NVU participates in retinal nutrition
and metabolism and provides an appropriate environment for
neural signal transmission (12, 44). Furthermore, RPE cells and
the retinal NVU are the core components of the BRB, an
important protective barrier that is comprised of two parts: the
internal BRB and the outer BRB. Most of the components of the
retinal NVU are involved in the composition of the internal BRB
(Figure 2) (45). The outer BRB is mainly comprised of tight
junctions of RPE cells (46). Functionally, the internal BRB is
essential in maintaining the microenvironmental homeostasis of
the inner retina layers, and the outer BRB mainly regulates the
transfer of solutes and nutrients from the blood to the
photoreceptors (47–49).

2.2 Retinal NVU Changes in DR
According to previous studies, many components of the retinal
NVU are affected in individuals with diabetes (50). The proper
function of every element of this retinal NVU is critical for
normal retinal function. In individuals with DR, damage to
various cells in the retinal NVU leads to dysfunction of every
component associated with the development of DR (51). The
diabetic environment damages the retinal NVU through various
pathways, such as oxidative stress, endoplasmic reticulum stress
and inflammation (52).

2.2.1 Microangiopathy in DR
In the early stage of DR, a variety of pathological changes occur
in the microvascular system, such as basement membrane
thickening and the loss of pericytes and endothelial cells,
resulting in the destruction of the BRB and the formation of
microaneurysms (53). The collected evidence indicates that
retinal microvascular pathology is related to oxidative stress,
apoptosis, inflammation and endoplasmic reticulum stress (54,
55). Mitochondria are the main sites for reactive oxygen species
(ROS) production. High glucose (HG) increases mitochondrial
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production of ROS, and excessively produced ROS leads to
mitochondrial dysfunction. Mitochondrial dysfunction induces
apoptosis of retinal vascular cells (55). Furthermore, hyperglycemia
initiates the caspase-3 activationpathwaymediatedbymitochondrial
cytochrome C to induce retinal capillary cell death (56). Moreover,
elevated ROS levels promote the expression of proinflammatory
cytokines by the ROS/nuclear factor-kB (NF-kB) pathway. These
proinflammatory mediators promote BRB disruption leading to
microaneurysms and retinal leakage (57). The endoplasmic
reticulum (ER) is mainly responsible for protein synthesis and
folding in cells. Multiple studies have shown that ER stress is
involved in pericyte changes in DR. Intermittent hyperglycemia
promotes pericytes to secrete more macrophage chemotactic
protein 1 (MCP-1), activated transcription factor 4 (ATF4) and C/
EBP homologous protein (CHOP). MCP-1, ATF4 and CHOP are
mediators of ER stress related to inflammation and cell death (58).
Oxidative stress and ER stress promote the release of
proinflammatory mediators. The inflammatory response of the
retinal microvascular system is triggered by various factors, such as
HG, cytokines and chemokines, and ROS, and plays a crucial role in
early DR (59). Endothelial cells are extremely sensitive to
proinflammatory factors. Upregulated proinflammatory factors not
only induce changes in inflammatory pathways and apoptosis in
endothelial cells but also stimulate endothelial cells to produce
intracellular adhesion molecules, causing leukocyte stagnation (20).

2.2.2 Neurodegeneration in DR
Neurodegeneration is also an important pathological change in
DR that may occur before visible microvascular pathologies (60).
Neuronal apoptosis is an important characteristic of neuronal
degeneration. A previous study revealed an association between
increased levels of protein kinase RNA-like ER kinase (PERK)
and CHOP in retinal neurons of diabetic rats with retinal
ganglion cell (RGC) apoptosis, similar to the results obtained
from nondiabetic rats exposed to HG (61). CHOP promotes
protein synthesis in the ER to cause oxidative stress and cell
death (62). In addition, the hyperglycemic environment cause
oxidative stress. The HG-induced increase in ROS levels
Frontiers in Immunology | www.frontiersin.org 4
promotes the apoptosis of RGCs (63). Inflammation also
contributes substantially to neuronal apoptosis. For example,
NF-kB activation induced by hyperglycemia is associated with
RGC death in DR (64).

