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Abstract

Time series forecasting has gained much attention due to its many practical applications.

Higher-order neural network with recurrent feedback is a powerful technique that has been

used successfully for time series forecasting. It maintains fast learning and the ability to

learn the dynamics of the time series over time. Network output feedback is the most com-

mon recurrent feedback for many recurrent neural network models. However, not much

attention has been paid to the use of network error feedback instead of network output feed-

back. In this study, we propose a novel model, called Ridge Polynomial Neural Network with

Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feed-

back. To evaluate the performance of RPNN-EF, we used four univariate time series with

different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers,

daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We

compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial

Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN).

Simulation results showed an average 23.34% improvement in Root Mean Square Error

(RMSE) with respect to RPNN and an average 10.74% improvement with respect to

DRPNN. That means that using network errors during training helps enhance the overall

forecasting performance for the network.

Introduction

Time series is a sequence of observations for a variable of interest made over time. Time series

is used in many disciplines for things such as hourly air temperature, daily stock prices, weekly

interest rates, monthly sales, quarterly unemployment rate, annual deaths from homicides and

suicides, and electrocardiograph measurements. Time series can be categorized into different

categories such as continuous and discrete time series, linear and nonlinear time series, and

univariate and multivariate time series categories [1].

Univariate time series are obtained by recording a single phenomenon over time. Multivari-

ate time series are recorded for more than one phenomenon over time [1]. A recording of a
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single phenomenon like annual volcano Carbon Dioxide (CO2) emissions is an univariate time

series, while a (CO2) concentration of a gas furnace using (CO2) concentrations and input gas

flow rate is an example of a multivariate time series.

One of the main objectives of analysing time series is forecasting [2]. Forecasting is needed

in many areas, including, marketing, production planning, financial risk management, and

crisis management. Forecasting is needed because it guides decisions, decreases dependence

on chance, and makes dealing with the environment more scientific [3, 4].

Time series forecasting is defined as an estimation of the future behaviour of a time series

using current and past observations [1]. Time series forecasting finds the relationship between

past, present and future observations. Mathematically, univariate time series forecasting takes

a series of data such as x1, x2, . . ., xN to estimate future values such as xN+h, where the integer h
is the forecast horizon. The forecast horizon is defined as the time period in the future to

which forecasts are calculated.

Various methods for time series forecasting have been developed. From statistics-based to

intelligence-based, there are a range of methods available to make a forecast. Conventional sta-

tistical methods such as Auto Regressive (AR), Auto Regressive Moving Average (ARMA) and

exponential smoothing are linear-based methods that assume linear relationships between past

values. The non-linear relationships found in most real time series data cannot be captured

using these methods [5–8].

Intelligent methods such as Artificial Neural Networks (ANNs) have been successfully used

in time series forecasting [6, 7, 9, 10]. ANN is an intelligence-based method which is inspired

by biological nervous systems. During training, ANNs use historical data (i.e., current and past

observations) to build a model that has the ability to forecast future observations.

ANNs have some advantages that attract researchers to use them in forecasting [7, 11].

First, they have a non-linear input-output mapping nature that allow ANNs to approximate

any continuous function with an arbitrarily degree of accuracy. Second, the non-linear input-

output mapping is generated with little priori knowledge about the non-linearity in the series,

so ANNs are less susceptible to model misspecification than other parametric non-linear

methods. Third, the generalization capabilities of ANNs in a non-stationary environment

remain accurate and robust. Fourth, ANNs have the capability of tolerating the presence of

chaotic components that are found in many time series.

ANNs can be grouped based on network structure into feedforward and recurrent networks

[12]. In feedforward networks, the information moves in one direction only from the input

nodes to the output nodes through one-way network connections (i.e., weights). On other

hand, the connections between the units in recurrent networks can form a cycle.

One of the most used feedforward ANNs in time series forecasting is Multilayer Percep-

trons (MLPs) [13]. Due to the multi-layered structure of MLPs, they need a large number of

units to solve complex nonlinear mapping problems, which results in a low learning rate and

poor generalization [14]. To overcome these drawbacks, different types of single layer higher

order feedforward neural networks have been presented. Ridge Polynomial Neural Network

(RPNN) [15] is a higher order feedforward neural network that maintains fast learning and

powerful mapping properties which make it suitable for solving complex problems [13].

For time series forecasting, an explicit treatment for the dynamics involved is needed for

neural network models because the behaviour of some time series signals are related to past

inputs which present inputs depend on [16]. The explicit treatment of dynamics can be

achieved using recurrent feedback. A recurrent version of the RPNN was proposed by [16].

This model is called the Dynamic Ridge Polynomial Neural Network (DRPNN). DRPNN uses

the output value from the output layer as a feedback connection to the input layer. The idea

behind recurrent network is to learn the network dynamics of the series over time. As a result,
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the trained network use its memory when forecasting [17]. RPNN and DRPNN have been suc-

cessfully applied to forecast time series [9, 10, 13, 16] with DRPNN the most suitable for time

series forecasting.

Instead of using network output feedback, network error feedback was used effectively with

different models for time series forecasting as an additional input in the network [18–23].

Using network error as a feedback connection helps reduce the overall network error and

increase forecasting accuracy. Due to the success of RPNNs, DRPNNs and models that use net-

work error feedback for time series forecasting, in this study we propose the Ridge Polynomial

Neural Network with Error Feedback (RPNN-EF). This paper is an extension of a report origi-

nally reported in the Second International Conference on Soft Computing and Data Mining

(SCDM-2016) [24].

The contributions made by this study are as follows:

• We proposed Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) for time

series forecasting.

