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Background: Neurodegenerative Diseases (NDs) are age-dependent and include
Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy
(PSP), frontotemporal dementia (FTD), and so on. There have been numerous studies
showing that accelerated aging is closely related (even the driver of) ND, thus promoting
imbalances in cellular homeostasis. However, the mechanisms of how different ND types
are related/triggered by advanced aging are still unclear. Therefore, there is an urgent
need to explore the potential markers/mechanisms of different ND types based on aging
acceleration at a system level.

Methods: AD, PD, PSP, FTD, and aging markers were identified by supervised machine
learning methods. The aging acceleration differential networks were constructed based
on the aging score. Both the enrichment analysis and sensitivity analysis were carried
out to investigate both common and specific mechanisms among different ND types in
the context of aging acceleration.

Results: The extracellular fluid, cellular metabolisms, and inflammatory response were
identified as the common driving factors of cellular homeostasis imbalances during the
accelerated aging process. In addition, Ca ion imbalance, abnormal protein depositions,
DNA damage, and cytoplasmic DNA in macrophages were also revealed to be special
mechanisms that further promote AD, PD, PSP, and FTD, respectively.

Conclusion: The accelerated epigenetic aging mechanisms of different ND types were
integrated and compared through our computational pipeline.

Keywords: aging, neurodegenerative disease, cellular homeostasis, network analysis, supervised machine
learning

INTRODUCTION

With the further extension of human life, the number of elderly people is increasing and the
incidence rate of senile neurodegenerative diseases (ND) is also rising (Kovacs, 2017). Although
human life expectancy has been improved in recent years, ND have become the most common
diseases affecting elderly populations (Heemels, 2016), with a large number of people being

Abbreviations: AD, Alzheimer’s disease; AUC, area Under the ROC Curve; BH, Benjamin-Hochberg; BP, biological process;
FDR, false discovery rates; FTD, frontotemporal dementia; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; K–S, Kolmogorov–Smirnov; MCMC: Markov Chain Monte Carlo; ND, neurodegenerative disease; PD, Parkinson’s
disease; PSP, progressive supranuclear palsy; ROC, receiver operating characteristic.
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affected by Alzheimer’s disease (AD), Parkinson’s disease (PD),
frontotemporal dementia (FTD), and progressive Supranuclear
Palsy (PSP). Life is disrupted by the development of NDs in
aging patients, with concomitant implications in terms of social
resources and economic costs. It is estimated that the prevalence
of NDs will increase to 131 million in the next few decades
(Santiago et al., 2020), meaning that NDs have become an
important topic of global concern.

A large amount of epidemiological evidence has shown that
NDs are closely related to advanced brain aging, which is often
considered to be one of the driving factors of ND (Mayne et al.,
2020). There were a series of risk factors that interact with
each other in the aging brain coordinately, where the immune
system is dysregulated in abnormal aging (Liang et al., 2017).
For example, chronic inflammation was considered to be one
of the pathogenic factors of NDs in elderly people (Liang et al.,
2017). In addition, the functions in the mitochondrial OXPHOS
system are diminished in ND patients (Grimm and Eckert,
2017). Moreover, the accumulation of mitochondrial dysfunction
(such as mtDNA mutation, increased oxidative stress, and
mitochondrial transport/distribution defects) are more serious in
ND (Grimm and Eckert, 2017).