As mentioned above, accumulating evidence has suggested
that inflammation is associated with the development of DR (65),
and sustained inflammation can lead to retinal NVU component
injuries (66). Pyroptosis is an emerging type of inflammatory cell
death inextricably linked with inflammation. The caspase-1
mediated pathway, which is activated by NLR family pyrin
domain containing 3 (NLRP3) and NLRP1 inflammasomes, is
the canonical inflammasome pathway that triggers pyroptosis.
Recent studies have indicated that these inflammasomes are
associated with neurovascular diseases, especially those
occurring in the CNS, such as DR, neurodegeneration disease
and stroke (65). In other words, pyroptosis may be related to
retinal NVU dysfunction under diabetic conditions.
3 PYROPTOSIS

Pyroptosis is a form of programmed cell death that has been
identified in the past decade. Pyroptosis is crucial for innate
immune defense, and it occurs in both macrophages and other
cells (67). In contrast to apoptosis, pyroptosis is associated with
inflammation. Some characteristics of pyroptosis are cell
swelling, and IL-1b and IL-18 release from gasdermin pores in
membranes (68). In pyroptosis, the caspase-1-dependent
pathway is called the canonical inflammasome pathway, and
the caspase-4/5/11-dependent pathway is described as the
noncanonical pathway (69, 70). Diverse infections and
immune challenges activate caspase-1 in cells through different
inflammasomes, including NLRP3, NLRP1, apoptotic speck-like
protein containing a caspase recruitment domain (ASC), NOD-
like receptor family, caspase recruitment domain (CARD)
containing 4 (NLRC4) and absent in melanoma 2 (AIM2) (71).
Unlike caspase-1, intracellular lipopolysaccharide (LPS) directly
interacts with caspase-4/5/11, and then the latter is activated
FIGURE 2 | The composition of the internal blood retina barrier (iBRB). Pericytes, endfeet of astrocytes and Müller cells cover the endothelial cells to form the iBRB.
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(72–74). The common result of caspase-1/4/5/11 activation is
that gasdermin D (GSDMD) becomes a pyroptotic effector of
these caspases. Subsequently, GSDMD is cleaved to produce two
parts: the N-terminus and the C-terminus. The N-terminus of
GSDMD induces pore formation in the membrane, and these
pores become the channels through which IL-1b and IL-18 are
released, ultimately leading to cell death (Figure 3) (67, 75).
More interestingly, caspase-11-mediated maturation of GSDMD
triggers caspase-1 activation, accompanied by the secretion of
IL-1b (76). In addition, GSDMD is not the only substrate of
pyroptosis. In some cases, activation of gasdermin E (GSDME)
by caspase-3 has also been shown to induce pyroptotic cell death
Frontiers in Immunology | www.frontiersin.org 5
(77, 78). In the innate immune system, pyroptosis exerts a dual
effect. It protects the body from pathogen infection and
endogenous threats but causes harmful inflammation in the
case of excessive activation (68). As more in-depth research on
pyroptosis has been conducted, pyroptosis has been found to be
associated with the occurrence and development of many
common diseases, including obesity, type 2 diabetes mellitus
(T2DM) and complications of diabetes (79–81).

3.1 Pyroptosis in Obesity and T2DM
As living standards improve, the number of people with
metabolic diseases is increasing annually (82). Obesity and DM
FIGURE 3 | The canonical inflammasome pathway (Caspase-1-dependent) and noncanonical inflammasome pathway (Caspase4/5/11-dependent) of pyroptosis.
Caspase-1 is activated by NLRP3 inflammasomes, and caspase4/5/11 are activated by direct interaction with LPS. Active caspase-1 and caspase-4/5/11 cleave
the GSDMD to produce the C-terminus and N-terminus. Released gasdermin-N domains form an approximately 12–14 nm inner diameter pore on the plasma
membrane. IL-1b and IL-18 are matured by active capase-1 and released from the gasdermin pore. ASC, apoptotic speck-like protein containing a caspase
recruitment domain; IL-1b, interleukin-1b; LPS, lipopolysaccharide; GSDMD, gasdermin D; NLRP3, NLR family pyrin domain-containing 3.
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are common metabolic diseases worldwide. As mentioned above,
NLRP3 inflammasomes activate caspase-1 to trigger pyroptosis.
Eventually, IL-1b and IL-18 are secreted by pyroptotic cells.
Many studies have found that NLRP3 inflammasomes correlated
with pyroptosis participate in the pathogenic mechanism of
some metabolic diseases, including obesity and type 2 diabetes
mellitus (83).

