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ABSTRACT: PROteolysis TArgeting Chimeras (PROTACs) use
the ubiquitin−proteasome system to degrade a protein of interest
for therapeutic benefit. Advances made in targeted protein
degradation technology have been remarkable, with several
molecules having moved into clinical studies. However, robust
routes to assess and better understand the safety risks of
PROTACs need to be identified, which is an essential step toward
delivering efficacious and safe compounds to patients. In this work,
we used Cell Painting, an unbiased high-content imaging method,
to identify phenotypic signatures of PROTACs. Chemical
clustering and model prediction allowed the identification of a
mitotoxicity signature that could not be expected by screening the
individual PROTAC components. The data highlighted the benefit
of unbiased phenotypic methods for identifying toxic signatures and the potential to impact drug design.

■ INTRODUCTION
PROteolysis TArgeting Chimeras (PROTACs) belong to a
category of compounds also referred to as beyond the Rule-of-
5 (bRo5) as they do not comply with Lipinski’s Rule-of-5
(Ro5). The prediction and/or better understanding of the
consequences for drug screening are limited by the lack of
descriptors and methodologies for robust safety profiling.
Hence, there is a need for descriptors tailored for or that are
“compatible” with the bRo5 new data modalities.1,2 There have
been machine learning approaches for the prediction of drug
toxicity using physiochemical descriptors, structural alerts, and
high-throughput imaging data for small molecules.3−5 How-
ever, computational prediction for new modalities has been
less investigated. As a new therapeutic modality, PROTACs are
raising multiple concerns on various aspects such as safety,
ADME properties, toxicity, and others.6 A potential approach
to profile PROTACs and improve understanding of their safety
aspects could be the use of high-throughput imaging (HTI)
assays, which have become easier to run over the recent years.
HTI assays have been useful in the better understanding of a
compound’s mode of action,7−12 but from a practical angle,
they have also been used to predict a wide range of efficacy and
safety factors.13−16 One of the assays that is currently used by
academic groups and pharmaceutical companies is the Cell
Painting assay.7,9,13,17 Phenotypes from this assay are not
obtained with any particular biological point of interest in

mind and can be considered as image-based fingerprints of a
compound covering a wide range of information.7,18,19

Here, we report for the first time that the Cell Painting assay
can be used as a high-throughput imaging assay to profile
morphological changes induced by PROTACs. Cell Painting
descriptors proved to be sufficient to train models with good
predictive performance. We proved that these profiles can be
useful in mitochondrial toxicity prediction of PROTACs,
highlighting that image-based data can be used in both
supervised and unsupervised machine learning approaches and
provide information for the safety assessment of compounds
such as mitochondrial toxicity, which has been related to
attrition of drugs and late-stage market withdrawals.20

■ RESULTS AND DISCUSSION
Morphological Profiling Detected PROTAC Activity. A

total of 341 PROTACs and 149 non-PROTACs, directed at
more than 15 different targets, were profiled with the Cell
Painting assay in U-2 OS cells. PROTACs are bivalent
molecules that use the natural function of E3 ligases to
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ubiquitinate a target protein for degradation through the
proteasome. The non-PROTAC compounds include small-
molecule compounds, which are inhibitors of the targets that
PROTACs are degrading, E3 ligase ligands, and reference
compounds that have shown mitochondrial toxicity. Following
the compounds’ profiling with the Cell Painting assay,
morphological features were calculated with a CellProfiler.
Morphological features were normalized, and a feature
selection process was applied. In the final step, the activity of
PROTACs on the Cell Painting assay was evaluated and
PROTACs-Cell Painting features were used as descriptors for
training the in silico mitotoxicity models.
PROTAC profiles together with non-PROTAC molecules

were used to understand whether they show systematically
different Cell Profiling readouts compared to neutral controls,
based on two metrics: Euclidean distance-based and grit score
activity metric. The results from the Euclidean distance-based
method showed that out of the ∼1000 (three replicates per
PROTAC) profiles obtained from testing PROTACs at
concentrations 0.1, 1, and 10 μM, 17, 61, and 80% of the
profiles, respectively, displayed cellular morphology different
from the neutral controls (Figure 1a). In line, higher grit scores
were observed with increasing concentrations (median ±
standard deviations of 0.65 ± 0.72, 1.32 ± 1.07, and 2.56 ±
1.49 for concentrations of 0.1, 1, and 10 μM, respectively;

Figure 1b). The main E3 ligases used by PROTACs are CRBN
and VHL, and the vast majority of the compounds profiled
with Cell Painting were using those two E3 ligases (Figure 1c).
However, compounds using other E3 ligases such as DCAF15
or IAP were also included (Figure 1c). For non-PROTAC
compounds, similar trends were observed, where 22, 46, and
60% of a total of ∼450 profiles displayed cellular morphology
different from the controls (Figure 1a). Similarly, higher grit
scores were observed with increasing concentrations (median
± standard deviations of 0.65 ± 1.20, 1.04 ± 1.30, and 1.80 ±
1.60 for concentrations of 0.1, 1, and 10 μM, respectively;
Figure 1b). Hence, we observed a clear dose−response
relationship in the data set examined here. The activity in
the Cell Painting assay increased with concentration, but 17%
of the PROTAC and 22% of the non-PROTAC profiles
showed activity at 0.1 μM. We further evaluated how similar
are the profiles between concentrations for each PROTAC.
The mean Pearson correlations were equal to 0.26, 0.21, and
0.33 for comparisons between 0.1 vs 1, 0.1 vs 10, and 1 vs 10
μM, respectively. There is a degree of similarity between
concentrations 1 and 10 μM, but a lower correlation was
observed for 0.1 μM against the higher concentrations (1 and
10 μM), as shown in Figure S2a,b.