• The novelty of the proposed approach is that we incorporated the concepts of higher order

terms, recurrence and error feedback in the proposed model.

• To overcome the stability and convergence problems that could occur due to existence of

recurrent feedback in the RPNN-EF, a sufficient condition based on an approach that used

adaptive learning rate was developed by introducing a Lyapunov function.

• A comparative analysis of the proposed model with RPNN and DRPNN was completed

using four time series, star brightness, monthly smoothed sunspot numbers, daily Euro/Dol-

lar exchange rate, and Mackey-Glass time-delay differential equation. The proposed model

was compared with other models in the literature.

The remainder of this study is organized as follows. In Section 2, we review existing ridge

polynomial neural network based models. In Section 3, we present the proposed model for

time series forecasting. Section 4 describes the experimental design. Section 5 presents results

and discussion. The conclusion and ideas for future works are given in Section 6.

The Existing Ridge Polynomial Neural Network Based Models

Several feedforward neural networks have mapping capabilities for approximating reasonable

functions [15]. A Multilayer perceptron (MLP) network is an example of these feedforward

neural networks. MLP needs a large number of units to solve complex nonlinear mapping

problems. Therefore, MLP is prone to a low learning rate and poor generalization [14]. To

overcome multilayer network drawbacks, different types of single layer higher order feedfor-

ward neural networks were presented. One of these is the Pi-Sigma Neural Network (PSNN)

which is a higher order feedforward neural network that consists of a single layer of trainable

weights and product units in the output layer [25]. PSNN maintains powerful mapping capa-

bility and fast learning property without experiencing free parameter explosion problem [15].

PSNN demonstrated competent performance for various problems [25–27], however PSNN is

not a universal approximator.

Ridge Polynomial Neural Network (RPNN)

RPNN is a higher order feedforward neural network that was introduced to overcome the

drawback of PSNN [15]. RPNN with arbitrary degree of accuracy can uniformly approximate

any continuous function on a compact set in multidimensional input space [15]. Like PSNN,

RPNN utilizes univariate polynomials which help to avoid the problem of free parameters
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explosion found in some types of higher order feedforward neural networks [15]. RPNN is

constructed by adding different degrees of PSNNs during learning until a specified goal is

achieved. It uses constructive learning, which is the growth of a small network structure during

training until a specified goal is achieved.

Fig 1 shows a generic RPNN architecture. It can be seen that RPNN consists of only a single

layer of adjustable weights which helps to speed the learning. The output of this network is as

follows:

yðt þ 1Þ � s
Xk

i¼1

Piðt þ 1Þ

 !

ð1aÞ

Piðt þ 1Þ ¼
Yi

j¼1

ðhjðt þ 1ÞÞ ð1bÞ

hjðt þ 1Þ ¼
Xm

g¼1

wgjxgðtÞ ð1cÞ

Fig 1. Ridge Polynomial Neural Network. PSNN stands for Pi-Sigma Neural Network.

doi:10.1371/journal.pone.0167248.g001
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where σ is a non-linear activation function, k is the number of PSNN blocks, m is input vector

dimension size, w is a trainable weight and x is the input.

RPNN has been used for different problems such as time series forecasting [13], function

approximation [15], classification [15, 28] and pattern recognition [29]. It shows superior per-

formance when compared to MLP.

Dynamic Ridge Polynomial Neural Network (DRPNN)

DRPNN is the recurrent version of RPNN. It uses network output from the output layer as a

feedback connection to the input layer. That means that DRPNN is provided with memories

which retains information for later use [16]. According to [16], explicit treatment of dynamics

is needed for neural network models due the fact that the behaviour of some time series is

related to past values on which the present values depend upon. Therefore, DRPNN is more

suitable than RPNN for time series forecasting as found in [9, 10, 16].

The structure of DRPNN is shown in Fig 2. The difference between DRPNN and RPNN is

the additional input node in DRPNN which is fed by the previous network output value. The

Fig 2. Dynamic Ridge Polynomial Neural Network. PSNN stands for Pi-Sigma Neural Network and Z−1 denotes the time delay operator.

doi:10.1371/journal.pone.0167248.g002
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output of DRPNN network is given by:

yðt þ 1Þ � s
Xk

i¼1

Piðt þ 1Þ

 !

ð2aÞ

Piðt þ 1Þ ¼
Yi

j¼1

ðhjðt þ 1ÞÞ ð2bÞ

hjðt þ 1Þ ¼
Xmþ1

g¼1

wgjZgðtÞ ð2cÞ

ZgðtÞ ¼

( xgðtÞ 1 � g � m

yðtÞ g ¼ mþ 1
ð2dÞ

where k is the number of PSNN blocks, σ is a non-linear transfer function, m is the input vec-

tor dimension size, w is a trainable weight, x is the input and y(t) is network output at a previ-

ous time step.

The Proposed Ridge Polynomial Neural Network with Error

Feedback Model

Feedforward and recurrent networks have been used for time series forecasting. Recurrent net-

works have an advantage over feedforward networks in time series forecasting [9, 16]. The rea-

son for this is due to the behaviour of some time series in which present inputs depends on

past inputs. Therefore, explicit treatment of dynamic is needed and is achieved using recur-

rence. By using recurrent feedback, the network takes advantage on external inputs as well as

the entire history of the system inputs [9, 16]. Network output or network error are feedback

connections that were used in the literature as an additional input into the network [9, 16, 18,

23]. Therefore, making an explicit treatment of dynamic.