Obesity is a metabolic disorder with multifactorial
pathogenesis. In addition, obesity is also a risk factor for
T2DM. Macrophages of monocyte origin infiltrate tissues as
one of the pathological changes of obesity. Monocytes in the
peripheral blood of obese patients exhibit high inflammatory
caspase activity. In monocytes, saturated fatty acids activate
caspase-4/5 to induce the production and release of IL-1b and
IL-18, eventually leading to obesity-related inflammation (84).
Moreover, higher expression of NLRP3 is detected in adipose
tissue from obese individuals than in adipose tissue from
metabolically healthy individuals (85). Of note, NLRP3
knockout prevented mice fed a high-fat diet from becoming
obese (86). Adipocytes not only store energy but also secrete
adipokines to regulate metabolism (87). Adipocyte dysfunction
(e.g., decreased levels of insulin-sensitive adipokines and
increased levels of proinflammatory cytokines) are related to
insulin resistance and T2DM (88). Pancreatic b-cell dysfunction
and insulin resistance are the main characteristics of T2DM.
Previous studies have suggested that the NLRP3 inflammasome
is closely associated with the pathogenesis of T2DM (89). HG,
free fatty acids and a high-fat diet promote the activation of the
NLRP3 inflammasome in patients with T2DM (90). Activation
of NLRP3 inflammasomes induces excessive secretion of IL-1b
and IL-18. Increased IL-1b levels cause the dysregulation of
blood sugar levels by impairing pancreatic b-cells and inducing
insulin resistance (83). The high expression of IL-1b receptors on
pancreatic b-cells not only contributes to increase production of
IL-1b, but also facilitates the spread of inflammatory signals
through the NF-kB pathway, eventually leading to pancreatic
b-cell dysfunction (91). IL-1b promotes insulin resistance by
reducing the tyrosine phosphorylation and mRNA expression of
insulin receptor substrate-1, and inducing the expression of
tumor necrosis factor a (92). Additionally, IL-1b and IL-18
decrease the insulin sensitivity of target organs by inducing
lymphocytes to accumulate in adipose tissue (93). In
conclusion, NLRP3 inflammasomes are critical for the
development and progression of obesity and T2DM, especially
IL-1b, a product of NLRP3 inflammasome activation.
Importantly, pyroptosis is associated with the occurrence and
development of DM but also with the development of its
complications, such as diabetic cardiomyopathy (94), diabetic
nephropathy (95) and DR (96).

3.2 Pyroptosis in Diabetic Complications
3.2.1 Diabetic Retinopathy
Diabetic retinopathy is prevalent among people with long-term DM
and remains the critical cause of visual impairment in working-aged
people. Loukovaara et al. used immunohistochemistry and observed
that the levels of caspase-1 and IL-18 were significantly increased in
DR patients’ vitreous (97). Simultaneously, they found that NLRP3
Frontiers in Immunology | www.frontiersin.org 6
inflammasomeactivationplays an important role in thepathogenesis
of proliferative DR (97). Numerous studies have reported that the
expression levels of inflammatory components including NLRP3,
ASC, procaspase-1, IL-1b, and IL-18, were significantly upregulated
in diabetic rat retinal tissues compared to control group (98, 99). In a
recent study, the authors documented that HG promoted RPE cell
pyroptosis, and methyltransferase-like protein 3 (METTL3) could
reverse these changes by targeting the miR-25-3p/PTEN/Akt
signaling pathway (100). In addition, researchers have observed
that HG promotes NLRP3 inflammasome activation and
pyroptosis in HG-induced human retinal microvascular
endothelial cells (HRMECs) and human retinal pericytes (HRPs)
(101, 102). Several reports have suggested that P2X7 purinergic
receptor (P2X7R) promotes DR pathogenesis (103, 104). P2X7R
activates the NLRP3 inflammasome and promotes the release of the
proinflammatory cytokine IL-1b in retinal pericytes treated by HG
(105, 106). JNJ47965567, a P2X7R antagonism, can revert the
damage caused by HG in cultured pericytes (104). Similarly,
previous researchers have documented that H3 relaxin inhibits
AGE-induced HRMEC pyroptosis by attenuating the P2X7R/
NLRP3 pathway (107). In addition, researchers found that
fenofibrate and sulforaphane provide significant protection against
DR by attenuating NLRP3 inflammasome activation and activating
the antioxidative Nrf2 pathway (108, 109). A recent study found that
vitamin D3 exerts protective effects against DR by inhibiting ROS/
TXNIP/NLRP3 inflammasome pathway activation (110). Similarly,
a recent study demonstrated that vitamin D3 protects RGCs by
reducing inflammatory cytokines and increasing the expression of
neuroprotective factors in glaucomatous mice (111). Based on the
above studies, pyroptosis may play a crucial role in the changes in
retinal cells in the DR environment.