Looking at particular examples, we focused on a
commercially available PROTAC data set, which included

Figure 1. Cell Painting activity score for PROTAC and non-PROTAC compounds. (a) Percentage of PROTAC and non-PROTAC compounds
identified as active on the Cell Painting assay with the Euclidean-based method (i.e., compounds that are able to change the cellular morphology) at
concentrations of 0.1, 1, and 10 μM. The Euclidean distance-based method showed that the number of active compounds increases as the
concentration increases. (b) Cell Painting activity score in the form of the grit score across all concentrations (0.1, 1, and 10 μM). Both PROTAC
and non-PROTAC compounds’ activity on the Cell Painting assay (in the form of the grit score) increased as the concentration increased. (c)
Classification of the PROTAC molecules based on the E3 ligase used.
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PROTACs targeting BRD4 and PROTACs targeting CDK
proteins (Table 1, Figures 2 and S3). All previously published

PROTACs showed activity in the Cell Painting assay, including
PROTACs targeting BRD4 and PROTACs targeting the cell-
cycle regulators CDK proteins (Figure 2). Among the BRD4
PROTACs, MZ1 and ZXH 3−26 were the most active
PROTAC compounds, while dBET1 was the least active
(Figure 2), matching the degradation potency described for
these compounds at BRD4 degradation, suggesting that the
activity seen is an on-target effect. Among the CDK degraders,
the PROTAC targeting CDK9 (THAL-SNS-032) was the
most active. This makes it a pharmacologically interesting
PROTAC because of its selective degradation of CDK9 with
limited effects on the protein level of other CDKs.21 In
addition, THAL-SNS-032 has shown a prolonged pharmaco-
dynamic effect compared with traditional kinase inhibitors.21

Looking at the raw images, it was clear that the CDK9
degrader caused a reduction in nucleoli formation, suggesting a

cell-cycle arrest effect, in line with the function of CDK9 in
cell-cycle progression (Figure 2). This phenotype is plausible
given that CDK9 inhibitors�such as the Flavopiridol�
promote nucleolar disintegration by inhibiting early rRNA
processing and transcription.22

Cell Painting Projection Revealed Different PROTAC
Signatures. Next, a dimensionality reduction of the
PROTACs-Cell Painting profiles was performed with uniform
manifold approximation and projection (UMAP)23 to under-
stand which phenotypic responses are clustered together using
Cell Profiling readouts with this method. The results of this
analysis are shown in Figure 3, which suggested a range of
different, distinguishable Cell Painting signatures for PRO-
TACs targeting various targets (Figure 3). Furthermore,
chemical clustering varied with the concentration of
PROTACs used and the Cell Painting activity score (1 vs 10
μM; Figure 3). Looking at specific compounds targeting
BRD4, the small-molecule inhibitor MS402 clustered together
with BRD4 targeting PROTACs, suggesting a similar mode of
action (Figure 3, orange annotation). Interestingly, PROTACs
from different projects clustered to different regions, suggesting
a different mode of action (Figure 3). Considering only the grit
score, we did not observe a strong correlation with the primary
pharmacology (target degradation; Figure S3a) and clearly
observed some Cell Painting activity even when the primary
target was not expressed in U-2 OS or when the compound
showed poor degradation activity (Figure S3a). This was
particularly evident for compounds from Targets 9, 11, and 14
where PROTACs with no degradation activity were still
showing a high grit score (Figure S3b). These data suggest that
the grit score is only one part of the Cell Painting data analysis
and other parameters need to be used to capture the full signal
from compounds such as feature extraction like we did for the
degrader THAL-SNS-032, which clearly showed on-target
activity via the loss of nucleoli (Figure 2). However, the
observation of a poor correlation between primary pharmacol-
ogy and the grit score led us to investigate whether we could
link the Cell Painting signature of these PROTACs to a safety
finding.

Table 1. Cell Painting Activity Score (Grit) for Published
PROTACs

grit score at different
concentrations (μM)

compound name target 0.1 1 10

MZ1 BRD4 1.60 3.84 dead cells
ZXH 3−26 BRD4 0.92 2.19 4.31
AT1 BRD4 1.22 2.15 4.20
dBET1 BRD4 −0.47 1.27 2.34
BSJ-03-123 CDK6 0.81 2.78 2.17
BSJ-03-204 CDK4/6 1.17 2.39 1.69
BSJ-04-132 CDK4 0.91 1.20 1.82
CM11 VHL 0.92 0.15 1.95
CRBN-6-5-5-VHL CRBN 1.03 2.04 2.63
THAL-SNS-032 CDK9 −0.69 2.59 5.42
TL 13-12 ALK 2.08 1.50 5.46
lenalidomide IKZF1, IKZF3 0.56 0.32 −0.18
pomalidomide IKZF1, IKZF3 0.46 0.45 −0.02

Figure 2. Cell Painting activity score (grit) for published PROTAC and non-PROTAC compounds. The published non-PROTAC compounds’
data set consists of commonly used compounds as E3 ligand parts for PROTACs and three approved drugs (amiodarone, clozapine, and
acetaminophen).
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Figure 3. Uniform manifold approximation (UMAP) analysis. UMAP coordinates at concentrations 0.1, 1, and 10 μM of all perturbations labeled
with the protein that is inhibited or degraded by each non-PROTAC or PROTAC compound, respectively. Published PROTAC or non-PROTAC
compounds are annotated in the UMAP plot for 10 μM.