Feedback Error Learning

Learning from error is not a new concept for neural networks. Backpropagation algorithm

(BP) is widely used to train neural networks and is based on the concept of learning from

error. BP calculates the difference between the desired output and network output, which is

called error, and uses this error to direct training. Error Minimized Extreme Learning

Machine (EM-ELM) [30] takes advantage of errors to control the growth of the network. It

adds random hidden nodes singly or in a group and incrementally updates the weights to min-

imize errors in the training set.

Another way to take advantage of errors is by using network error as a feedback connection.

Different variations of network error have been given by different researchers. In [18, 19], the

authors calculate error by taking the difference between network output at time t + 1 and the

desired value at time t. They used this error with a state space Neural Network (ssNN) for

short-term temperature forecasting and with MLP for forecasting hourly energy consumption

in buildings. The presented results demonstrated the successful capture of the dynamical

behaviour of the models.

Instead of using the difference between network output at time t + 1 and the desired value

at time t, the authors in [20–23] used the difference between desired value and network output

Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting
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at time t + 1. In [20], the authors proposed another way to use network errors. In the begin-

ning, they initialized the training of an MLP network using training samples to find the initial

structure for MLP. Then, using the initialized network the absolute forecasting error was cal-

culated for each training sample and stored as an additional input to each sample. This was fol-

lowed by the addition of an additional layer with the same number of hidden nodes found in

the first hidden layer. This new structure was trained using new training samples. This process

continues until the testing set’s square error becomes less than the specified goal. The experi-

ment proved that their method is better than a traditional MLP. However, adding more hidden

layers to a network leads to a large number of free parameters, and results in longer training

time and could cause poor generalization.

Another simple use of error was used in [21–23]. Error was calculated and inserted into

Adaptive Neuro-Fuzzy Inference System (ANFIS) [21], Recurrent Nonlinear Autoregressive

Moving Average (Rcurrent NARMA) [22] and Functional Neural Network (FNN) [23] in the

next time step. The objective of using error as an input is to reduce the overall network error.

Adaptive control studies also take advantage of error learning which is called feedback

error learning (FEL) [31–33]. FEL was proposed to establish a computational model of the cer-

ebellum for learning motor control with interval models in the central nervous system [33].

Based on these studies, the main objective of using network error as an additional spatial

dimension in the input space is to reduce the overall network error. That means showing a net-

work the difference between the desired output and its output during training could enhance

the overall forecasting performance for the network.

Network Structure and Weights Learning

RPNN-EF is constructed from a number of increasing order of Pi-Sigma units (PSNNs) with

the addition of a recurrent connection from the output layer to the input layer. This recurrent

connection is fed by network error, thus allowing the network to see errors in previous sam-

ples. Fig 3 shows a generic network architecture for RPNN-EF. It can be seen from Fig 3 that

the only learnable connections are the connections that link the nodes in the input layer with

the nodes of the first summing layer.

Assuming that M is the number of external inputs x(t) in the network, and that e(t) is the

network error for RPNN-EF in a previous time step. The overall inputs to the network are the

concatenation of x(t) and e(t), and are referred to as Z(t) as shown below:

ZgðtÞ ¼

( xgðtÞ 1 � g � m

eðtÞ ¼ dðtÞ � yðtÞ g ¼ mþ 1
ð3Þ

From Eq (3), network output at time t + 1, which is denoted by y(t + 1), is calculated as fol-

lows:

yðt þ 1Þ � s
Xk� 1

i¼1

dPiðtþ 1Þ þ Pkðt þ 1Þ

 !

ð4aÞ

Pkðt þ 1Þ ¼
Yk

j¼1

ðhjðt þ 1ÞÞ ð4bÞ

hjðt þ 1Þ ¼
Xmþ1

g¼1

wgjZgðtÞ ð4cÞ
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where k is the number of Pi-Sigma blocks (PSNNs), Pk(t + 1) is the output at time (t + 1) of last

added PSNN block, dPiðtþ 1Þ is Pi(t + 1) after its weights are frozen, σ is the sigmoid activation

function, hj(t + 1) is the net sum of the sigma unit j in the last added PSNN block, and wgj is

the adjustable weights between inputs and sigma units.

Like RPNN and DRPNN, RPNN-EF uses a constructive learning algorithm based on the

asynchronous updating rule of Pi-Sigma units. RPNN-EF adds a Pi-Sigma block of increasing

order to its structure when the relative different between the current and the previous errors is

less than a specified threshold value. RPNN-EF updates its weights using the Real Time Recur-

rent Learning algorithm [34]. A standard error measurement used for training the network is

the sum squared error:

Eðt þ 1Þ ¼
1

2

X
eðt þ 1Þ

2
ð5Þ

where

eðt þ 1Þ ¼ dðt þ 1Þ � yðt þ 1Þ ð6Þ

where d(t + 1) is the desired output and y(t + 1) is the network output as shown in Eq (4a). At

every time, the weights between inputs g and sigma l are updated as follows:

Dwgl ¼ � Z �
@Eðt þ 1Þ

@wgl

 !

ð7Þ

Fig 3. Ridge Polynomial Neural Network with Error Feedback. PSNN stands for Pi-Sigma Neural Network, d(t + 1) is the desired output at time t + 1 and

Z−1 denotes the time delay operator.

doi:10.1371/journal.pone.0167248.g003
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where η is the learning rate. The value of
@Eðtþ1Þ

@wgl
is determined as:

@Eðt þ 1Þ

@wgl
¼
@Eðt þ 1Þ

@eðt þ 1Þ
�
@eðt þ 1Þ

@wgl
ð8Þ

From Eq (5), we have:

@Eðt þ 1Þ

@wgl
¼ eðt þ 1Þ �

@eðt þ 1Þ

@wgl
ð9Þ

@eðt þ 1Þ

@wgl
¼
@eðt þ 1Þ

@yðt þ 1Þ
�
@yðt þ 1Þ

@Pkðt þ 1Þ
�
@Pkðt þ 1Þ

@wgl
ð10Þ

From Eqs (4) and (6), we have:

@eðt þ 1Þ

@wgl
¼ � 1 � ðyðt þ 1ÞÞ

0

�
Yk

j¼1;j6¼l

hjðt þ 1Þ

 !