3.2.2 Other Complications
Diabetic cardiomyopathy (DCM) is a crucial complication of
DM and can result in heart failure (112). Growing research
suggests that pyroptosis may be involved in the pathogenesis of
DCM (113). Myocardial ultrastructure studies demonstrated that
dying cells exhibited swollen fibril and mitochondria in the
myocardium of diabetic rats, similar to the phenotypic features
of pyroptosis (114, 115). Protein expression levels of the NLRP3
inflammasome, caspase-1, IL-1b and GSDMD were remarkably
elevated in diabetic mouse cardiac tissue (94). In line with this,
Ye et al. found that the mRNA levels of NLRP3, caspase-1 and
IL-1b were considerably higher in the T2DMmice hearts than in
control mouse hearts (116). In addition, a recent study showed
that silencing long non-coding RNA (lncRNA) Kcnq1ot1
ameliorated pyroptosis and fibrosis in myocardial tissues of
diabetic mice and was related to the Kcnq1ot1/miR-214-3p/
caspase-1/TGF-b1 signaling pathway (94). Hyperglycemia
induced cardiomyocyte pyroptosis in high-fat diet-induced
T2DM mice via the AMPK-TXNIP pathway (117).
Furthermore, other studies showed that AIM2 expression was
significantly elevated in the heart tissue of diabetic rats compared
to the control group (118). AIM2 is involved in HG-induced
DCM cell death and fibrosis through the GSDMD pathway
(118). These studies illustrate that pyroptosis may be an
important contributor to the pathogenesis of DCM.
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Diabetic nephropathy is a microvascular complication of DM
and remains the major cause of chronic kidney disease throughout
the world (119). Accumulating evidence demonstrates that
pyroptosis plays a pivotal role in the progression of diabetic
nephropathy (120). Recent studies have revealed that the protein
levels of theNLRP3 inflammasome,GSDMD, caspase-1, and IL-1b
in the kidneywere significantly increased indiabetic rats andmouse
models compared to the control group (95, 121). In addition, the
expression levels of pyroptosis-associated proteins, such as caspase-
11 or caspase-4, GSDMD, IL-1b and IL-18, in human and mouse
podocytes cultured in HG are augmented (122). Caspase-4 or
GSDMD knockdown considerably reversed these changes (122).
Studies have confirmed that hyperglycemia promotes HK-2 cell
pyroptosis (123). The lncRNAMALAT1promotes hyperglycemia-
induced HK-2 cell pyroptosis by inhibiting the expression of miR-
23c, leading to the activationof theELAVL1/NLRP3pathway (123).
Current studies have documented that the expression of lncRNA
GAS5 in HG-stimulated HK-2 cells is repressed (124). In addition,
GAS5 suppression significantly increased the expression ofNLRP3,
caspase1, IL-1b and GSDMD, and GAS5 overexpression reversed
these changes (124). These notablefindings indicate that pyroptosis
may promote diabetic nephropathy pathogenesis.
4 EFFECT OF PYROPTOSIS ON THE
RETINAL NVU IN DR

4.1 Pyroptosis in Retinal Pericytes and
Endothelial Cells
One of the earliest hallmarks of DR is microvascular changes,
accompanied by the loss of pericytes, basement membrane
thickening and the destruction of tight junctions between
endothelial cells, together with hyperpermeability, capillary
nonperfusion, microaneurysms, and the subsequent loss of
endothelial cells (125, 126). Pericyte and endothelial cell death
is a fatal blow to the retinal microvasculature. Multiple forms of
cell death have been observed in diabetes-induced pericytes and
endothelial cell death. Based on previous evidence, pericytes may
die due to apoptosis and necrosis, and endothelial cells
predominantly undergo apoptosis during the development of
DR (127). However, some studies have found that pyroptosis
might participate in the death of vascular cells in the retina and
the pathological changes in DR.