There are a series of common characteristics of the advanced
aging brain shared by different ND types, such as imbalances in
cellular homeostasis and advanced cell death (Xu et al., 2020).
If the cells cannot return to homeostasis for a long time, it may
lead to irreversible abnormal cell death, along with continuous
dysfunctions or the pathological state (Xu et al., 2020). Cellular
homeostasis is thought to be related to cell cycle arrest, cell
senescence, apoptosis, and autophagy (Dodig et al., 2019). The
DNA damage repair response, imbalance of cellular energy
metabolisms, and immune homeostasis can lead to cellular
homeostasis disorder. For instance, the protein stabilization
network is particularly important in neurons, and its abnormality
was considered to be closely related to ND. In addition, the
nervous system diseases shared common pathogenic factors, such
as oxidative stress, environmental stress, and protein dysfunction,
disrupting the protein stability in cells. Studies have proven
that the mechanisms related to protein stability might be the
basis of the etiology of ND (Höhn et al., 2020). Furthermore,
there are other pathogenic factors shared by different ND
types in the context of aging brains, such as oxidative stress,
extracellular fluid, and protein dysfunction, which are also related
to imbalances in cellular homeostasis. For example, research
has proved that the mechanisms relating to protein stability
might be the basis of the etiology of NDs (Höhn et al., 2020).
Various studies have also reported that metal ion homeostasis
(e.g., copper, iron, and zinc) is dysregulated during advanced
brain aging, then NDs are induced. The excessive accumulation
of metal ions has been found in a large number of ND patients
(Ashraf et al., 2018). In short, the mechanism of ion imbalance in
neurons is also thought to be related to NDs (Jomova et al., 2010).
Thus, both ion homeostasis disorder and protein homeostasis
disorder led to irreversible cellular homeostasis disorders. Based
on previous reports, we can hypothesize that cellular homeostasis
imbalance is one of the most important risk factors of ND during
advanced brain aging (Figure 1A).

Although a series of studies have shown that the occurrence of
ND was mainly due to aging acceleration as well as the imbalance
of cellular homeostasis, resulting in cell dysfunction and
pathological state (Bohlen et al., 2019), the relative mechanisms
still need to be explored more thoroughly. Machine learning
technology can be leveraged to classify healthy and diseased
populations (Camacho et al., 2018). Moreover, using a prediction
model based on omic profiles to identify potential biomarkers
is informative to the experimental design, evaluation, diagnosis,
and treatment of ND (Camacho et al., 2018). There are also
some studies using network methods to analyze the common
and specific molecular characteristics of different ND types, but
the mechanisms of how ND was related/triggered by accelerated
aging as well as cellular homeostasis imbalances, still need to
be investigated more systematically (Stopa et al., 2018; Santiago
et al., 2020). We therefore urgently require explorations of these
mechanisms based on proper datasets.

In this paper, the relationship between aging, cellular
homeostasis, and ND (including AD, PD, PSP, and FTD), as
well as the relative mechanisms involved, were analyzed by
our computational pipeline based on a series of methylation
profiles in the GEO dataset. As shown in Figure 1B, this
workflow involved five stages. (1) The AD, PD, PSP, FTD,
and normal aging markers were identified by machine learning
methods, respectively. (2) The aging score and disease score
were given accordingly, thus the accelerated aging pattern in
ND was validated. (3) According to the correlation between
each pair of genes and the aging score, the aging acceleration
differential network was thereby constructed. (4) Both network
and enrichment analysis were be used to explore the mechanisms
that relate accelerated aging to ND, respectively. (5) Sensitivity
analysis was then performed to further investigate cellular
homeostasis imbalances in different ND types using the Markov
Chain Monte Carlo (MCMC) method.

RESULTS

Modeling the Aging and Disease
Predictor and Identifying Relative Risk
Markers
DNA methylation profiles were used in this work, more
specifically, 22905 cpg sites from 6 GSE profiles, the details
of which are shown in Supplementary Text 1, 2. The aging
predictor and disease predictor were modeled by the classification
ensemble algorithm of the classification tree (shown in detail
in the section “Materials and Methods” below), and the best
predictor was selected based on 10-fold cross-validation (Table 1
and Supplementary Text 1). The learning curves of the training
data set are shown in Figure 2.