� ZgðtÞ þ wðmþ1Þl �
@eðtÞ
@wgl

 !

ð11Þ

Assuming DE is the dynamic system variable, which is defined as a set of quantities that sum-

marizes all the information about the past behaviour of the system that is needed to uniquely

describe its future behaviour [12], DE is:

DE
glðt þ 1Þ ¼

@eðt þ 1Þ

@wgl
ð12Þ

Substituting Eqs (11) into (12), we have:

DE
glðt þ 1Þ ¼

@eðt þ 1Þ

@wgl
¼ � 1 � ðyðt þ 1ÞÞ

0

�
Yk

j¼1;j6¼l

hjðt þ 1Þ

 !

� ZgðtÞ þ wðmþ1Þl � DE
glðtÞ

� �

ð13Þ

For simplification, the initial values for DE
glðtÞ ¼ 0, and e(t) = 0.5 to avoid a zero value of

DE
glðtÞ ¼ 0 [9, 16]. The weights updating rule is derived by substituting Eqs (9) and (13) into

(7), as follows:

Dwgl ¼ � Z � eðt þ 1Þ � DE
glðt þ 1Þ ð14Þ

Finally,

wnew
gl ¼ wold

gl þ Dwgl ð15Þ

Stability issue

The ability to model the behaviour of arbitrary dynamical systems is one of the most useful

properties of recurrent networks. The presence of a recurrent connection in RPNN-EF is

expected to enhance its forecasting performance. Despite its potential of RPNN-EF feedback,

the problems of complexity and difficult training could occur in RPNN-EF, as found in

DRPNN [9]. These problems are summarized in two main points. First, calculating the gradi-

ents and updating the weights of a recurrent network is much more difficult than in a feedfor-

ward network due to dynamic system variables that affect both the gradient and the output.

Second, learning could become unstable because the learning error may not monotonically

decrease causing long convergence times.

Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting
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In order to tackle these problems, a sufficient condition for the convergence of DRPNN

was derived based on the stability theorem for a feedback network proposed by Atiya [35]. The

aim of this theorem is to adjust the weights of the network to generate network outputs that

are as close as possible to the desired output [9]. However, this solution could be too restrictive

where a large network is necessary [35] or when working with constructive learning because it

stops training with a small number of hidden units.

To overcome the stability and convergence problems of RPNN-EF, this study uses sufficient

condition based on an approach that uses an adaptive learning rate developed by introducing

a Lyapunov function.

First, let us define a Lyapunov function as follows:

VðtÞ ¼
1

2
e2ðtÞ ð16Þ

where e(t) represents error which is calculated by differencing the desired value from the pre-

dicted value. We use this error function because the RPNN-EF model is used to minimize it.

According to Eq (16), the change in the Lyapunov function is determined by:

DVðtÞ ¼ Vðt þ 1Þ � VðtÞ ¼
1

2
e2ðt þ 1Þ � e2ðtÞ½ � ð17Þ

The error difference can be represented by [36, 37]

eðt þ 1Þ ¼ eðtÞ þ DeðtÞ ð18Þ

eðt þ 1Þ ffi eðtÞ þ
@eðtÞ
@w

� �T

Dw ð19Þ

where4w represents the weight change. Based on Eqs (13) and (14), we have:

eðt þ 1Þ ffi eðtÞ � Z � eðtÞ � ½DEðtÞ�T � DEðtÞ ð20Þ

eðt þ 1Þ ffi eðtÞð1 � Z � ½DEðtÞ�T � DEðtÞÞ ð21Þ

From Eqs (17) and (21),4V(t) is represented as

DVðtÞ ¼
1

2
Z � e2ðtÞ � ½DEðtÞ�T � DEðtÞðZ � ½DEðtÞ�T � DEðtÞ � 2Þ ð22Þ

DVðtÞ ¼
1

2
Z � e2ðtÞ � ðk DEðtÞkFÞ

2
ðZ � ðk DEðtÞkFÞ

2
� 2Þ ð23Þ

where k . kF is the Frobenius norm which is calculated using a trace function [38].

A sufficient condition to ensure stability is4V(t)< 0. Therefore, Eq (23) leads to:

0 < Z <
2

ðk DEðtÞkFÞ
2 ð24Þ

Eq (24) suggests an upper bound of η for a sufficient condition to ensure stability in

RPNN-EF.

Constructive Learning Algorithm for the RPNN-EF

The proposed RPNN-EF is trained by the constructive learning algorithm based on the asyn-

chronous update rule for PSNN. That means that the network structure grows from small to

Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

PLOS ONE | DOI:10.1371/journal.pone.0167248 December 13, 2016 10 / 34



large as network learning proceeds until the desired level of specified error is reached. Before

presenting the algorithm, we need the following notations-�threshold: threshold Mean Squared

Error (MSE) for the training phase; �c, �p: the training MSE’s for the current epoch and previ-

ous epoch, respectively; r: threshold for successive addition of a new PSNN blocks; η: initial

learning rate; δr, δη: decreasing factors for r and η, respectively; k: degree of PSNN, as well as

EpochID, and Epochthreshold: number of training epochs and maximum number of epochs to fin-

ish training, respectively.