Figure 4. Cell Painting activity with the mitochondrial toxicity assay endpoint. (a) Cell Painting activity score in the form of grit score across
concentrations 0.1, 1.0, and 10.0 μM and labeled based on a mitochondrial toxicity assay endpoint. Uniform manifold approximation (UMAP)
coordinates of all perturbations labeled with mitotoxicity annotations at concentrations (b) 0.1, (c) 1, and (d) 10 μM.
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Cell Painting Signatures Were Able to Detect Activity
on Mitochondria. To investigate whether Cell Painting
profiles could be used to evaluate specific PROTAC safety
liabilities, we employed annotations of in vitro mitotoxicity that
were available for part of our compound set. Mitochondrial
toxicity annotations for the PROTAC and non-PROTAC
compounds were extracted from the Glu/Gal assay.24 In this
assay, cells are grown in two different media: a high-glucose
and a galactose media. Cells grown in a high-glucose-
containing medium use glycolysis for adenosine triphosphate
(ATP) generation and are resistant to mitochondrial insult.
Cells grown in a galactose-containing medium rely almost
exclusively on mitochondria for their ATP production and,
hence, are very sensitive to mitochondrial insult.24 In total, 221
compounds, where 96 were annotated active (mitotoxic) and
125 inactive (not mitotoxic), were used to train the models.
Out of the 221 compounds, 149 were PROTACs with 90
having been annotated mitotoxic and 59 having been
annotated not mitotoxic. The annotations were further
categorized as highly mitotoxic (IC50 < 1 μM; 51 compounds),
moderately mitotoxic (IC50 between 1 and 10 μM; 44
compounds), and not mitotoxic (IC50 > 10 μM; 126
compounds). At a concentration of 10 μM, the mean grit
scores were 3.01 ± 1.31, 3.09 ± 1.20, and 1.98 ± 1.59 for
highly, moderately, and not-mitotoxic PROTACs, respectively
(Figure 4a). At a concentration of 1 μM, the mean grit scores
were 1.75 ± 0.97, 1.24 ± 0.91, and 1.14 ± 1.28 for highly,
moderately, and not-mitotoxic PROTACs, respectively. The
same trend was not observed at concentration 0.1 μM, where
the mean grit scores were 0.64 ± 0.75, 0.73 ± 0.81, and 0.63 ±
0.56 for highly, moderately, and not-mitotoxic PROTACs,
respectively. Hence, the morphological difference between

mitotoxic and non-mitotoxic PROTACs indicated by higher
grit scores is more pronounced at concentrations of 1 and 10
μM. Similar trends were observed for the non-PROTAC
compounds (Figure 4a). For example, at concentration 1 μM,
the mean grit scores were 2.36 ± 0.88, 1.36 ± 1.34, and 1.04 ±
1.34 for highly, moderately, and not-mitotoxic non-PROTAC
compounds, respectively. A UMAP dimensionality reduction
was performed on the morphological feature space, which
revealed a separation of mitotoxic compounds from not-
mitotoxic compounds for both PROTACs and non-PRO-
TACs. Again, this was more evident for the concentrations of
10 and 1 μM (Figure 4b−d). In addition, we observed a similar
signature between the PROTACs active on mitochondria and
small molecules that showed mitochondrial toxicity such as
enclomiphene and amiodarone, suggesting a similar mode of
action (Figure 3). In summary, our results indicate that
mitotoxic compounds induce distinct phenotypic changes,
which are picked up by the Cell Painting assay and which
might be used to differentiate between mitotoxic and non-
mitotoxic compounds.

The other main observation was that the activity of a
PROTAC compound did not always correlate with the activity
of the individual PROTAC components. As described above,
PROTACs are bifunctional molecules containing a binder for
the target of interest and a binder for an E3 ligase, with the two
attached together via a linker; most of the PROTACs
developed at present use the CRBN or VHL E3 ligases.
Binders of CRBN include the clinically approved immunomo-
dulatory drugs (IMiDs) like lenalidomide and pomalidomide.
These two IMiD drugs showed no activity in the Cell Painting
assay (Table 1 and Figure 2). However, we did at times
observe activity of PROTACs even though the primary target

Figure 5. Phospholipidosis assessment of mitochondrial toxicity. (a) Classification of phospholipidosis active and inactive compounds together
with Galactose pIC50 and the grit scores at 0.1, 1, and 10 μM. (b) Mitochondrial respiration measurement using the Seahorse assay. (c) Uniform
manifold approximation (UMAP) coordinates of all perturbations labeled with mitotoxicity and phospholipidosis annotations at concentrations 0.1,
1, and 10 μM.
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was not expressed in U-2 OS cells like for Target 2, and no
activity was observed with the corresponding E3 binder
(warhead), binder to the target protein (POI, protein of
interest), or known small-molecule inhibitors of the primary
target (Figure S4a). Hence, this observation illustrated that
PROTAC activity can be more than simply the sum of its
parts. Interestingly, modification of the full PROTAC molecule
did result in a reduction in Cell Painting activity that was
associated with a reduction in mitotoxicity as reported in the
Glu/Gal assay considering the full dose response, suggesting
that Cell Painting could be used to drive structure−activity
relationships (Figure S4a, S4b).
There could be several mechanisms leading to toxicity on

mitochondria, direct or indirect. Indirectly, it has been
described that accumulation of compounds in lysosomes can
lead to mitotoxicity, and lysosomotropic compounds have
been shown in previous studies to share similar profiles in
phenotypic assays including the Cell Painting assay.25−27 In
addition to protonation and trapping in lysosomes, cationic
amphiphilic drugs can cause phospholipidosis and may
accumulate in mitochondria, thus leading to mitotoxicity. We
therefore investigated what type of mitotoxicity could have
been identified in our Cell Painting study. According to the
literature, we identified compounds with phospholipidosis
activity that showed a dose−response activity in Cell Painting
and were active in the Glu/Gal assay (Figures 5a and S5).
Interestingly, we also identified compounds with no
phospholipidosis activity but still active in the Glu/Gal and
Cell Painting assays (Figures 5a and S5). Furthermore, we
showed that these compounds caused a direct inhibition of

