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Abstract

Longitudinal data can be used to estimate the transition intensities between healthy and unhealthy states

prior to death. An illness-death model for history of stroke is presented, where time-dependent transition

intensities are regressed on a latent variable representing cognitive function. The change of this function

over time is described by a linear growth model with random effects. Occasion-specific cognitive function

is measured by an item response model for longitudinal scores on the Mini-Mental State Examination, a

questionnaire used to screen for cognitive impairment. The illness-death model will be used to identify

and to explore the relationship between occasion-specific cognitive function and stroke. Combining a

multi-state model with the latent growth model defines a joint model which extends current statistical

inference regarding disease progression and cognitive function. Markov chain Monte Carlo methods are

used for Bayesian inference. Data stem from the Medical Research Council Cognitive Function and Ageing

Study in the UK (1991–2005).
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1 Introduction

The Medical Research Council Cognitive Function and Ageing Study (MRC CFAS1) has
longitudinal information on progression of cardiovascular diseases and information on cognitive
function as measured by the Mini-Mental State Examination (MMSE2). One of the interests is to
evaluate whether cognitive function can be identified as a risk factor for cardiovascular diseases.
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With regard to cardiovascular diseases, we use data on stroke. Occasion-specific cognitive
function is modelled as a latent variable and its effect as a risk factor for stroke investigated by
combining a multi-state model for stroke and survival with a growth model for cognition. The
relevance of this joint model will be illustrated by addressing the survival after a stroke, given
various trends in cognitive decline, and by estimating the probability of having a stroke in a
specified time interval conditional on an MMSE score at the start of the interval and survival up
to the end of the interval. In both these cases, the change of cognitive function has an effect and thus
illustrates the importance of modelling cognitive function jointly with the multi-state process.

The Bayesian framework is used for statistical inference. It allows individual-specific
parameters for cognitive function to be estimated using information from both the multi-state
data and the longitudinal MMSE data. Combining the growth model for latent cognitive function
with a multi-state model has not been described before, and seems a promising way to handle
questionnaire data and related latent variable information in an investigation of a multi-state
process.

A continuous-time multi-state model can be used to describe the disease progression over time. If
one of the states is the death state, the model is called an illness-death model. In the analysis of the
CFAS data, individuals are classified in state one if they never had a stroke, and in state two if they
experience one or more strokes. State three is the death state. An intensity (hazard) of a transition
from one state to another can be linked via a regression equation to risk factors for the transition
such as age or sex. We will investigate the effect of cognitive function by modelling it as a risk factor
for the transitions in the three-state model for stroke.

Frequentist continuous-time multi-state models can be found in Kalbfleisch and Lawless3 and
Jackson et al.4 Bayesian inference for parametric multi-state models is discussed in Sharples,5

Welton and Ades,6 Pan et al.7 and Van den Hout and Matthews.8 Semi-parametric Bayesian
methodology can be found in Kneib and Hennerfeind.9

When risk factors are manifest and time-dependent, and a piecewise-constant approximation of
the values seems reasonable, frequentist multi-state models can be fitted using existing methodology.
Jackson10 provides an R package that can fit a broad range of multi-state models. Prediction in the
presence of time-dependent risk factors is, however, not straightforward as the prediction of the
multi-state process depends on the distribution of the risk factor.

Specific to the application, cognitive function is a latent time-dependent risk factor and we
assume that changes in the function over time can be described by a random-effect linear growth
model. Typically, the MMSE response data consist of dichotomous and polytomous item scores.
Therefore, a generalized item response theory (IRT) model will be used for the mixed-response type
longitudinal MMSE data. The longitudinal item-based MMSE data are used to measure individual
continuous-valued cognitive function scores.

An IRT model11 assumes that certain observed discrete values are manifestations of an
underlying latent construct. With regard to the MMSE, the discrete values are responses to a
series of binary questions and one question with five ordered categories, and represent aspects of
cognitive functioning. The time-dependent IRT model for longitudinal MMSE data relates the
probability of the discrete values to the underlying occasion-specific cognitive function to explain
MMSE performance.

Traditionally, the MMSE sum score is used as an estimate of cognitive function. However, using
IRT has several advantages. First, item response data contain more information than sum scores
and this allows the IRT model to parameterize the items individually. Second, the IRT model is
better equipped to handle missing data. Third, IRT is more flexible with regard to incomplete
designs and different number of items.
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A specific problem with the MMSE sum score is that there is often a ceiling effect: many observed
sum scores are close to the upper bound. Hence, the standard assumption that the conditional
distribution of the observed response in the related growth model is normal is problematic. When
cognitive function is assessed using IRT, the ceiling effect is less of a problem since cognitive
function is modelled as a latent variable on a continuous scale.

Fox and Glas12 defined a multilevel population model for a latent variable to account for the
nesting of students in schools. This multilevel IRT measurement model is here extended to account
for the nesting of time-dependent measurements within subjects and to account for mixed response
types (dichotomous and polytomous items).

To summarize, a joint model is proposed for the multi-state data and the MMSE data, where
cognitive function is the continuous latent variable that explains variation in the longitudinal
MMSE scores and – potentially – variation in the transitions between the states.

For Bayesian inference, Markov chain Monte Carlo (MCMC) methods are used to sample values
from the posterior density of the overall model that includes the multi-state model and the IRT
growth model. The sampled values are used to compute posterior means, credible intervals (CIs) and
other posterior quantities of interest.

The overall approach is very flexible and can therefore be used in other applications as well.
Because MCMC is applied, random effects are estimated along with population parameters and
dealing with missing MMSE item scores is relatively straightforward. In addition, in the estimation
of the parameters, it is possible to specify the information flow: in our joint model, the parameters
for the covariate process are sampled using multi-state data. Both for the growth model and the
multi-state model, the number of observations and the times of interview can vary within and
between individuals.