According to the cross-validation results, the top 46, 35, 14, 23,
and 34 dimensions of cpg sites were identified as risk biomarkers
related to aging, AD, PD, PSP, and FTD, respectively. Next, these
five prediction results were verified in the independent test data
set. This ensured that the classification results in the test data had
adequate accuracy (Table 1). The receiver operating characteristic
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FIGURE 1 | (A) The mechanism hypothesis diagram of ND; (B) the workflow in our work.

TABLE 1 | Accuracy of aging and disease predictors.

The aging predictor The AD predictor The PD predictor The PSP predictor The FTD predictor

Training dataset accuracy 0.8823 0.8453 0.9383 0.8675 0.7374

Test dataset accuracy 0.8272 0.7302 0.9331 0.8568 0.7092

(ROC) curves of the predictors are also shown in Figure 2. The
area under the ROC curve (AUC) 0.818, 0.693, 0.642, 0.903,
and 0.857 in the predictor of aging for AD, PD, PSP, and FTD,
respectively. Overall these results showed that the predictor had
high accuracy and efficiency.

It has been reported that the identified biomarkers are closely
related to aging and ND (Table 2; Salmerón et al., 2001; Hu et al.,
2004; Katoh, 2008; Qiu and Ghosh, 2008; Fujimoto et al., 2009; Su
et al., 2009; Kozarova et al., 2011; Euskirchen et al., 2012; Berwick
and Harvey, 2014; Lopez-Pelaez et al., 2014; Alquézar et al., 2016;
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FIGURE 2 | The learning curve and ROC curve in the aging predictor and improved PD predictor. (A) The learning curve of the aging predictor. (B) The ROC curve of
the aging predictor. (C) The learning curve of the AD predictor. (D) The ROC curve of the AD predictor. (E) The learning curve of the PD predictor. (F) The ROC curve
of the PD predictor. (G) The learning curve of the PSP predictor. (H) The ROC curve of the PSP predictor. (I) The learning curve of the FTD predictor. (J) The ROC
curve of the FTD predictor.
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TABLE 2 | The top risk markers of aging and ND.

Gene Index Gene Symbol Function References

Aging cg20692569 FZD9 (1) Through the typical signaling pathway of β – Catenin, the cell cycle
arrest is negatively regulated to inhibit neuronal apoptosis, which plays
a role in the survival of neural progenitor cells
(2) Cell proliferation and cell movement are significantly inhibited
(3) Regulating the WNT signaling pathway.

Katoh, 2008; Fujimoto
et al., 2009; Berwick and

Harvey, 2014; Chailangkarn
et al., 2016

AD cg12411068 SMARCA4 (1) Chromatin remodeling is involved in the transcriptional activation and
inhibition of selection genes
(2) SWI/SNF is a component of the chromatin remodeling complex,
which performs key enzyme activities and alters the chromatin structure
by changing DNA histone contact in the nucleosome in an ATP
dependent manner (i.e., chromatin remodeling enzymes play an
important role in gene expression, DNA replication and repair, cell
division and other biological processes)
(3) As the component of CREST – BRG1
(4)Modulating calcium dependence of complexes
(5) SMARCA4 promoted the self-renewal/proliferation of neural stem
cells

Qiu and Ghosh, 2008; Su
et al., 2009; Euskirchen

et al., 2012; Husain et al.,
2016

PD cg16414945 DUSP12 (HYVH1) (1) Playing a role in cell survival and ribosome biosynthesis
(2) Regulating the cell cycle
(3) As a key factor in dephosphorylation of tyrosine and serine/threonine
residues
(4) Phosphorylating the Tau protein with multiple serine/threonine and
tyrosine phosphorylation sites, which was an important indicator of PD

Kozarova et al., 2011;
Pîrşcoveanu et al., 2017;
Monteiro and Forti, 2019

PSP cg01994328 BRCA1 (1) Regulating the DNA double strand break repair pathway, or leading
to the DNA damage
(2) Mis-localization of BRCA1 was associated with tau aggregation and
the DNA damage
(3) Involved in the pathogenesis of PSP