mitochondrial respiration, as seen in a Seahorse experiment
testing basal and maximal respiration (Figure 5b), suggesting
that two different mitotoxicity mechanisms have been
identified in the Cell Painting assay. Looking at the UMAP
analysis, the phospholipidosis active compounds clustered
together with compounds active in the Glu/Gal assay (Figure
5c). However, it was not clear whether they represent a
subcluster group, and more compounds would need to be
tested to understand whether Cell Painting can differentiate
the mitotoxic signature with different mechanisms (Figure 5c).

Machine Learning Models Showed Good Prediction
of Mitochondrial Toxicity. To investigate whether the Cell
Painting profiles can be used as descriptors for in silico
Machine Learning models for mitochondrial toxicity predic-
tion, the profiles were used to train models with three different
algorithms, namely, random forest (RF), support vector
classifier (SVC), and eXtreme Gradient Boosting (XGB).
Models performed very similarly across performance metrics
with not one outperforming the other based on multiple
metrics (Figure 6). Model performance examples are discussed
below using receiver operating characteristic−area under the
curve (ROC-AUC) and F1-score (weighted between the two
classes) metrics, which are two widely used metrics, and the
former shows the ability of the classifier to distinguish between
the two classes, whereas the latter considers a model’s
precision, recalls, and the class imbalance in the model. For
example, models showed good predictive performances with
ROC-AUC values of 0.80, 0.93, and 0.93 (above 0.80) and F1-
scores of 0.74, 0.87, and 0.85 (above 0.70) for concentrations
of 0.1, 1, and 10 μM, respectively, when RF was used (Figure

Figure 6. Performance of models for mitochondrial toxicity prediction. Mitochondrial toxicity prediction performance using the Cell Painting
features and three different algorithms: RF, XGB, and SVC at concentrations (a) 10, (b) 1, and (c) 0.1 μM. The error bars correspond to the
confidence interval across all splits and random states used for cross-validation. Intraclass (mitotoxic vs mitotoxic) vs interclass (mitotoxic vs not
mitotoxic) Pearson’s correlations of the image-based features are shown for each concentration.
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6a−c). Similarly, a high performance was achieved by the other
two algorithms used, with ROC-AUC and F1-score values
being above 0.80 and 0.70, respectively. For example, using the
SVC algorithm, the ROC-AUC values were equal to 0.82, 0.93,
and 0.95 and the F1-scores were equal to 0.77, 0.88, and 0.87
when the models were trained with profiles from concen-
trations 0.1, 1, and 10 μM, respectively (Figure 6a−c).
Therefore, the two main observations are that the models
perform well (as shown in Figure 6 and the two examples
mentioned above) and the models trained with Cell Painting
profiles from the two higher concentrations of 1 and 10 μM
outperformed the models trained on profiles from the
concentration of 0.1 μM.
Concentrations of 1 and 10 μM outperformed the

concentration of 0.1 μM regardless of the algorithm used, as
shown in Figure 6. This is in agreement with the finding
described above: grit scores were larger for mitotoxic
compounds at the two higher concentrations than at the
lower concentrations tested. Furthermore, this can be
explained by the fact that a high intraclass correlation was
observed between the mitotoxic compounds in the Cell
Painting features at concentrations of 10 and 1 μM with
median values of 0.48 and 0.32, respectively, compared to a
lower intraclass Pearson correlation at a concentration of 0.1
μM with a median of 0.16 (Figure 6a−d). Hence, PROTACs
and compounds that cause mitochondrial toxicity are
significantly more similar to each other at concentrations 1
and 10 μM (Figure 6b−d), compared to features derived at 0.1
μM (Figure 6a). Furthermore, a high difference in the
intraclass and interclass correlations (between mitotoxic and
not mitotoxic) were observed and were equal to 0.07, 0.21, and
0.28 for concentrations 0.1, 1, and 10 μM, respectively.
Overall, this means that active compounds at concentrations
10 and 1 μM are clearly different from inactive compounds
(median similarities of 0.48 vs 0.20 and 0.32 vs 0.11,
respectively) while being less distinguishable at concentration
0.1 μM (median similarities of 0.16 vs 0.09). Taken together,
this similarity analysis additionally explains why using
concentrations of 1 and 10 μM outperform the model
performance at a concentration of 0.1 μM.

Finally, to further validate that the performance is not
random, we evaluated whether the models perform better than
random models by applying y-scrambling. The y-scrambled
models scored mean ROC-AUC values across all algorithms
equal to 0.50, 0.51, and 0.49 for concentrations 0.1, 1, and 10
μM, respectively (i.e., close to the expected value of 0.5), as
shown in Figure S6a. Hence, the models perform significantly
better than the y-scrambling models, and thus, they are
unlikely to have been obtained by chance.

Prospective Experimental Model Validation. To
further validate our findings, we performed external validation
for our mitochondrial toxicity models. Out of the total
PROTACs and compounds tested with in the Glu/Gal assay,
there were 39 PROTACs that were tested later, out of which
five were mitotoxic and 34 were not mitotoxic, which were
used as a prospective test set. A similarity analysis (by
calculating the Pearson correlation) was initially performed
between the 39 query PROTACs to the compounds that cause
mitochondrial toxicity and those that do not (i.e., the
compounds in the models). For concentrations 1 and 10
μM, the mitotoxic query PROTACs show a higher correlation
with the mitotoxic compared to the correlation with the not
mitotoxic (Figure S6b). In addition, the not-mitotoxic query
PROTACs do not show a high correlation with the mitotoxic
PROTACs in the models (Figure S6b). This supported our
assumption that the models would be able to also classify the
prospective test set correctly.