This article is organized as follows. Section 2 introduces the CFAS data and presents some basic
descriptive statistics. Section 3 discusses the methods for data analysis: the multi-state model, the
IRT linear growth model, model identification and prior densities. In Section 4, the handling of
missing MMSE scores is explained. Section 5 briefly discusses the MCMC that is used for Bayesian
inference. The data analysis can be found in Section 6. Section 7 concludes this article. The MCMC
in Section 5 is detailed in the appendix.

2 Data

The MRC CFAS is a UK population-based study in which individuals have been followed from
baseline 1991–1992 (www.cfas.ac.uk)1 up to the last interviews in 2004. All participants are aged 65
years and above, and all deaths up to the end of 2005 have been included.

The three-state model for stroke is defined as follows. State 1 is the healthy state (no history of
stroke), individuals in state 2 have had one or more strokes and state 3 is the death state. Transitions
from 1 to 2 are interval-censored (exact times of strokes are not available), but death times are
known. By definition, transitions from state 2 to state 1 are not possible.

Cognitive impairment was measured using the MMSE with sum scores in the range 0–30. There
are 25 binary questions and one which has a scale from 0 up to 5. The latter is about counting
backwards, where a score of 5 is given if the counting is flawless. This question is considered as an
important item in the MMSE. Note that when working with sum scores, the question can add
5 points to a scale with a total range of 0 up to 30. To simplify the model slightly, we take
scores 0 and 1 together in category 1, resulting in ordered scores 1, 2, 3, 4 and 5. An alternative
would be to dichotomize the scale but that would mean that the relative importance of the
question is lost.
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In this article, we describe and analyse the data for men in Newcastle. The sample size is 925 and
in total, there are 2810 observations (total number of interviews, right-censored states and observed
deaths). In this data set, the median age at baseline is 73. Time between interviews varies between
and within individuals. The median length of the time between two consecutive interviews is 26
months. The median number of interviews is 2.

The frequencies in Table 1 are the number of times each pair of states was observed at successive
observation times. The table shows that for all individuals the state in the last record in the study is
the death state or a right-censored state: 549+116+239+21¼ 925.

Originally, the MMSE was designed to screen for dementia. It contains questions on memory,
language and orientation. Most of the questions are relatively easy for individuals with average
cognition. MMSE sum scores below 10 are indicative of dementia. Individuals with scores in the
range 25–30 are said to have normal cognitive functioning. Currently, the MMSE is also widely used
to measure overall cognitive function. When the MMSE is applied in a population-based study such
as CFAS, a large proportion of the observed MMSE sum scores will be in the range 25–30. In the
data for men in Newcastle, the median of the MMSE sum score at baseline is 27.

MMSE scores are not always observed. There are 298 missing binary item scores in the records of
28 men. Nine men have a missing score for the five-category question.

3 Methods

In this section, the joint modelling framework is presented for latent growth trajectories and multi-
state processes. First, the multi-state model is discussed, followed by the latent growth model part.
The derivation of the joint posterior distribution concludes this section.

3.1 The multi-state model

This section presents the likelihood of the continuous-time multi-state model. The basic ideas can be
found in Kalbfleisch and Lawless3 and Jackson et al.4 The formulation of the likelihood is different
from that in Van den Hout and Matthews,8 where an approximation with regard to exact death
times was used. Transition probabilities in the likelihood are conditional on the current state and
current values of risk factors. Commenges13 uses the term partial-Markov to denote this kind
of multi-state model since using the time-dependent risk factors implies that the process is not
first-order Markov.

Let the interval-censored multi-state data be given by x1,. . ., xN, where N is the number of
individuals in the study. The trajectory of individual i is given by xi¼ (xi1,. . ., xini), where ni is the
number of observed states, and state xij2 {1,. . ., S}, where j¼ 1,. . ., ni indexes the consecutive times
of measurement. Times of observation – not necessarily equidistant – are given by ti1,. . ., tini,

Table 1. For men in CFAS data from Newcastle, frequencies of number of times each pair of states was observed at

successive observation times

To state

1¼Healthy 2¼History of stroke Death Right-censored

From state 1 836 49 549 239

2 0 75 116 21
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where ti1¼ 0, for all i, denotes the start of the study. For individual i, we have observed risk factor
values wi¼ (wi1,. . ., wini

) at times ti1,. . ., tini.
Let (t, u] denote a generic time interval. For a continuous-time multi-state model, transition

probabilities prs(t, u)¼P(xu¼ sWxt¼ r) are the entries of transition matrix P(t, u). Likelihood
contributions are formulated using the transition matrices for the observed intervals, but the
model itself is defined using intensity matrices which are matrices with transition intensities as
entries. The transition matrix P(t, u) is derived from intensity matrix Q(t) by means of P(t, u)¼
exp[(u� t)Q(t)], where exp[�] is the matrix exponential.14 Off-diagonal entries of Q(t) not restricted
to zero can be related to risk factors w by means of a log-linear model log½qrsðtijÞ� ¼ b>rswij. For
example, a progressive three-state model where state 3 is the death state has vector b¼ (b12, b13, b23).

We assume a piecewise-constant multi-state model, where individual trajectories through the
states are conditionally independent. For individual i, the likelihood contribution is

pðxijb,wiÞ ¼ Pðxini jxi,ni�1, b,wi,ni�1Þ � . . .� Pðxi2jxi1, b,wi1Þ:

This follows by conditioning on the first state, that is, by restricting P(xi1Wb, wi)¼ 1. The likelihood is
given by pðxjb,wÞ ¼

QN
i¼1 pðxijb,wiÞ. See Appendix 1 for the construction of the likelihood of the

three-state model that is used in the application and which takes into account exact death times and
right-censoring and the end of the follow-up.