Recently, HG was revealed to significantly induce the release of
inflammatory cytokines and pore formation HRPs, resulting in
pericyte lysis (102). Based on these findings, HG induces
inflammation and pyroptosis in HRPs. Furthermore, HG induces
retinal pericyte pyroptosis through the NLRP3-caspase-1 pathway
(102). Coincidentally, HRPs undergo caspase-1-dependent
pyroptosis after treatment with advanced glycation end product
modified bovine serum albumin (AGE-BSA), which often appears
in the diabetic environment (128). LncRNAmyocardial infarction-
associated transcript (MIAT) regulates caspase-1 expression by
sponging miR-342–3p, ultimately resulting in the pyroptosis of
HRPs treated with AGE-BSA (128). Notably, the authors used
immunofluorescence staining and observed that AGE-BSA-
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induced HRPs exhibited phenotypic features of pyroptosis,
including pyknosis, cell swelling, and hyperpermeability in the
plasma membrane (128). Chen et al. documented that the protein
expression of caspase-1, NLRP3, ASC, IL-1b, and IL-18 was
significantly upregulated in retinal tissues of streptozotocin-
induced diabetic rats (129). Furthermore, HG activated the
NLRP3 inflammasome in HG-exposed HRMECs by the ROS-
TXNIP pathway (129). Other studies have also shown that
HRMECs undergo pyroptotic cell death under diabetic-like
conditions (107). Platania et al. suggested that some miRNAs,
such as miR-20a-5p, miR-20b and miR-106a-5p, are dysregulated
in the retina and blood circulation of diabetic mice. These miRNAs
canmodulate the expression ofDR-related factors, such as vascular
endothelial growth factor (VEGF), participating in the progression
of DR (130). Our group has reported that HRMECs cultured under
HGconditions suffer frompyroptosis.Notably,miR-590-3p targets
NLRP1 and inactivates the NOX4 signaling pathway to inhibit
pyroptosis in HRMECs (101). In addition, prostaglandin E2 (an
inflammatory mediator) participates in the activation of NLRP3
inflammasomes in HRMECs (131). Mcc950 selectively inhibits
NLRP3 inflammasomes, thereby inhibiting human retinal
endothelial cell (HREC) dysfunction under HG conditions (132).

The presence of gasdermin pores on the cellmembrane is one of
the characteristics of pyroptotic death. These pores destroy the
osmotic potential, causing the cells to swell and eventually lyse
(133). Diabetic environments such as HG and AGE-BSA promote
retinalmicrovascular cell loss through pyroptosis (107). The loss of
these two types of cells results in decreased pericyte-endothelial
interactions and their miscommunication and contributes to
microvascular instability. In addition, the loss of pericytes
contributes to the formation of acellular capillaries, capillary
occlusions, microaneurysms and hemorrhage (134). These
significant pathological changes occur in DR. Vascular occlusion
may lead to perfusion failure and retinal ischemic-hypoxic injury.
The latter increases the expression of VEGF in glial cells and
endothelial cells. Moreover, vascular occlusion may lead to retinal
neuron dysfunction and even neuronal death. Furthermore,
vascular cell death causes the destruction of the BRB (135), which
increases vascular permeability and the possibility of inflammatory
cells entering the retinal microenvironment. These processes are
also the main features of DR (25). Alterations in BRB integrity lead
to diabetic macular edema, eventually resulting in a severe visual
impairment without timely intervention (136). Hyperglycemia-
induced pyroptosis in the retinal microvasculature not only
causes the death of pericytes and endothelial cells but also
increases the number of inflammatory mediators, including IL-18
and IL-1b (102, 107). Researchers found increased levels of
proinflammatory mediators in the serum or aqueous humor in
patients with DR compared with normal controls (20). These
inflammatory cytokines participate in triggering an even more
excessive inflammatory reaction, promoting the development of
DR (66, 137).