The mitochondrial toxicity of the 39 PROTACs was hence
predicted by all of the models, and the external validation
results are summarized in Figure 7a. In addition, results are
summarized with confusion matrices and model evaluation
metrics in Figure S7. The models trained with data at
concentrations 1 and 10 μM performed well and outperformed
the models trained with data at a concentration of 0.1 μM
(Figure S7a). For example, the balanced accuracies were equal
to 0.68, 0.96, and 0.89 when the models were trained with
profiles from concentrations 0.1, 1, and 10 μM, respectively
(Figure S7b). Moreover, the models trained with the data at a
concentration of 0.1 μM showed a relatively high retrieval for
mitotoxic PROTACs (more than 60% of mitotoxic PROTACs
were correctly classified) (Figure 7a) but, on the other hand,

Figure 7. Prospective experimental model validation. Number (and percentage) of correctly classified (a) mitotoxic and (b) not-mitotoxic
PROTACs, obtained with the models trained with RF, SVC, and XGB algorithms and with data from concentrations 0.1, 1, and 10 μM. (c) Glu/
Gal IC50 obtained for 10 compounds from the model validation.
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showed high false-positive rates (Figure S7). The models
trained with the data from concentrations 1 and 10 μM were
consistently able to predict the majority of the mitotoxic
PROTACs (Figure 7a), with the models using data from the
concentration of 1 μM being able to predict 100% of the
mitotoxic PROTACs, regardless of the algorithm used. Models
trained with the data from the highest concentration of 10 μM
are able to correctly detect 60, 80, and 80% of the mitotoxic
PROTACs using the RF, SVC, and XGBOOST algorithms,
respectively (Figure 7a). On the other hand, the models
trained with data from concentration 10 μM have a lower
number of false-positives and thus a higher number of true-
negatives compared to models trained with data from
concentration 1 μM (Figure S7). Of the not-mitotoxic
PROTACs, 97 and 91−97% are correctly classified using the
models trained with data from concentrations 10 and 1 μM,
respectively (Figures 7b and S7). Considering specific
compounds, we confirmed that five compounds that were
predicted to be mitotoxic by Cell Painting showed high
potency in the Glu/Gal assay (Figure 7c). Interestingly, the
grit score also showed a good correlation with the IC50
reported in the Glu/Gal (Figure 7c). In contrast, considering
five compounds predicted to be mitotoxic inactive, none
showed activity in the Glu/Gal assay (Figure 7c). In summary,
results from the previous section and this section showed the
ability of Cell Painting to correctly and accurately predict
mitotoxicity. However, it remains to be established whether the
predictive performance levels observed in this study are
sufficiently accurate for the pharmaceutical industry to
incorporate the system in decision-making in practice.

■ CONCLUSIONS
The increasing interest in PROTAC as a novel therapeutic
modality results in the need for assays to profile these bRo5
compounds (compounds residing just outside of the traditional
small-molecule drug physicochemical property space). There-
fore, in this work, the Cell Painting assay was used to profile a
series of PROTAC and non-PROTAC compounds from
various projects based on the hypothesis that the Cell Painting
assay could quantitatively study the morphological impact of
PROTACs. Two different metrics, a Euclidean distance-based
metric and the grit score, revealed that profiles of PROTACs
and non-PROTACs are different from the neutral controls, and
thus, the Cell Painting assay was able to capture morphological
changes induced by PROTACs. In addition, the Euclidean
distance-based method and the grit score revealed a higher
number of active compounds on the Cell Painting assay and a
stronger phenotypic effect, respectively, as the concentration of
compounds was increasing.
Focusing on particular examples from published PROTACs,

we found that PROTACs degrading targets such as BRD4
show an activity on the Cell Painting assay. In addition, a
PROTAC targeting CDK9 (THAL-SNS-032) showed a high
activity, and considering the raw images, the phenotype that
was observed was consistent with the function of CDK9 in cell-
cycle progression. More surprisingly, we observed that the
activity of a PROTAC on the Cell Painting assay did not
necessarily correlate with the activity of its individual
components (i.e., the POI ligand and the E3 ligase ligand).
This observation highlighted that PROTACs’ activity on the
Cell Painting assay is not just the sum of its parts.
Furthermore, upon a dimensionality reduction of the
PROTACs-Cell Painting profiles with UMAP, we were able

to understand whether and which phenotypic responses are
clustered together given the target they degrade. Results
suggested a range of different and distinguishable Cell Painting
signatures for PROTACs targeting various targets such as the
BRD4. Considering specific compounds targeting BRD4, the
small-molecule inhibitor MS402 clustered together with BRD4
targeting PROTACs, suggesting a similar mode of action. It is
difficult at this stage to draw a firm conclusion on the lack of a
correlation between primary pharmacology and the grit score
generated by Cell Painting. There are many possibilities on
why a disconnect can be seen. First, the degradation assays are
different for each project, are run in different cell lines, and are
based on different technologies. Some assays measure
degradation of the endogenous target, and others use target
overexpression. Thus, the degradation potency values (pIC50)
are not comparable between different targets and, thus, would
probably not show a correlation.