As implied by the above, we assume that given the current state and the current values of the risk
factors, the distribution of the next state does not depend on the states visited before the current
state. In addition, we assume that factor values are constant between consecutive observation times.
Within each individually observed time interval (tij, ti,j+1], this defines a time-homogeneous process.
Using age as a piecewise-constant time-dependent risk factor, possible dependence of transition
intensities on changing age is taken into account.15

If there are no other risk factors besides age, the model for the intensities is given by
log[qrs(tij)]¼�rs.1+�rs.2Age(tij). This can also be formulated as qrs(tij)¼ �rs exp[grsAge(tij)], for
�rs> 0, which shows that the change of the intensities over time follows a Gompertz model with
age as the time-scale.

3.2 Linear growth model for latent cognitive function

In our modelling, cognitive function is a latent time-dependent risk factor in the multi-state model.
We assume that cognitive function is continuous and that the time-dependency can be described by a
linear growth model. In the growth model, the function is represented by the variable �.

For individual i with observation times ti1,. . ., tini, let hi¼ (�i1,. . ., �ini). The growth model is
given by

�ij ¼ �1i þ �2itij þ eij gi ¼ ð�1i, �2iÞ �MVN m,Rð Þ eij � Nð0, �2Þ:

That is, random effects gi are multivariate normally distributed with unknown mean l¼ (n1, n2) and
2� 2 variance–covariance matrix D. The conditional distribution of �ij is normal with unknown
variance s2. Random intercept �1i is the value of �ij at the start of the study at time tij¼ 0. Random
slope �2i reflects the change of �ij over time, where a negative value corresponds to a decline of ability
over time.

Cognitive function is a latent variable as it cannot be observed directly but is measured by the
MMSE. At every observation time, the MMSE consists of K¼ 25 binary items (questions) and one
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item with five ordered answer categories. IRT models are used to link the observed discrete values to
latent function h.

For individual i, the data for the binary response IRT model are given by yi¼ (yi1,. . ., yini) with
yij¼ (yij1,. . ., yijK). The probability of individual i answering binary item k correctly at time tij given
item parameters a¼ (a1,. . ., aK) and b¼ (b1,. . ., bK) is defined using the probit model

Pð yijk ¼ 1j�ij, ak, bkÞ ¼ �ðak�ij � bkÞ, ð1Þ

where �(�) is the cumulative distribution of the standard normal. The probit model is well
established in the IRT literature for cross-sectional binary response data. The logit model is
sometimes used as an alternative, but in practice results for both models are similar. We prefer
the probit model because it has a more simple implementation in MCMC.

For k¼ 1,. . ., K, parameter ak is called a discrimination parameter and is the effect of a unit change
in cognitive function � on the success probability for item k. Parameter bk is a difficulty parameter
and is the effect on the success probability when �¼ 0. Note that a large negative value of bk
corresponds to a relatively easy question.

Time-specific response data are assumed to be independent given time-specific cognitive function.
This makes it possible to factorize the likelihood and we obtain

pðyjh, a, bÞ ¼
YN
i¼1

Yni
j¼1

YK
k¼1

Pð yijk ¼ 1j�ij, ak, bkÞ
yijk 1� Pð yijk ¼ 1j�ij, ak, bkÞ
� �ð1�yijkÞ:

For the item with the five ordered response categories, we use the graded response model.16 Let
ui¼ (ui1,. . ., uini) denote the polytomous data for individual i. Given response categories 1 up to 5
(with the latter denoting the best score), the model has four ordered thresholds parameters d1,k, d4.
Together with the bounds d0¼�1 and d5¼1, and the ordering d0< d1< d2< d3< d4< d5, these
thresholds define five segments on the real line. The graded response model written in cumulative
normal response probabilities has parameters c and d¼ (d1, d2, d3, d4), and is given by

Pðuij ¼ mj�ij, c, dÞ ¼ �ðc�ij � dm�1Þ ��ðc�ij � dmÞ, ð2Þ

for m¼ 1,k, 5.17 The model defines the probabilities of the five answer categories. Parameter c is the
discrimination parameter, and d is the difficulty parameter. As an example, when d1 is a large
positive number, the first segment from �1 up to d1 is large compared to the other segments.
This implies that category 1 corresponds to a high probability and this reflects a difficult item. When
d4 is a large negative number, it is relative easy to obtain a score of 5. Notice that for an item with
two categories, the thresholds would be �1¼ d0< d1< d2¼1 and the graded response model
reduces to the two-parameter (normal ogive) IRT model (1).

Fox17 formulates this model for cross-sectional data, but – as above – given the conditioning
on �ij, the same model can be used for longitudinal data. The likelihood is

pðujh, c, dÞ ¼
YN
i¼1

Yni
j¼1

X5
m¼1

Pðuij ¼ mj�ij, c, dÞ�ðuij ¼ mÞ,

where d(u¼m)¼ 1 if u¼m and 0 otherwise.
Analogous to the standard cross-sectional IRT model, we identify the growth model by fixing the

scale of cognitive function h. Note that for this variable, only differences are important – values
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considered at face value are not informative. The mean and the variance of h are fixed to zero and
one, respectively (sec. 4.4.2).17