The pseudo code used for RPNN-EF to update its weights is as follows:

Algorithm 1 Constructive Leaming Algorithm for the RPNN-EF

Set EpochID = 0.
Assignsuitablevaluesto �threshold, η, r, δr, δη and Epochthreshold.
loop
CalculatePk using Eq (4b)

A:
for all trainingsamplesdo
CalculateactualnetworkoutputusingEq (4a)
Updateweightsby applyingthe asynchronousupdaterule in Eq (15)
if η outsidethe boundsin Eq (24) then ⊳Checkstabilityissue
Stop learning

end if
end for
Calculatecurrentepoch’serror (�c)
if �c < �threshold or EpochID > Epochthreshold then
Stop learning

end if
EpochID EpochID + 1
�p �c
if|(�c − �p)/�p|�r then
Go to Step A

else
bPk  Pk

r r � δr
η η � δη
k k + 1

end if
end loop

Experimental Design

This section provides a step by step methodology describing the design of a neural networks to

forecast time series.

Time Series used in the Experiments

Four time series were used in this study, namely star brightness (StarBrightness), monthly

smoothed sunspot numbers (Sunspot), daily Euro/Dollar exchange rate (EUR/USD), and

Mackey-Glass time-delay differential equation (Mackey-Glass).

Star brightness was recorded for 600 successive nights at midnight. This series was scaled

by a factor of 1/30. This series was obtained from [39]. The monthly smoothed sunspot time

series was downloaded from [40]. The sunspot time series was seen as a chaotic system with

noise and is sensitive to initial conditions [41]. A sub-series in the sunspot time series from

November 1834 to June 2001 consisting of 2, 000 months was selected. This interval was also

selected by other researches [42, 43]. The third series is the daily Euro/Dollar (EUR/USD)
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exchange rate. The data set contains 781 observations covering the period from January 3,

2005 to December 31, 2007 [44]. The data was collected from [45, 46]. The last time series was

generated from the Mackey–Glass time-delay differential equation which is defined as follows:

dx
dt
¼ bxðtÞ þ

axðt � tÞ

1þ x10ðt � tÞ
ð25Þ

where t is a variable, x is a function of t, and τ is the time delay. The initial values of the series

are α = 0.2, β = −0.1, x(0) = 1.2, and τ = 17. It is known that with this setting the series shows

chaotic behaviour. From the generated time series, 1000 data points were extracted as

explained in [47]. This series can be found in the file mgdata.dat in MATLAB [47] or in

https://raw.githubusercontent.com/dodikk/neuro-mut/master/src/NetworkConverter/

Samples/mgdata.dat.

The settings used in this study for these series are shown in Table 1. These settings were

also used in the studies of [42–44, 48–59]. The used intervals for training and out-of-sample

sets are shown in Figs 4–7.

Table 1. Time series information.

Input–output data pairs Training samples# Out-of-sample samples#

StarBrightness [x(t − 2), x(t − 1), x(t); x(t + 1)] 300 300

Sunspot [x(t − 4), x(t − 3), x(t − 2), x(t − 1), x(t); x(t + 1)] 1000 1000

EUR/USD [x(t − 10), x(t − 5), x(t); x(t + 5)] 625 156

Mackey–Glass [x(t − 18), x(t − 12), x(t − 6), x(t); x(t + 6)] 500 500

doi:10.1371/journal.pone.0167248.t001

Fig 4. Star brightness time series.

doi:10.1371/journal.pone.0167248.g004
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Fig 5. Monthly smoothed sunspot numbers time series from November 1834 to June 2001.

doi:10.1371/journal.pone.0167248.g005

Fig 6. Daily Euro/Dollar exchange rate time series from January 3, 2005 to December 31, 2007.

doi:10.1371/journal.pone.0167248.g006

Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

PLOS ONE | DOI:10.1371/journal.pone.0167248 December 13, 2016 13 / 34



Network Topology and Training

Network model topology describes the architecture of the network models and the way that

the network is organized. The selected network topology was directly trained on the training

set and tested on the out-of-sample set. Training was performed by repeatedly showing the

network examples of inputs, paired with the desired output. During training, the difference

between the desired and actual outputs was computed in order to update network weights.

Network topology and training parameters that were used in this study are shown in

Table 2. Most of the settings are either based on previous works found in the literature [9,

10, 16] or by trial and error.

Since this study used the sigmoid transfer function, similar to [9, 16], the data was scaled in

the range [0.2, 0.8]. This is to avoid getting network outputs too close to the two endpoints of

the sigmoid function [10]. The equation to scale the data is given by:

_x ¼ ðmaxnew � minnewÞ �
x � minold

maxold � minold

� �

þminnew ð26Þ

where _x refers to the normalized value, x refers to the observation value, minold, and maxold,

are the respective minimum and maximum values of all observations, respectively. minnew,

and maxnew, refer to the minimum and maximum of the new scaled series.

Performance Metrics

In this study, network performance was evaluated using commonly used metrics for time

series forecasting such as Root Mean Squared Error (RMSE), Normalized Mean Squared Error

(NMSE), Mean Absolute Error (MAE) and Signal to Noise Ratio (SNR). This study carried out

Fig 7. Mackey–Glass time-delay differential equation time series.

doi:10.1371/journal.pone.0167248.g007
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t-tests with a significance level of 0.05 to highlight significant performance. The equation for

these metrics are given by:

Root Mean Squared Error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � ŷiÞ
2

s

ð27Þ

Normalized Mean Squared Error (NMSE):

NMSE ¼
1

Ns2

XN

i¼1

ðyi � ŷiÞ
2 ð28Þ

s2 ¼
1

N � 1

XN

i¼1

ðyi � �yÞ2 ð29Þ

�y ¼
1

N � 1

XN

i¼1

yi ð30Þ

Mean Absolute Error (MAE):

MAE ¼
1

N

XN

i¼1

j yi � ŷi j ð31Þ

Table 2. Network topology and training.