4.2 Pyroptosis in Retinal Neurons
Neurons in the retinal NVU are the major cells that transmit
light signals and form vision. Extensive studies have shown the
presence of retinal neuronal degeneration in the early stage of
October 2021 | Volume 12 | Article 763092

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meng et al. Pyroptosis in DR
DR, even earlier than visible vasculopathy (138, 139). Two
features of neurodegeneration in the retina are neuronal death
and reactive gliosis (9). Many researchers have provided a
description of neuronal apoptosis in DR. Pyroptosis, a form of
programmed cell death involved in inflammation, can occur in
retinal ganglion cells (140). DM causes hypoxia in retinal tissue
and leads to an imbalance in retinal immune responses (141).
Hypoxia-induced factor-1 (HIF-1) is continuously produced and
degraded under hypoxic conditions. Then, HIF-1a functions as a
transcription factor to activate the genes encoding the proangiogenic
growth factors, IL-6 and IL-8 (141). Moreover, loss of pericytes
potentially leads to acellular capillary formation, which is associated
with vascular occlusion and leads to nonperfusion and retinal
ischemic-hypoxic injury. Ischemia-hypoxia upregulates the
expression of HIF-1 (25). Pyroptosis participates in retinal ischemic
damage and promotes retinal ganglion cell death in acute glaucoma
(142). The caspase-8-HIF-1a-NLRP12/NLRP3/NLRC4 pathway
initiates neuroinflammation and pyroptosis (142). Moreover,
pyroptosis is an alternative pathway through which photoreceptors
degenerate after retinal detachment (143). Additionally, caspase-1/3/
4/5 activities were found to be increased in a streptozotocin-induced
diabetesmousemodel (140). A previous study reported that NLRP3,
ASC, and caspase-1 were specifically located in the GCL and the INL
and ONL in the retinas of diabetic rats according to
immunohistochemical results (99). Simultaneously, other authors
have also documented that the expression levels ofNLRP3, ASC, and
caspase-1 were increased in retinal cells of diabetic rats (99).

4.3 Pyroptosis in Müller Cells
Müller cells and astrocytes of the retinal NVU participate in
retinal structural support and maintain retinal homeostasis.
Studies have found that approximately 15% of Müller cells die
after 7 months in retinas of the diabetic mice (127). After
exposure to HG, caspase-1 activity and IL-1b production in
Müller cells increase and subsequently induce cell death (144).
Furthermore, inhibition of the caspase-1/IL-1b pathway prevents
the loss of Müller cells under diabetic conditions (127). The
aforementioned evidence revealed that pyroptotic death may be
responsible for Müller cell death under diabetic conditions.
Consistently, HG-induced nuclear accumulation of GAPDH in
Müller cells relies on activating the caspase-1/IL-1b pathway.
More interestingly, the accumulation of GAPDH in the nucleus
is associated with the induction of cell death (145). Due to their
important locations and functions, Müller cell loss will lead to an
incomplete retinal structure. For example, Müller cell loss
promotes the destruction of the internal BRB integrity and
increases the vascular permeability and the loss of
neuroprotective effects, affecting both neurons and blood cells
(35). Specific removal of Müller cells from the retina leads to
retinoschisis, showing that Müller cells hold the neural layers
together to protect the neural tissue from ripping apart (146).
Previous studies have reported that selective removal of Müller
cells results in photoreceptor apoptosis, BRB breakdown, and
vascular telangiectasis (147). In addition, destruction of the cell-
to-cell communication between Müller cells and retinal pericytes
promotes pericyte death (148). The loss of Müller cells in DM is
also related to the formation of aneurysms, a clinical feature of
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DR (35). Furthermore, Müller cells are the major source of IL-1b
(149). Long-term production of IL-1b from Müller cells affects
the viability of endothelial cells in a paracrine manner (150). Due
to the high sensitivity of endothelial cells to IL-1b, endothelial
cells die after responding to this inflammatory cytokine (150).
In addition, the death of endothelial cells promotes the formation
of acellular capillaries, which are the main hallmark of DR
pathology (151).