3.3 Posterior and prior densities

Bayesian inference is based on the posterior density of the model parameters. The posterior density
is proportional to the likelihood of the data times the prior density of the model parameters.
Ignoring manifest risk factors in the notation, the posterior of our model is given by

pðb, a, b, c, d, h, g, m,R�1, �2jx, y, uÞ

/ pðx, y, ujb, a, b, c, d, h, g, m,R�1, �2Þ pðb, a, b, c, d, h, g, m,R�1, �2Þ,
ð3Þ

where p(x, y, uWb, a, b, c, d, h, g, l, D�1, s2) is the overall likelihood of the multi-state data x, and
MMSE data y and u. Given the model specification in Section 3.2, it follows that

pðx, y, ujb, a, b, c, d, h, g, m,R�1, �2Þ ¼ pðxjb, hÞ pðyja, b, hÞ pðujc, d, hÞ

The prior density for the parameters in (3) is given by

pðb, a, b, c, d, h, g, m,R�1, �2Þ ¼ pðhjg, �2Þ pðgjm,R�1Þ pðbÞ pðaÞ pðbÞ pðcÞ pðdÞ pðmÞ pðR�1Þ pð�2Þ,

where the conditional distributions of h and g are specified in Section 3.2.
For the parameter b of the three-state model, we use a non-informative (improper) prior density:

p(b) ! 1. For the parameters of the growth model, the prior densities are given by

m �MVNðm0,CÞ R�1 �Wishartðð�RÞ�1, �Þ �2 � Inv� Gamma 	, 	ð Þ,

see Gelfland et al.18 These conjugate priors allow a straightforward implementation of the Gibb
sampler that we use for the growth model. The choice of the hyper-parameters is discussed in the
application. For the IRT model, we use non-informative prior densities for the item parameters:
p(a), p(b), p(c), p(d) ! 1.

4 Missing scores on test items

In CFAS, not all the MMSE questions are answered by all the individuals. Missing values are
ubiquitous in statistical analysis, and we are not the first to point out that the Bayesian
framework is very suitable for dealing with certain forms of missingness.

We will assume that values are missing at random,19 i.e. the missingness does not depend on the
missing value itself, but may depend on observed data. It will further be assumed that the parameters
for the distribution of h and the parameters for the distribution of the missing-data mechanism are a
priori independent. With these two assumptions, the missing-data mechanism is assumed to be
ignorable for Bayesian inference, (see definition 6.5).20 Given this assumption, Bayesian inference
for the IRT model is relatively easy when item scores are missing. If, for example, for individual i at
time tij, the value of yijk is missing, then the likelihood contribution for the items scores at tij can be
formulated using the model for the items 1,. . ., k� 1, k+1,. . ., K.

This flexible structure with respect to missing values is one of the reasons why we prefer to use an
IRT model instead of using observed sum scores. The definition of a sum score is problematic when
one or more item scores are missing.
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Although we can estimate the model by ignoring the missing item scores, the MCMC method in
the next section is easier to implement when we sample the scores along the way. In the MCMC
algorithm, the missing scores are sampled first, after which the sampling of the model parameters
proceeds as in the complete data case.

We illustrate the procedure for the binary response data. Given the probit model, latent cognitive
function h and item parameters a and b, sampling missing values is undertaken using Bernoulli trials.
If at time tij, the binary value of yijk is missing, then we use a trial with success probability
�(ak�ijk� bk). By sampling missing values in each iteration of the MCMC algorithm, the
uncertainty with regard to the missing values is propagated into the sampling of the model parameters.

For a missing values of polytomous uij, values are sampled in a similar way using the multinomial
distribution and parameters c and d.

5 Bayesian inference

MCMC methods are used to sample from the posterior distribution over the unknown parameters.
The algorithm we use is a Gibbs sampler,21 where each parameter is sampled conditional on the other
parameters and the data. In case there is no closed form of the conditional probability distribution,
Metropolis22 or Metropolis–Hasting sampling23 is undertaken. This scheme is sometimes known as
Metropolis-within-Gibbs although some authors dislike this term, see the discussion in Carlin and
Louis,24 (sec. 3.4.4).

To summarize, data of individual i at time tij consist of observed states xij, binary response yijk for
item k and polytomous response uij. Latent cognitive function is denoted as �ij. The parameter vector
for the three-state model is b. Item parameters are a¼ (a1,. . ., aK) and b¼ (b1,. . ., bK), for the
dichotomous item response model, and c and d¼ (d1,. . ., d4) for the polytomous item response
model. Parameters for the growth model are given by :¼ (l, g, D, s). Conditioning on manifest
risk factors w is ignored in the following notation.

Sampling the parameters of the IRT model for the dichotomous response is undertaken using an
auxiliary variable z¼ (z1,. . ., zN). This is a continuous representation of binary data y which makes it
possible to formulate a Gibbs sampler.25 Corresponding to each yijk, we define the latent variable zijk
which is normally distributed with mean ak�ijk� bk and standard deviation 1. Value yijk¼ 1 is
observed when zijk> 0, and yijk¼ 0 is observed, when zijk� 0.

An innovative step in our Gibbs sampler is the sampling of h. This parameter vector is sampled
using a Metropolis step, where the sampling is informed by both the IRT data and the multi-state
data. This illustrates the flexibility and the strength of MCMC.

Here, we enumerate the main steps of the Gibbs sampling, where conditioning on all other
parameters is indicated by three dots, e.g., p(aW. . .). Details of each step and further references can
be found in Appendix 2.

(1) Sample missing binary scores ymis
ijk from pð ymis

ijk jh, a, bÞ.
(2) Sample missing polytomous scores umis

ij from pðumis
ij jh, c, dÞ.