Setting Value

Number of input units Input points which given in Table 1

Number of output units One unit

Activation function Sigmoid function

Number of Pi-Sigma block (PSNN) The network’s order was incrementally grown from 1 to

5

Stopping criteria for RPNN • Maximum number of epochs = 3000 or,

• After accomplishing the 5th order network learning.

Stopping criteria for DRPNN & RPNN-EF • Maximum number of epochs = 3000 or,

• After accomplishing the 5th order network learning

or,

• Network learning becomes unstable.

Initial weights range [-0.5, 0.5]

Momentum range [0.4-0.8]

Learning rate (η) range [0.01-1]

Decreasing factors for n (δη) 0.8

Threshold for successive addition of a new PSNN

(r)

[0.00001, 0.1]

Decreasing factors for threshold (δr) [0.05, 0.2]

doi:10.1371/journal.pone.0167248.t002
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Signal to Noise Ratio (SNR):

SNR ¼ 10 � log 10ðSigmaÞ ð32Þ

Sigma ¼
m2 � N

SSE
ð33Þ

m ¼ maxðyiÞ ð34Þ

SSE ¼
XN

i¼1

ðyi � ŷiÞ
2 ð35Þ

where N, y and ŷ represent the number of out-of-sample data, actual output and network out-

put, respectively.

Results and Discussions

In this section, the simulation results for the forecasting of star brightness, monthly smoothed

sunspot numbers, daily Euro/Dollar (EUR/USD) exchange rate, and Mackey-Glass time-delay

differential equation are presented.

Best Average Simulation Results

Since network training is significantly influenced by its initial internal state, which involves

different initial learning parameters and different sets of random weights, an average of 30

independent simulations were performed for all neural networks in order to obtain fair and

more robust comparative evaluations. The average performance for the various neural network

architectures are shown in Tables 3–6. The results shown in these tables are the de-normalized

results. That means, we de-normalized the forecasted value and compared it with the original

desired value.

As seen from the four metrics results, the forecasting performance of the feedforward

RPNN network is significantly better than the two recurrent networks for one-step ahead fore-

casting on the short time series (StarBrightness) (i.e., the symbol R is inside the cells that relate

to DRPNN and RPNN-EF for StarBrightness series). Such results were found for one-step

ahead forecasting with short time series in [60, 61]. The two recurrent networks DRPNN and

RPNN-EF are significantly better than the feedforward RPNN network for one-step ahead

Table 3. Root Mean Squared Error (RMSE) improvement of RPNN-EF to RPNN and DRPNN.

RPNN DRPNN RPNN-EF Improvement to RPNN % Improvement to DRPNN %

StarBrightness 0.5475 0.5763R 0.5873D,R -7.27% -1.91%

Sunspot 3.7104D,E 2.7781E 2.2596 39.1% 18.66%

EUR/USD 0.0078D,E 0.007E 0.0057 26.92% 18.57%

Mackey–Glass 0.0185D,E 0.0131 0.0121 34.59% 7.63%

Average of improvement % 23.34% 10.74%

These are the de-normalized results for 30 simulations.
E, means the RPNN-EF has significant performance using t-test;
D, means the DRPNN has significant performance using t-test;
R, means the RPNN has significant performance using t-test.

doi:10.1371/journal.pone.0167248.t003
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Table 4. Normalized Mean Squared Error (NMSE) improvement of RPNN-EF to RPNN and DRPNN.

RPNN DRPNN RPNN-EF Improvement to RPNN % Improvement to DRPNN %

StarBrightness 0.0037 0.0041R 0.0043D,R -16.22% -4.88%

Sunspot 0.0028D,E 0.0016E 0.0011 60.71% 31.25%

EUR/USD 0.1072D,E 0.0866E 0.0575 46.36% 33.6%

Mackey–Glass 0.0078D,E 0.0034 0.0034 56.41% � 0%

Average of improvement % 36.82% 14.99%

These are the de-normalized results for 30 simulations.
E, means the RPNN-EF has significant performance using t-test;
D, means the DRPNN has significant performance using t-test;
R, means the RPNN has significant performance using t-test.

doi:10.1371/journal.pone.0167248.t004

Table 5. Mean Absolute Error (MAE) improvement of RPNN-EF to RPNN and DRPNN.

RPNN DRPNN RPNN-EF Improvement to RPNN % Improvement to DRPNN %

StarBrightness 0.4450 0.4652R 0.4742D,R -6.56% -1.93%

Sunspot 3.0029D,E 2.2552E 1.8207 39.37% 19.27%

EUR/USD 0.0065D,E 0.0057E 0.0048 26.15% 15.79%

Mackey–Glass 0.0142D,E 0.0105 0.0097 31.69% 7.62%

Average of improvement % 22.66% 10.19%

These are the de-normalized results for 30 simulations.
E, means the RPNN-EF has significant performance using t-test;
D, means the DRPNN has significant performance using t-test;
R, means the RPNN has significant performance using t-test.

doi:10.1371/journal.pone.0167248.t005

Table 6. Signal to Noise Ratio (SNR) improvement of RPNN-EF to RPNN and DRPNN.