However, there were cases where PROTACs showed a Cell
Painting activity even though the primary target was not
expressed in U-2 OS cells and no activity was observed with
the corresponding binder to the target protein. This was an
indication that this effect could be related to PROTACs’ off-
target effect and thus could be useful information to better
understand PROTACs’ safety profiles. Therefore, we trained in
silico machine learning models to predict compounds’
(including PROTACs) mitochondrial toxicity using the Cell
Painting profiles as descriptors for random forest, support
vector classifier, and XGB algorithms. Models trained with the
Cell Painting features at concentrations 1 and 10 μM
outperformed the performance at 0.1 μM. In addition,
prospective validation of a model was performed, showing
that models trained with data at concentrations 1 and 10 μM
performed well. Mitochondrial toxicity is a major safety
concern associated with serious organ toxicities and is a
frequent cause of late-stage drug withdrawals. With the
growing presence of new modalities, including PROTACs,
there is an urgent need to evaluate such safety risks for novel
compounds. Numerous efforts exist to evaluate or predict small
molecule’s mitochondrial toxicity, and different assays have
been developed capturing various mechanisms of drug-induced
mitochondrial toxicity including the Glu/Gal assay used
here.28 However, Hynes et al.29 showed that the Glu/Gal
assay detects only about 2−5% of all mitotoxicants, which
further highlights the reality that most compounds that cause
organ toxicity do so via multiple off-target mechanisms. Our
study highlighted the potential of Cell Painting for mitotoxicity
prediction and, given its throughput, could become a very
useful method to screen compounds at scale, including new
modalities such as PROTACs.

■ METHODS
Cell Culture and Seeding. U-2 OS cells, a human osteosarcoma

cell line, were sourced from AstraZeneca’s Global Cell Bank (ATCC
Cat# HTB-96). Cells were cultured in McCoy’s 5A media (Gibco,
#26600023) supplemented with 10% (v/v) fetal bovine serum
(Gibco, #10270106) at 37 °C, 5% (v/v) CO2, 95% humidity. After
reaching ca. 80% confluency, cells were washed with PBS (Gibco,
#10010056) and then detached from culture flasks using the TrypLE
Express enzyme (Gibco, #12604013) and resuspended in McCoy’s
media. Cells were counted using a Vi-CELL (Beckman Coulter,
#383556) and then diluted with McCoy’s media to achieve a count of
1250 cells per well using a dispense volume of 40 μL per well. The cell
suspension was dispensed into CellCarrier-384 Ultra microplates
(Perkin Elmer, #6057300) using a Multidrop Combi (ThermoFisher,
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#5840300) with a standard-tube cassette (ThermoFisher,
#24072670). Microplates were left at room temperature for 1 h
before transferring to a SteriStore (HighRes Biosolutions) microplate
incubator at 37 °C, 5% (v/v) CO2, 95% humidity for 24 h prior to
compound addition.

Compound Treatment. PROTACs were sourced internally
through the AstraZeneca Compound Management Group. PROTACs
were prepared as 10, 1, and 0.1 μM source stocks (in DMSO) and
plated into intermediate 384-well echo-qualified source plates
(Labcyte, #PP-0200). After 24 h of seeding, assay plates were
dosed using an Echo 655T acoustic dispenser (Labcyte) from the
appropriate compound stock to perform a 1000-fold dilution, to
achieve assay concentrations of 10, 1, and 0.1 μM. Where required,
assay wells had DMSO added to maintain a final DMSO
concentration of 0.1% (v/v). Assay plates were returned to the
SteriStore incubator for a further 48 h prior to performing the cell
staining protocol.

Cell Staining. The Cell Painting staining procedure was
performed according to the protocol by Bray et al.30 with some
adjustments to stain concentrations and methodology. Hanks’
balanced salt solution (HBSS) 10× was sourced from AstraZeneca’s
media preparation department and diluted in dH2O and then filtered
using a 0.22 μm filter (Corning, CLS430517). MitoTracker stain
(ThermoFisher, M22426) was prepared as a 1 mM stock solution in
DMSO and then made up as a working stain solution in McCoy’s 5A
medium, at a final concentration of 0.5 μM. The remaining stains
were prepared in 1% (w/v) bovine serum albumin (BSA) (Sigma-
Aldrich, A4503) in 1× HBSS containing 0.1% (v/v) Triton X-100
(Sigma-Aldrich, T8787).

Following compound incubation, 10 μL of MitoTracker working
solution was added to the plate and incubated for 30 min at 37 °C, 5%
CO2, 95% humidity. The following steps were all carried out at room
temperature in the dark. Cells were fixed by adding 25 μL of 12% v/v
formaldehyde in PBS (to achieve a final concentration of 3.25% v/v).
Plates were incubated for 20 min and then washed using a
BlueWasher centrifugal plate washer (BlueCat Bio, Neudrossenfeld,
Germany). Following this, 15 μL of stain solution containing 5 μg/
mL Hoechst 33342 (ThermoFisher, H3570), 1.5 μg/mL Wheat-germ
Agglutinin Alexa Fluor 555 conjugate (ThermoFisher, W32464), 10
μg/mL ConcanavalinA Alexa Fluor 488 conjugate (ThermoFisher,
C11252), 5 μL/mL Phalloidin Alexa Fluor 568 conjugate (Thermo-
Fisher, A12380), and 9 μM SYTO14 (ThermoFisher, S7576) was
dispensed to each well and incubated for 30 min and then removed
prior to a final wash and subsequent addition of 1× HBSS to each
well. Plates were sealed and then imaged.