(3) Sample z from p(zW. . .) ! p(zWh, a, b, y).
(4) Metropolis sampling of h.
� A proposal distribution is specified by sampling from p(hWz, a, b, :) ! p(zWh, a, b)p(hW:).
� The vector h sampled from the proposal distribution is re-scaled such that the resulting
values have mean 0 and variance 1.
� Sampled and re-scaled h is the candidate for sampling from p(�ijW. . .)! p(yijW�ij, a, b)p(uijW�ij, c, d)
p(xi,j+1Wxij, �ij, b)p(�ijW:).
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(5) Sample a from p(aW. . .) ! p(zWh, a, b)p(a).
(6) Sample b from p(bW. . .) ! p(zWh, a, b)p(b).
(7) Sample c from p(cW. . .) ! p(uWh, c, d)p(c).
(8) Sample d from p(dW. . .) ! p(uWh, c, d)p(d).
(9) Sample : using a standard scheme for a linear mixed model, where h is the response variable.
(10) Sample b from p(bW. . .) ! p(xWb, h)p(b).

Posterior inference with regard to means, CIs and other derived quantities is based upon two
chains, each with a burn-in of 5000 and an additional 15 000 updates. Convergence of the chains for
the item parameters and the parameters for the growth model are assessed by visual inspection of the
chains and by diagnostics tools provided in the R-package coda26 such as the convergence diagnostic
by Geweke.27

To compare models, we used the deviance information criterion.28 The DIC comparison is based
on a trade-off between the fit of the data to the model and the complexity of the model. Models with
smaller DIC are better supported by the data. The deviance of interest is the deviance of the multi-
state model given by

Dðx,w,b, hÞ ¼ �2 log pðxjb,w, hÞ:

The DIC for the multi-state model is given by

DICmsm ¼ bDþ 2pD,

where bD ¼ Dðx,w,EðbÞ,EðhÞÞ and pD denotes the effective number of parameters in the multi-state
model. The latter can be estimated by D� bD, where D ¼M�1

PM
m¼1 Dðx, b

m,w, hmÞ with m denoting
the iterations in the MCMC algorithm. The DIC is therefore estimated by DICmsm ¼ 2D� bD, where
E(b) and E(h) are estimated using the posterior means.

6 Application

The longitudinal MMSE data and multi-state data from the 925 men in CFAS in Newcastle will now
be analysed. As stated before, in the three-state model, state 1 is the healthy state (no history of
stroke), individuals in state 2 have had one or more strokes and state 3 is the death state. In the
MMSE, there are 25 binary questions and one which is scored from 1 up to 5.

6.1 Estimation

Although the focus of the analysis is the three-state model, we briefly discuss the inference for the
growth model for the MMSE data.

The choice of the hyper-parameters for the prior densities is l0¼ (0, 0), C�1¼ 0, 	0¼ 1/100, r¼ 2
and R¼ 10I2, where I2 is the 2� 2 identity matrix. This choice defines vague priors.

Posterior means and CIs for the parameters of the growth model are presented in Table 2. The
negative posterior mean �0.036 for n2 which is the mean of the random slopes in the growth model
concurs with our expectations. In the older population, if there is a change of cognitive function over
a long time, then this will be a decline. The posterior mean 0.097 for D22 reflects the heterogeneity
that is present in the data with regard to these slopes. Interesting is also the negative posterior mean
of covariance D12, which means, for example, that a high intercept (high cognitive function)
correlates with a small slope (less decline over time).

van den Hout et al. 777



We do not aim to investigate the effect of the individual items in the MMSE. Nevertheless, it is
interesting to see that there is indeed variation in the item-specific characteristics. For the
parameters for the binary items, see Figure 1. This illustrates why we are using an IRT model
in the first place: assuming for instance that all questions are equally difficult is clearly incorrect
(bottom part of Figure 1). Note that all difficulty parameters have a posterior mean smaller than
zero. This reflects that for most people, the MMSE items are easy. And this is as expected since
the MMSE is originally constructed to screen for dementia and the questions are relatively easy
for the majority of the individuals in CFAS. The variation in the discrimination parameters (top
part of Figure 1) shows that some items are better at discriminating individual cognitive function
than others.

For the graded response model, the sampling of the threshold parameters d1, d2, d3 and d4 is
depicted in Figure 2. The best way to sample threshold parameters has been a topic in the literature,
(see sec. 4.3.4)17 and the references therein. We used truncated normal distributions to generate new
candidates in the Metropolis–Hasting step for d¼ (d1, d2, d3, d4), see Appendix 2. Figure 2 illustrates
that this sampling scheme works well. Numerical diagnostics for convergence as provided in coda26

all indicate good convergence.
We now turn to the three-state model for stroke. The intensities are linked to age and cognitive

function via the log-linear regression model given by

log½qrsðtijÞ� ¼ �rs:1 þ �rs:2AgeðtijÞ þ �rs:3�ðtijÞ, ð4Þ

where Age(tij) is the age midway through the interval (tij, ti,j+1] minus 75 years, and �(tij)¼ �ij denotes
latent cognitive function at time tij.

We start by examining whether adding age and cognitive function as risk factors provides a better
model than the intercept-only model. The latter has DICmsm¼ 4825. The model with age but without
cognitive function has DICmsm¼ 4777. Clearly, we get a better model by adding age. The final
model, i.e. (4) with no restrictions, has DICmsm¼ 4680 which shows that taking cognitive function
into account is worthwhile. Posterior inference for b in (4) is presented in Table 2.

The sign of the estimated effects of risk factors age and cognitive function are as expected:
positive for age (getting older increases the risk of a transition) and negative for cognitive
function (higher function is associated with a lower risk). Direct interpretation of the numerical
results for the estimated effects is of limited use, see Section 6.4 for interpretation using estimated
survival.