RPNN DRPNN RPNN-EF Improvement to RPNN % Improvement to DRPNN %

StarBrightness 35.8666 35.4226R 35.2549D,R -1.71% -0.47%

Sunspot 37.7086D,E 40.222E 42.0337 11.47% 4.5%

EUR/USD 39.6928D,E 40.6037E 42.3944 6.81% 4.41%

Mackey–Glass 37.4584D,E 40.0711E 41.44 10.63% 3.42%

Average of improvement % 6.8% 2.97%

These are the de-normalized results for 30 simulations.
E, means the RPNN-EF has significant performance using t-test;
D, means the DRPNN has significant performance using t-test;
R, means the RPNN has significant performance using t-test.

doi:10.1371/journal.pone.0167248.t006
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forecasting on long time series (Sunspot) and for multi-step ahead forecasting on EUR/USD

and Mackey–Glass time series. This means that the built memory during training in the recur-

rent networks for long series for one-step ahead forecasting and for multi-step ahead forecast-

ing improves forecasting performance.

Results in Tables 3–6 show that average improvements in all metrics for RPNN-EF perfor-

mance are more than twice in the case of RPNN than DRPNN. These findings prove that

explicit treatment of dynamics helps to improve forecasting performance. Furthermore, using

network error feedback as an input helps reduce the overall network error and improve fore-

casting performance.

As seen in average improvements for the four metrics, the highest average improvement for

RPNN-EF is with NMSE metric while the lowest average improvement is with SNR metric.

This is because the variables used in the equations for these metrics depend on the time series

itself. For example, the variance variable used with NMSE and the maximum value used with

SNR. Therefore, these variables increase or decrease metric values and average improvements.

Overall, RPNN-EF outperforms other RPNN based models, which is seen in average

improvements across all metrics. This performance was achieved with network orders equal to

or less than that of other RPNN based models as shown in Fig 8.

Fig 8. Network order for the best average simulations on the used time series.

doi:10.1371/journal.pone.0167248.g008
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Best Single Simulation Results

This section shows the results for the best single simulation achieved for each network model.

As shown in Table 7, RPNN-EF has the smallest RMSE and NMSE values for all time series

except for StarBrightness. Its performance for the StarBrightness time series is still acceptable.

The forecast values were plotted with respect to observed values, as shown in Figs 9–12, which

show a very strong relationship between forecasted and observed values for the Sunspot and

Mackey-Glass time series. This is because the NMSE for these time series is very small when

compared to other time series.

The best forecasting for RPNN-EF using out-of-sample data are shown in Figs 13–16.

These figures indicate that the RPNN-EF model can follow the dynamic behaviour of the time

series. The histogram for the forecasting errors of the best simulations for the time series are

shown in Figs 17–20.

As seen in Figs 17–20, all histograms indicate that error distribution closely resembles a

symmetric Gaussian distribution. Most of the errors are close to zero. This means the

RPNN-EF is able to extract information from a time series.

Comparison of the Performance of Various Existing Models

In this section, we compare our results with other models in the literature. Based on our search

results, this study did not find studies that use the same normalization range as the present

study. For a fair comparison with recent studies, this study compared the de-normalized

results for the RPNN-EF model with de-normalized published results in the literature or with

studies that did not use any normalization method.

Tables 8 and 9 show the comparison results for generalization capabilities using different

methods for the Sunspot and Mackey-Glass time series, respectively. Generalization

Table 7. Best Single Simulation Results.

Model Order RMSE NMSE

StarBrightness

RPNN-EF 3 0.5632 0.004

DRPNN 3 0.5468 0.0037

RPNN 3 0.5372 0.0036

SunspotNumbers

RPNN 3 2.1594 0.001

DRPNN 3 1.9542 0.0008

RPNN-EF 3 1.9088 0.0007

EUR/USD

RPNN 2 0.0072 0.0908

DRPNN 4 0.0068 0.0808

RPNN-EF 2 0.0052 0.0477

Mackey–Glass

RPNN 4 0.0115 0.0026

DRPNN 5 0.0105 0.0022

RPNN-EF 5 0.0062 0.0008

These are the de-normalized results.

doi:10.1371/journal.pone.0167248.t007
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capabilities were measured by applying each model to forecast out-of-sample data. As was

observed, RPNN-EF alone outperforms many hybrid methods. Therefore, hybridizing

RPNN-EF with other models could produce higher forecasting accuracy.

Learning Curve Results

Figs 21–24 show the evolution of RMSE during the learning of RPNN-EF with the used time

series. RPNN-EF has the ability to quickly converge. Note that the RMSE values in Figs 21–24

are normalized values.

For all time series, the learning curves for RPNN-EF are remarkably stable and RMSE con-

tinuously reduced every time Pi-Sigma block is added to the network. Each spike shown in

Figs 21–24 comes from the introduction of a new Pi-Sigma block to RPNN-EF except for a

spike in the Mackey-Glass time series at epoch 54, which is due to an increase in RMSE, that

rarely occurs with the sufficient condition due to the small values of the input signal as found

in [62].

Fig 9. Correlation function between forecast and observed values for StarBrightness time series

based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g009
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Conclusions and future work

In this study, a new approach called Ridge Polynomial Neural Network with Error Feedback

(RPNN-EF) for time series forecasting was proposed. The goal of this study is to contribute a

new approach for time series forecasting that take advantage of higher order terms, recurrence,

and error feedback. This study demonstrated the effectiveness of the proposed model by test-

ing it on four time series for one-step and multi-step ahead forecasting. This study compared

RPNN-EF with the feedforward Ridge Polynomial Neural Network (RPNN) and the Dynamic

Ridge Polynomial Neural Network (DRPNN). The results of the study are summarized as

follows:

• Recurrent networks are more suitable than feedforward networks for multi-step ahead

forecasting.