Imaging. Cells were imaged with a CellVoyager CV8000
(Yokogawa, Tokyo, Japan) using a 20× water-immersion objective
lens (Olympus, Tokyo, Japan; NA 1.0). Five imaging channels were
acquired to visualize all fluorescent stains: DNA (ex: 405 nm; em:
445/45 nm), ER (ex: 488 nm; em: 525/50 nm), RNA (ex: 488 nm;
em: 600/37 nm), AGP (ex: 561 nm; em: 600/37 nm), and Mito (ex:
640 nm; em: 676/29 nm). Four fields of view were acquired per well
to capture sufficient numbers of cells per perturbation.

Image Analysis and Feature Extraction. Images were saved as
16-bit.tif files without binning (1994 × 1994 pixels). Images were
analyzed using CellProfiler biological image analysis software (v
4.0.7). The segmentation of individual nuclei was performed using the
DNA channel and subsequent cellular segmentation using the AGP
channel. Cells touching the boundary of the image were excluded
from subsequent analysis. A total of 4700 features were calculated,
relating to either whole-image-level properties or individual objects
(cells, nuclei, or cytoplasm). Features include pixel intensity
colocalization measurements; granularity and textural measurements
of objects taken across a range of pixel distances; the presence and
proximity of neighboring objects; the distribution of staining intensity
patterns; and size/shape metrics.

Data Curation and Normalization. A normalization process was
applied as described by Way et al.31 First, single-cell data per well
were merged by calculating their median value. Next, data were
normalized using the median and the median absolute deviation

(MAD) of feature values from empty wells (DMSO) as the center and
scale parameters, respectively. We normalized all perturbation profiles
by subtracting the center (median) and dividing by the scale (MAD)
and did this for each plate individually.

Feature Selection. A feature selection was performed to remove
features based on a set of criteria. The first criterion was the variance
of the features across profiles, and hence, features with a variance less
than 1 were removed. In addition, features with a high standard
deviation were filtered out, and we used a standard deviation
threshold equal to 20. According to Way et al.,31 features with a high
standard deviation after normalization are considered feature outliers
and should be removed. In addition, features with missing values in
any profile were filtered out. Moreover, pairwise correlations were
calculated for all of the features and one feature was randomly
removed from each pair with a Pearson correlation greater than or
equal to 0.9. As a result of these processes, 669 features remained.

Evaluation of PROTAC Activity on the Cell Painting Assay.
Two different methodologies were used to evaluate whether
PROTACs were active on the Cell Painting assay screen. The first
one was a Euclidean distance-based approach, and the second was the
calculation of the grit score. The first approach was described by Cox
et al.,15 and we used it to calculate which PROTACs were “active” on
the assay using a 95th percentile cutoff on the null distribution of
Euclidean distances between individual DMSO control profiles and
the mean DMSO control profile.

In addition, we used the grit score32,33 (https://github.com/
cytomining/cytominer-eval, https://github.com/broadinstitute/grit-
benchmark), which captures the phenotypic strength of a perturbation
in a profiling experiment and combines two concepts. The first is the
replicate reproducibility, and the second is the difference from the
DMSO control. First, for each target profile (i.e., PROTACs),
pairwise Pearson correlations were calculated for both PROTAC
replicates and control replicates. Hence, the pairwise correlations form
two distinct distributions (replicate and control). Then, using the
control profiles only, a Z-score transform is obtained, which is then
used to transform the PROTACs’ replicates. The mean of PROTAC
replicates’ Z-scores is calculated, and this is the final score termed the
grit score. Since grit is based on Z-scores, the magnitude can be easily
compared between perturbations and is a directly interpretable value.
For example, a grit score of 3 for a PROTAC X compared to a neutral
control means that on average PROTAC X is 3 standard deviations
more similar to replicates than to DMSO controls. Therefore, it is
considered the PROTACs’ average reproducibility with respect to the
neutral control similarity. The grit score was calculated with the
cytominer-eval Python package (https://github.com/cytomining/
cytominer-eval), developed by the Broad Institute.

Glu/Gal Assay for Mitochondrial Toxicity Assessment. This
assay is used to assess potential test substances that can trigger
mitochondrial dysfunction. HepG2 cells are cultured in (a) glucose-
containing and (b) galactose-containing media and are exposed for 24
h to a concentration of x of the test compounds. Following treatment,
the IC50 (μM) galactose is measured, and it corresponds to the
average galactose signal value, which is halfway between the baseline
and the average maximal signal for the substance tested. If IC50 (μM)
galactose is more than 10, then the substance is considered inactive
(i.e., does not cause mitochondrial toxicity), and if it is less than or
equal to 10, then it is active and causes mitochondrial toxicity. This
mitochondrial toxicity annotation was used to train predictive models
for PROTACS’ mitochondrial toxicity prediction. In total, 221
compounds (PROTAC and non-PROTAC) were used to train the
models with 96 active (mitotoxic) compounds and 125 inactive (not
mitotoxic) compounds. Out of the total of 221 compounds, 149 were
PROTACs, and in more detail, 90 PROTACs were mitotoxic, with
the rest of the PROTACs being not mitotoxic.

Mitochondrial Respiration Assay. HEPG2 C3A cells were
cultured in DMEM (Life Technologies) supplemented with 10 Mm
galactose (Sigma) and 10% fetal calf serum and seeded onto XFe96
Seahorse Cell Culture microplates at 60,000 cells/well. Cells were
cultured overnight in a 37 °C, 5% CO2 humidified incubator. The
following day, the XFe96 sensor cartridge was activated according to
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the manufacturer’s instructions (Agilent), and cells were switched into
Agilent Seahorse assay media (DMEM pH 7.4 supplemented with 2
mM glutamine (Agilent) and 10 mM galactose) in a 37 °C incubator
for 1 h. PROTAC compounds were prepared in the Seahorse assay
media and added to cells immediately prior to the loading of the
XFe96 Seahorse cell culture microplate into the Agilent Seahorse
XFe96 analyzer. Oligomycin, FCCP, and antimycin were added at 2.5,
2, and 10 μM, respectively, to look at the different stages of
mitochondrial respiration.