Table 2. Posterior inference for model parameters with 95% CIs in parentheses

Three-state model

Intercept �12.1 �3.740 (�4.079; �3.437) Cognitive �12.3 �0.502 (�0.884; �0.120)

�13.1 �2.717 (�2.846; �2.590) function �13.3 �0.524 (�0.663; �0.381)

�23.1 �1.766 (�2.007; �1.543) �23.3 �0.181 (�0.309; �0.056)

Age �12.2 0.062 ( 0.003; 0.115)

�13.2 0.020 (�0.005; 0.044)

�23.2 0.024 (�0.007; 0.054)

Growth model

n1 0.098 (0.009; 0.188) �11 0.264 (0.209; 0.329)

n2 �0.036 (�0.078; 0.006) �12 �0.025 (�0.047; �0.006)

s 1.422 (1.338; 1.511) �22 0.097 (0.083; 0.110)
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6.2 Goodness of fit

Model validation is undertaken by a posterior predictive model check.29 Validation is hampered by
the interval censoring of the transitions between the healthy state and the state defined by a history
of stroke. Death times are, however, observed during the follow-up. We propose to validate the
model by comparing the deaths observed during follow-up with simulated deaths given the posterior
distribution of the parameters. This does not capture all aspects of the three-state model, but
nevertheless gives an idea of goodness of fit: if the simulated deaths differ significantly from
observed deaths, then the model cannot be trusted.

We use a test statistic that depends both on observed deaths (say data xd) and on model
parameters (denoted here by n). For the time grids 0, 2, 4, 8, 10, 12, 14 and 16 in years since
baseline, observed cumulative numbers of deaths at the grid points are given by O¼ (0, 121, 250,
465, 552, 620, 664, 665). Notice that the last figure is the sum of the numbers of transitions into the
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Figure 1. Posterior inference for item parameters using boxplots. Discrimination parameters a in top graph,
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death state in Table 1. Let E be the corresponding vector with the cumulative numbers of expected
deaths given model parameters. We define the statistic T(xd, n)¼

P
(O�E)2/E. The model check is

the comparison of T(xd, n) with Tðxsimd , nÞ, where n varies according to its posterior distribution, and
xsimd denotes simulated deaths given n. The estimate of the p-value is the proportion of simulations,
where Tðxsimd , nÞ 	 Tðxd, nÞ. A p-value close to 0 or close to 1 means that the observed cumulative
numbers of deaths are not very likely given the model. This would indicate a lack of model fit.

In the model check, given sampled n¼ (b, g), deaths are simulated conditional on observed
individual data (state and age) at baseline. At the grid points, age of individual i is known given
age at baseline, and cognitive function hi is derived given time and sampled random intercept �1i and
slope �2i. Simulation of the three-state survival conditional on baseline state can then be undertaken
and simulated death times are monitored. In this simulation, the intensities change piecewise-
constantly from grid point to grid point. The algorithm is a Gillespie30 algorithm, and is also
used and explained in Van den Hout and Matthews,15 where all risk factors are manifest.

We used 500 random samples from the MCMC for b and g, and obtained the p-value 0.30.
Figure 3 depicts simulated Tðxsimd , nÞ and T(xd, n). With respect to observed deaths during the follow-
up, the model seems to fit the data well.

6.3 Prediction

Although posterior means for b are informative with regard to the direction of the effect of a risk
factor, for a practical understanding of the effect, it is more useful to investigate the predicted
survival. Examples will be presented for three individuals: A, B and C, where the first two are
hypothetical, and C is an individual in the study.

Consider the case of A who has had a stroke in the past. What is his survival curve (probabilities
of not dying) for the next 15 years? According to our model, this depends on current and future
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cognitive functions. Assume that his current function is equal to the estimated population mean
(�A1¼ n1). We consider baseline ages 65, 75 and 85. For each choice of baseline age, Figure 4 shows
two survival curves conditional on assumptions with regard to the slope parameter in the growth
model. For A, we assume that the slope is equal to the mean of its population distribution plus one
standard deviation of that distribution (�A2 ¼ 
2 þ�1=2

22 ). The solid line is the estimated survival for
A. Individual B is as A, except for his slope parameter which is equal to the mean of its population
distribution minus one standard deviation (�B2 ¼ 
2 ��1=2

22 ). The dashed line is estimated survival
for B. The uncertainty in the graph (the 95% CIs) is with regard to the posterior distribution of b.
Even though the CI-bands are quite wide, there is a clear and relevant difference in survival due to
difference in future cognitive function.

When it comes to prediction in practice, we would like to predict survival conditional on observed
MMSE scores at baseline. Individual C has baseline scores yC1 and uC1. The posterior of �C1¼ �C1 is
given by

pð�C1jyC1, uC1, a, b, c, d, m,RÞ / pðyC1j�C1, a, bÞ pðyC1j�C1, c, dÞ pð�C1jm,RÞ, ð5Þ

where p(yC1Wk) and p(uC1Wk) are likelihood contributions and p(�C1Wk) is the density of the normal
distribution with mean n1 and variance D11. Maximizing (5) yields the most likely value of �C1
conditional on the posterior means of the model parameters. This is called maximum a posterior
(MAP) estimation.

C is an actual man in the data set. At baseline, he is 69 years old, has an MMSE sum score of 23
and has no history of stroke. The MAP estimate of baseline function is �0.670 which is in the lower
part of the estimated population distribution with mean n1. Given baseline state 1 and assuming that
the C’s slope for the trend of cognitive function is the estimated mean n2 for the population, we can
estimate the survival. The bottom right graph in Figure 4 depicts this survival.