• For one-step ahead forecasting with long training data, recurrent networks are better than

feedforward networks because the dynamics of the time series captured and saved in the

recurrent network’s memory. For short training data, the dynamics of the time series are not

captured well might due to the short length of the training samples.

Fig 10. Correlation function between forecast and observed values for Sunspot time series based on

the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g010
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• Using network error feedback as an input helps reduce the overall network error more often

than network output feedback, thus improving forecasting performance. Showing a network

the difference between the desired output and its real output, which is known as error, dur-

ing training helps enhance the overall forecasting performance for the network.

• Although RPNN-EF has the highest average performance, it uses network orders equal to or

smaller than other RPNN models.

Fig 11. Correlation function between forecast and observed values for EUR/USD time series based on the best

RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g011
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• Sufficient conditions to ensure RPNN-EF stability helps RPNN-EF to become stable in most

cases.

With regards to model development, the following can be considered for future

investigation:

• Applying the proposed model with more time series for one-step and multi-step ahead fore-

casting with different lengths to prove forecasting performance.

• This study focuses on univariate time series, which is data from a single time series. The

ever more global nature of some series such as the world financial markets necessitates the

inclusion of more global knowledge into neural network design. Multivariate series can

look at the interdependence between several time series. Therefore, the use of multivariate

series would be advantageous, since some market depends on other global markets and

the inclusion of these series will potentially improve neural network forecasting

performance.

Fig 12. Correlation function between forecast and observed values for Mackey–Glass time series

based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g012
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Fig 14. Out-of-sample forecasting for Sunspot time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g014

Fig 13. Out-of-sample forecasting for StarBrightness time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g013
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Fig 15. Out-of-sample forecasting for EUR/USD time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g015

Fig 16. Out-of-sample forecasting for Mackey–Glass time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g016
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Fig 17. The histogram of the forecasting error for StarBrightness time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g017

Fig 18. The histogram of the forecasting error for Sunspot time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g018
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Fig 19. The histogram of the forecasting error for EUR/USD time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g019

Fig 20. The histogram of the forecasting error for Mackey–Glass time series based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g020
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• Like other ridge polynomial based models, the main difficulty of using RPNN-EF is finding

suitable values for its parameters. With respect to this deficiency, it might be worthwhile to

consider how evolutionary and swarm intelligence techniques can be used to automatically

generating suitable parameters for the network. Furthermore, these techniques can be used

to optimize network weights.

• To increase the reliability of forecasting, an ensemble system that uses RPNN-EF with

another techniques can be proposed.

Table 8. Comparison of the performance of various existing models on Sunspot series.

Model RMSE NMSE

FNN [42] 6.4905 0.0174

ART-FNN [42] 6.2204 0.0160

Modified-ART-FNN [42] 5.7173 0.0135

RPNN (used in this work) 2.1594 0.001

DRPNN (used in this work) 1.9542 0.0008

RPNN-EF (proposed) 1.9088 0.0007

Brain emotional learning-based RFS [43] - 0.000664

ART, adaBoost.regression and threshold; FNN, fuzzy neural networks; DRPNN, dynamic ridge polynomial

neural network; RFS, recurrent fuzzy system; RPNN, ridge polynomial neural network; RPNN-EF, ridge

polynomial neural network with error feedback.

doi:10.1371/journal.pone.0167248.t008

Table 9. Comparison of the performance of various existing models on Mackey–Glass series.

Model RMSE

Fuzzy modeling method with SVD [49] 0.0894

Gustafson-Kessel fuzzy clustering method + KFA with SVD [50] 0.0748

Orthogonal function neural network + recursive KFA based on SVD [51] 0.05099

Adaptive fuzzy inference system with local research [52] 0.045465

Beta basis function neural networks + DE algorithm [53] 0.030

Backpropagation Network Optimized by Hybrid K-means-Greedy [54] 0.015

Multilayer feedforward neural network [55] 0.0155

Modified DE and the radial basis function [56] 0.013

RPNN (used in this work) 0.0115

DRPNN (used in this work) 0.0105

Functional-link-based neural fuzzy network-cultural cooperative PSO [57] 0.008424

WNN with the clustering based initialization approach [58] 0.0078

Flexible Beta Basis Function Neural Tree [59] 0.0068

MLMVN-QR decomposition [55] 0.0065

RPNN-EF (proposed) 0.0062

MLMVN [55] 0.0056

DE, differential evolution; DRPNN, dynamic ridge polynomial neural network; GD, gradient descent; KFA,

kalman filtering algorithm; MLMVN, multilayer neural network with the multi-valued neurons; PSO, particle

swarm optimization; RPNN, ridge polynomial neural network; RPNN-EF, ridge polynomial neural network

with error feedback; SVD, singular value decomposition; WNN, wavelet neural network

doi:10.1371/journal.pone.0167248.t009
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Fig 21. Learning curves for StarBrightness time series forecasting based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g021

Fig 22. Learning curves for Sunspot time series forecasting based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g022
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Fig 23. Learning curves for Daily Euro/Dollar (EUR/USD) exchange rate time series forecasting based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g023

Fig 24. Learning curves for Mackey–Glass time series forecasting based on the best RPNN-EF simulation.

doi:10.1371/journal.pone.0167248.g024
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• The use of error feedback recurrence with other neural network models and an evaluation of

their forecasting performance.
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