4.4 Pyroptosis in Retinal Microglia
Microglia are specific innate immune cells of the retina that
monitor the environment and remove metabolic waste. As more
in-depth research on pyroptosis has been conducted, pyroptosis
has also been identified in microglia. Microglial pyroptosis
occurs in various disease states, such as after spinal cord injury
(152), ischemic brain injury (153), retinal ischemia and
reperfusion injury (154), and DR. Retinal ischemia and
reperfusion injury (I/R) is the basis of multiple retinal diseases,
including DR, glaucoma, and retinal artery occlusion (155).
Accumulating studies have shown that I/R promotes retinal
microglial pyroptotic death, which is associated with lncRNA
H19 (154). In addition, S100A12 is closely related to the
incidence and severity of DR. S100A12 represents a
proinflammatory trigger for retinal microglial activation by
activating the NLRP3 inflammasome in a diabetic environment
(156). Moreover, HG was recently shown to induce retinal
microglial pyroptosis through NLPR3 inflammasome signaling
(157). HG upregulated the protein expression of NLPR3,
caspase-1, GSDMD, and IL-1b in retinal microglia (157). In
another study, HG-induced retinal cells produced more IL-1b,
and the IL-1b induced microglial proliferation (158). Moreover,
IL-1b is mainly produced by microglia under diabetic conditions
(159). Overactive microglia produce various proinflammatory
and cytotoxic factors, including IL-1b, TNF-a, and ROS, which
lead to chronic inflammation and contribute to the destruction
of hemostasis in the NVU, BRB breakdown and worsening of the
pathology of DR (160).

4.5 Proinflammatory Mediators Produced
From Pyroptosis in the NVU
Accumulating research suggests that IL-1b and IL-18 may partly
come from the pyroptosis-mediated cell death of retinal cells in
diabetic rats and mice (99). IL-1b and IL-18 are the two key
cytokines that undergo maturation through cleavage by active
caspase-1 and are released through pyroptosis. In addition, IL-1b
is the most studied IL-1 family member in retinopathy, such as
DR (161). These proinflammatory mediators lead to persistent
low-grade inflammation, affecting the hemostasis of the retinal
NVU. Under HG conditions, IL-1b induces pericyte apoptosis by
activating NF-kB, thereby increasing vascular permeability
(162). Additionally, IL-1b affects glial cells (microglia and
macroglia) and ultimately results in neural changes (158).
Moreover, the increased levels of IL-1b coincide with
increasing retinal neovascularization (163). Coincidentally,
IL-18 may promote retinal angiogenesis in active PDR together
with VEGF or through VEGF (164). Accumulated studies
indicate that glucocorticoids show anti-inflammatory efficacy
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by inhibiting key proinflammatory mediators such as IL-1b
(165). Thus, glucocorticoids may have potential use in
modulating pyroptosis. Collectively, IL-1b and IL-18 produced
during pyroptosis participate in inflammation, promoting the
progression of DR.
5 CONCLUSIONS

Pyroptosis is an emerging type of inflammatory cell death. Recent
studies suggest that pyroptosis is involved in the pathogeneses of
many diseases, such as obesity, T2DM and complications of
diabetes. The retinal NVU is the functional basis of the retina.
The proper function of every element of this retinal NVU is critical
for normal retinal function. Impairment of the retinal NVU may
result in abnormal physiological functions and even retinal
disorders. Under diabetic conditions, most retinal NVU cells
undergo pyroptotic cell death. Pyroptosis leads to cell death and
promotes damaged cells to release various proinflammatory
mediators, including IL-1b and IL-18. The accumulation of these
proinflammatory factors promotes the formation of an
inflammatory environment, further damaging the retinal cells
and aggravating retinopathy. Inhibition of pyroptosis in retinal
Frontiers in Immunology | www.frontiersin.org 9
cells may be a treatment strategy for DR. The development of drugs
targeting pyroptosis may provide benefits to the vast number of
patients with DR. However, published research about the potential
molecular mechanism and underlying role of pyroptosis-mediated
cell death in retinal NVU cells is currently limited. Additional
studies are necessary to investigate the fundamental role
of pyroptosis in DR.
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