0 10 20 30 40

0
10

20
30

40

T (xd, ξ)

T
(x

dsi
m

, ξ
)

Figure 3. Posterior predictive model check. Comparing Tðxsim
d ,	Þ and T(xd, n) for 500 draws of n¼ (b, g) from its

posterior distribution.

van den Hout et al. 781



We consider possible transition from state 1 to state 2. For C, the probability that he will be in
state 2 after 15 years (estimated at 0.047) is less interesting than the probability of being in state 2
conditional on being still alive after 12 years. The latter is estimated at 0.047/(1� 0.862)¼ 0.341 with
95% CI (0.244; 0.521), where the uncertainty is with regard to the posterior distribution of b, l, D
and s. Given the conditioning on baseline function �C1, we used

�C2j�C1, m,R � N 
2 þ
�
1
�
2
�ð�C1 � 
1Þ, ð1� �

2Þ�2
2

� �
where r is the correlation between intercept �1 and slope �2, derived from D. This conditional
distribution follows from the distribution of Z2WZ1¼ z1 when both Z1 and Z2 are normally
distributed, (see sec. 3.5.2).31
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7 Conclusion

This article presented an application, where a three-state model for stroke and survival encompasses
a latent growth model for time-dependent cognitive function using longitudinal MMSE data. The
cognitive function was included in the joint analysis as a time-dependent risk factor for transitions in
the three-state model.

Adding the MMSE sum score as a non-deterministic time-dependent risk factor is not a problem with
respect to the estimationof amulti-statemodelwhenweassume that thepiecewise-constant approximation
is reasonable.However, forprediction,weneedamodel for the time-dependent risk factor.Agrowthmodel
with theMMSE sum score as response variable is problematic because the conditional distribution of the
sum score is not normal, as the scale is discrete and there are ceiling effects. The binomial distribution is an
alternative for the response distribution, but this distribution does not distinguish between the items
(questions) that make up the sum score. It is only when IRT models are used that both the discrete
nature of the MMSE and the item-specific characteristics are taken into account.

The presented growth model is an extension from the one introduced by Douglas.32 Our model
can deal with variation in time intervals between interviews and is more flexible due to the random-
effects structure.

Both within the three-state model and the growth model, we have used assumptions that are
commonly made. In the multi-state process, the transition probabilities are conditional on the
current state and current values of risk factors. Using the time-dependent risk factors implies that
the process is not first-order Markov. The process is also not semi-Markov because time spent in the
current state is not taken into account. Another important assumption is that the piecewise-constant
approximation captures the essential part of time-dependent risk factors. The IRT for cognitive
function in the growth model assumes local independence (given the item parameters, scores are
independently distributed) and time-independent item parameters. A posterior model check was
used to validate the model in the application.

In the three-state model for the history of stroke, each individually observed interval (say (tij,
ti,j+1] for individual i) is modelled in the likelihood as a homogenous process, where values of risk
factors at time tij are used to determine the distribution of the states at time ti,j+1. It is because of this
that we can say lower cognitive function is associated with a higher risk of stroke. Due to the
piecewise-constant approximation, the model is not invalidated by the fact that a stroke often
causes a drop in cognitive function. For example, if a stroke occurred within (tij, ti,j+1] and there
is a drop in function, then the decreased function will only play a role in the modelling of the next
interval (ti,j+1, ti,j+2].

The use of MCMCmethods ensures proper propagation of the uncertainty at the various levels of
the model. Using a random-effects growth model, individual heterogeneity is taken into account.
Given the general structure of the model, it can be extended easily, for example, with additional
covariates in the growth model or in the multi-state model. Possible sub-models may also be of
interest. For example, if there is no MMSE information available, the growth model can be dropped
from the overall model, and �ij can take the role of a frailty which takes into account unobserved
heterogeneity with regard to the risk of ill-health or death.
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Appendix 1

Likelihood three-state model

The following statements can be found in the literature referenced in Section 2. Presentation here is
for convenience sake. The transition intensities qrs(t) are the entries of the transition intensity matrix
Q(t), which for the three-state model in this article is given by

QðtÞ ¼
�q12ðtÞ � q13ðtÞ q12ðtÞ q13ðtÞ

0 �q23ðtÞ q23ðtÞ
0 0 0

0@ 1A:
It is a general feature of intensity matrices that rows sum to zero. Transition probabilities for a time
interval (t, u] are given by the 3� 3 matrix P(t, u)¼ exp[(u� t)Q(t)], with entries prs(t, u)¼
P(xu¼ sWxt¼ r), for r, s2 {1, 2, 3}. Function exp[�] is the matrix exponential. For the three-state
model in this article, P(t, u) is available in a closed-form. For qrs¼ qrs(t) and �¼ u� t, we have

Pðt, uÞ ¼
e�ðq12þq13Þ� p12ðt, uÞ 1� p11ðt, uÞ � p12ðt, uÞ

0 e�q23� 1� p22ðt, uÞ
0 0 1

0@ 1A
where

p12ðt, uÞ ¼
q12ð�1þ eðq12þq13�q23Þ�Þe�ðq12þq13Þ�

q12 þ q13 � q23
:

Most of the more complex multi-state models require numerical approximations to derive P(t, u)
from Q(t). This approximation is implemented in the R package msm.10

Assume that an individual i has observations at times ti1,. . ., tini, where the state at tni is either
right-censored or death. Using the Markov assumption with respect to the states, the contribution of
this individual to the likelihood is

pðxijb,wÞ ¼ Pðxini , . . . , , xi2jxi1, b,wÞPðxi1jb,wÞ

¼ Pðxini jxi,ni�1, b,wi,ni�1ÞPðxi,ni�1jxi,ni�2, b,wi,ni�2Þ � . . .� Pðxi2jxi1, b,wi1Þ:

If the state observed at tini is death, then, in shortened notation,

Pðxini jxi,ni�1Þ ¼ Pðxini ¼ 1jxi,ni�1Þq13ðtniÞ þ Pðxini ¼ 2jxi,ni�1Þq23ðtni Þ:

So, we assume an unknown state at time tini and then an instant death. If the state is censored at tini ,
then we assume that the individual is alive but with unknown state and we define Pðxini jxi,ni�1Þ ¼
Pðxini ¼ 1jxi,ni�1Þ þ Pðxini ¼ 2jxi,ni�1Þ.