Densham et al., 2016;
Kurihara et al., 2019

FTD cg04223844 IKBKB (IKKB/IKK) (1) Phosphorylation of IKK related kinases can prevent excessive
production of inflammatory mediators and TNF mediated RIPK1
dependent cell death
(2) IKBKB can affect the NF-κB signaling pathway, which was the
reason for FTD

Salmerón et al., 2001; Hu
et al., 2004; Lopez-Pelaez
et al., 2014; Alquézar et al.,

2016

Chailangkarn et al., 2016; Densham et al., 2016; Husain et al.,
2016; Pîrşcoveanu et al., 2017; Kurihara et al., 2019; Monteiro
and Forti, 2019). Interestingly, these related functions (i.e., DNA
damage repair response, mitochondrial dysfunction, or Ca ion
homeostasis disorder), further indicated the imbalance of cellular
homeostasis, and abnormal cell death was further induced across
various ND types. Therefore, cellular homeostasis disorder may
not only disrupt normal brain functioning but also lead to
pathological changes related to ND.

Comparison of Aging Scores Between
ND and Normal Aged Samples
To study the accelerated aging pattern in ND, the aging score
was calculated based on 46 aging risk biomarkers (shown in the
section “Materials and Methods” below). Both the median and
median scores for different age groups are shown in Table 3.
With the increase in age, the aging scores in both disease and
normal aged individuals showed an upward trend. The results
also showed that the accelerated aging pattern in ND compared
with the normal aged people, which was consistent with previous
studies (Liu et al., 2020). Compared with the chronological age,
the aging score was more informative. The Kolmogorov–Smirnov
(K–S) test was used to test the aging scores of each ND type as well

as the healthy aged sample coming from the normal distribution.
The results showed that the p-value was close to 0 and rejects
the original hypothesis (shown in Supplementary Table 1).
Consequently, the Kruskal–Wallis test was then executed to verify
whether the aging score reflected a significant difference between
ND and normal individuals, where different age groups, as well
as different ND types, were compared. The results are shown in
Figure 3, Table 3, Supplementary Figure 1, and Supplementary
Table 2. These results indicate that the aging scores of ND sample
individuals exhibit a significantly accelerated aging pattern,
compared with those of normal aged individuals (p < 0.05).

The Aging Acceleration Differential
Network Provided Insights Into the Key
Biological Functions of ND
To better study the potential mechanisms between aging and
ND, the aging acceleration differential network was constructed,
where FDR < 0.1 was used to ensure reliable correlation. The
(partial) coefficients were also summarized and used to compare
the relationship of each pair of cpg cites in the context of aging.
Aimed at verifying the scale-free characteristics, the probability
corresponding to logarithmic transformation and its degree were
used to test the power-law distribution (shown in the section
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TABLE 3 | The chronological age and aging scores of ND and control in different age groups.

Age The median
age in ND

The median
age in control

The mean age
in ND

The mean age in
control

The median
aging score in

ND

The median
aging score in

control

The mean aging
score in ND

The mean aging
score in control

≥50 71 72.19 71 72.21 0.978332 0.890503 0.889628 0.782356

≥55 75 74.42 72 73.06 0.9834 0.903807 0.891899 0.792415

≥60 77 77.59 73 74.12 0.986455 0.911084 0.896285 0.802538

≥65 77 79.02 75 76.26 0.993786 0.911595 0.91115 0.802051

≥70 82 82.47 78 79.53 0.985051 0.914107 0.906385 0.814409

≥75 85 85.07 81 82.48 1.000348 0.919098 0.945376 0.826603

≥80 87 87.70 85 86.56 1.058764 0.919653 1.026904 0.82923

“Materials and Methods”). The node degree distribution curve
and Pearson correlation coefficient of different ND types are
shown in Figure 4.