Phospholipidosis Assay. We used a 2D HepG2 (C3A)
hepatoxicity assay to analyze a range of parameters related to
cytotoxicity, phospholipidosis, and mitochondrial toxicity. Compound
effects are quantified using high-content imaging after the addition of
a cocktail of four fluorescent probes (1 μg/mL Hoescht 33342, 6 μg/
mL NBD-PE, 50 nM TMRM, and 1 μM TOTO-3) and read on the
CellInsight high-content imaging platform.

Mitochondrial Toxicity In Silico Model Training and
Evaluation. Three times nested fivefold cross-validation was
performed with the StratifiedShuffleSplit Python function from
Scikit-Learn.34 The Stratified Shuffle Split (SSS) splits a data set
into a train and a test set by preserving the same percentage of data
for each class (active and inactive) as in the initial data set. A
schematic representation of the model training process is shown in
Figure S8.

Initial data were split into 70% train set and 30% test set,
respectively, five times using the stratified shuffle split function from
Scikit-Learn. The training set was further split five times using the
stratified shuffle split function from Scikit-Learn to identify the
optimal hyperparameters using the hyperopt and cross-validation
score function from Scikit-Learn. When hyperparameters were
selected, the models were trained and the compounds in the test
set were predicted. This process was repeated with three different
random seeds when the initial data was split.

Machine Learning models to predict PROTACs’ mitochondrial
toxicity were trained with three different algorithms: (a) random
forest (RF), support vector classifier (SVC), and (c) XGBOOST
(Chen and Guestrin, 2016). RF and SVC were implemented with the
RandomForestClassifier and SupportVectorClassifier functions, re-
spectively, from Scikit-Learn34 and eXtreme Gradient Boosting
(XGB) with the XGBClassifier from the xgboost python package.35

Hyperparameter selection for each of the algorithms was performed
using the hyperopt python package.36,37 The parameters and the
range of values (configuration space) that were explored for each
algorithm are included in the Supporting Information (Table S1).
Cell Painting features were used as descriptors for the models. We
used model evaluation metrics from Scikit-Learn, which were
averaged to give the overall performance across the different folds
of cross-validation for the receiver operating characteristic−area under
the curve (ROC-AUC), precision (eq 1), recall (eq 2), F1-score (eq
3), balanced accuracy (eq 4), the Brier score (eq 5), and the Mathews
correlation coefficient (MCC, eq 6).

Precision
TP

TP FP
=

+ (1)
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TP

TP FN
=

+ (2)

F score 2
Precision Recall
Precision Recall1 = × ×
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++ +
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N

true value 1

2=
=
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MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
= × ×

+ + + +
(6)

TP denotes true-positives, FP denotes false-positives, TN denotes
true-negatives, and FN denotes false-negatives.

Finally, y-scrambling38 was performed to evaluate whether the
trained models performed better than the y-scrambled models. Y-
scrambling was applied by randomly reorganizing the mitochondrial
toxicity labels. Models were rebuilt and evaluated with the same
parameters as the unscrambled (actual) models.

Prospective Model Validation. PROTACs that were tested on
the mitochondrial toxicity assay after the PROTACs that were
included in the benchmarking of models were extracted and used as a
prospective validation set. This set included five PROTACs that
caused mitochondrial toxicity and 34 PROTACs that did not.
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(38) Lipinśki, P. F. J.; Szurmak, P. SCRAMBLE’N’GAMBLE: A
Tool for Fast and Facile Generation of Random Data for Statistical
Evaluation of QSAR Models. Chem. Pap. 2017, 71, 2217−2232.

ACS Chemical Biology pubs.acs.org/acschemicalbiology Articles

https://doi.org/10.1021/acschembio.2c00076
ACS Chem. Biol. 2022, 17, 1733−1744

1744

https://doi.org/10.1038/nchembio.2538
https://doi.org/10.1038/nchembio.2538
https://doi.org/10.3390/CELLS8091090
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1021/ACS.CHEMRESTOX.8B00246?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ACS.CHEMRESTOX.8B00246?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ACS.CHEMRESTOX.8B00246?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chembiol.2021.06.003
https://doi.org/10.1016/j.chembiol.2021.06.003
https://doi.org/10.1002/anie.201913712
https://doi.org/10.1002/anie.201913712
https://doi.org/10.1002/anie.201913712
https://doi.org/10.1371/journal.pone.0173771
https://doi.org/10.1371/journal.pone.0173771
https://doi.org/10.1517/17425255.2014.939628
https://doi.org/10.1517/17425255.2014.939628
https://doi.org/10.1016/J.TIV.2012.11.002
https://doi.org/10.1016/J.TIV.2012.11.002
https://doi.org/10.1016/J.TIV.2012.11.002
https://doi.org/10.1038/nprot.2016.105
https://doi.org/10.1038/nprot.2016.105
https://doi.org/10.1091/MBC.E20-12-0784
https://doi.org/10.1091/MBC.E20-12-0784
https://github.com/cytomining/cytominer-eval
https://github.com/cytomining/cytominer-eval
https://github.com/broadinstitute/grit-benchmark
https://github.com/broadinstitute/grit-benchmark
https://doi.org/10.1145/2939672.2939785?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1007/s11696-017-0215-7
https://doi.org/10.1007/s11696-017-0215-7
https://doi.org/10.1007/s11696-017-0215-7
pubs.acs.org/acschemicalbiology?ref=pdf
https://doi.org/10.1021/acschembio.2c00076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