Appendix 2

Gibbs sampler

1. When missing, binary value yijk is sampled using a Bernoulli trial with success probability
�(ak�ijk� bk).
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2. When missing, polytomous value uij is sampled using a multinomial distribution with
probabilities given by (2).

3. Sample z from p(zW. . .) ! p(zWh, a, b, y). Value zijk is sampled from a truncated normal
distribution with mean ak�ij� bk and variance 1, truncated from the left at zero if yijk¼ 1
and truncated from the right at zero if yijk¼ 0.

4. Metropolis sampling of h.
� A proposal distribution is specified by sampling from the conditional distribution of h with
respect to the binary data (as represented by z). It follows that

pðhjz, a, b,XÞ / pðzjh, a, bÞ pðhjXÞ

Hence, for Xij equal to 1� 2 matrix [1 tij], we have

pð�ijjzij, a, b,XÞ / exp
�1

2

XK
k¼1

ðzijk þ bk � ak�ijÞ
2

" #
exp
�1

2�2
ð�ij � XijgiÞ

2

� �
:

This is a normal regression model for zijk+ bk on ak, with coefficient �ij, variance known and
equal to 1, and prior for �ij given by N(�ijWXijgi, s

2). It follows that p(�ijWzij, a, b, :) is a normal
distribution with variance V ¼ ð

PK
k¼1 a

2
k þ 1=�2Þ�1, and meanPK

k¼1 akðzijk þ bkÞ þ Xijgi=�
2PK

k¼1 a
2
k þ 1=�2

:

� The vector h sampled from the proposal distribution is re-scaled such that the resulting
values have mean 0 and variance 1.
� Sampled and re-scaled h is the vector with the candidates for the Metropolis step which takes
into account all data. The conditional distribution is given by

pð�ijjyij, uij, xij, xi,jþ1, a, b, c, d, b,XÞ / pðyijj�ij, a, bÞ pðuijj�ij, c, dÞ pðxi,jþ1jxij, �ij, bÞ pð�ijjXÞ

Because most of the information of �ij is contained in the binary data y, the proposal is a good
approximation of the posterior conditional distribution for �ij, and the acceptance rate is high.

5. Sample a from p(aW. . .) ! p(zWa, h, b)p(a), where the prior is p(a) ! 1. Let the total number of
records indexed over i and j be M. From zijk¼ ak�ijk� bk+ eijk and eijk � N(0, 1), it follows
that zijk+ bk¼ ak�ijk+ eijk. Treating ak as a coefficient in an ordinary linear regression model,
it follows that ak can be sampled from a normal distribution with meanP

i,j �ijðzijk þ bkÞ=
P

i,j �
2
ij and variance 1=

P
i,j �

2
ij.

6. Sample b from p(bW. . .) ! p(zWa, h, b)p(b), where prior is p(b) ! 1. Let the total number of
records indexed over i and j be M. From zijk¼ ak�ijk� bk+ eijk and eijk � N(0, 1), it follows
that bk¼ ak�ijk� zijk+ eijk. Hence, bk can be sample from a normal distribution with mean
M�1

P
i,j ak�ijk� zijk and variance M�1.

7. Sample c using a Metropolis step from p(cW. . .) ! p(uWc, d, h)p(c), where the prior is p(c) ! 1
and the proposal is constructed using a normal distribution centred around the current value.

8. Sample d using a Metropolis–Hasting step from p(dW. . .) ! p(uWc, d, h)p(d), where the prior is
p(d) ! 1. The ordering in the parameter vector is maintained by generating an ordered
candidate d* conditional on current d. This is established by sampling d
m sequentially from
the truncated normal density

Nðdm, �
2ÞIðd
m�1, dmþ1Þform ¼ 1, ::, 4,
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where d
0 ¼ �1 and d
5 ¼ 1. This density is not symmetric – hence the Hasting extension of
the Metropolis algorithm.

9. Sample :¼ (l, g, D, s) by following the scheme for a linear mixed model (where h is the
response variable). These steps are Gibbs steps with conjugated priors. The parameters of the
latter are ignored in the following notation.
� Sample g from p(gWh, l, D, s).
� Sample l from p(lWg, D).
� Sample D

�1 from p(D�1Wl, g).
� Sample s2 from p(s2Wh, g).

10. Sample b from p(bW. . .) ! p(xWb, h)p(b) using three Metropolis steps, one for the intercepts, one
for the slope for age and one for the slope of h. Candidates are sampled using multivariate
normal distributions centred around the current values.

Steps 3, 5 and 6 are defined for the binary-response IRT model and can be found for cross-sectional
data in Johnson and Albert.25 Fox17 provides an overview of MCMC techniques for probit and
logistic IRT models. The fact that we can formulate the steps with respect to longitudinal data is
because of the conditioning on h. The sampling scheme for the candidates in the first part of step 4
can be found in Fox and Glas12 and Fox,17 but using this scheme to generate candidates for the
Metropolis part has not been done before. Note that in the Metropolis, the sampling of h is informed
by the multi-state data by including the transition probability p(xi,j+1Wxij, �ij, b). Step 8 can be found
in Fox17 for a cross-sectional model and is here used for a longitudinal model, and step 9 is an
application of the scheme in Gelfand et al.18 In steps 7, 8 and 10, acceptance rates are monitored and
adjusted during burn-in when necessary (pilot adaption).33

van den Hout et al. 787