The results revealed that the aging acceleration network was
with the scale-free pattern. The degree and frequency were
inversely correlated, and only a small proportion of genes had a
high degree. Furthermore, the Fisher’s exact test was carried out
to calculate the similarity between the different networks based
on the training data and the test data, respectively, and the result
showed a p-value very close to 0 (1e-23238, 1e-131120, 1e-3103,
1e-44540, and 1e-139070 for AD, PD, PSP, FTD, and all NDs,
respectively). In addition, the node with the highest degree in
the network was also significantly correlated with maintaining
cellular homeostasis (Table 4; Crowe et al., 1994; Dong et al.,
1997; Keats et al., 2007; Tang et al., 2011; Kaneko et al., 2016; Kula
et al., 2019; Anerillas et al., 2020).

Underlying ND Mechanisms Based on
the Enrichment Analysis in the Aging
Acceleration Differential Network
To further investigate the potential mechanisms between aging
and ND, each shortest path of aging-AD, aging-PD, aging-PSP,
and aging-FTD were identified based on the aging acceleration
differential network using the Dijkstra algorithm. Enrichment
analysis was then performed based on each of the shortest paths,
the special functions (i.e., the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway, and the Biological Process (BP) term
in Gene Ontology (GO), shown in Figure 5 and Table 5). These
indicated multiple dysfunctions of different ND types (McGeer
et al., 1989; Behl, 2000; Nagatsu et al., 2000; Everse et al., 2011;
Obulesu and Lakshmi, 2014; Caputi and Giron, 2018; Cui and
Xu, 2018; Yan et al., 2018; Liu et al., 2019; Porro et al., 2019; Starr,
2019; Ashrafizadeh et al., 2020; Burgaletto et al., 2020; Luo et al.,
2020; Paul et al., 2021), respectively.

In addition, common enriched functions were investigated
to study the crucial mechanisms across different ND types,
where the top ten KEGG pathways are shown in Figure 6. For
example, the Toll-like receiver (TLR) signaling pathway was the
top KEGG pathway related to all four ND types. The TLRs
activated their downstream pathways and then induced NF-κB
and Pro-Il-1β, both of which are related to neuroinflammation
and the pathogenesis of a variety of neurological diseases (Azam
et al., 2019). Furthermore, the activation of TLRs can also induce

the inflammatory response of macrophages by activating the
transcription cascade (Lauterbach et al., 2019). The inflammatory
response induced by activation of TLRs is considered to be closely
related to AD, PD, PSP, and FTD (López González et al., 2016).
Therefore, the importance of the Toll-like receiver signaling
pathway is reflected in a variety of ND types. Furthermore,
cytokine receptor interaction is also critical in ND progression.
For example, microglia can release cytokines to trigger a cellular
inflammatory response and participate in the occurrence and
development of NDs (Colonna and Butovsky, 2017). Cellular
apoptosis is also a fundamental process in the progression of
nervous system diseases (Radi et al., 2014).

The Sensitivity Analysis Further
Revealed Crucial Cellular Homeostasis
Imbalances Across ND Types
In order to further investigate the complex cellular homeostasis
imbalances across different ND types, a global sensitivity analysis
was performed using the MCMC method (shown in section
“Materials and Methods”). To study the relationship between
aging and ND markers, the differential MCMC K–S statistics
were calculated based on each “aging-ND” pair; then the top
ranked “aging-ND” pairs were identified for each disease (as
described in the section “Materials and Methods”). The aging
markers shared by different ND types as well as the disease
markers within each specific ND type were then explored, based
on both aging and ND MCMC differences.

TSC2 was the risk marker with the highest absolute MCMC
difference across the four types of ND. It has been reported
that the phosphorylation of TSC2 could restore the expression
of NF-κB protein, which is vital to reduce the production of
inflammatory mediators and ND markers (Kumar et al., 2017).
In addition, the aging markers identified in all four diseases were
identified according to the obtained “aging-ND” pairs. Among
them, there were two aging markers with high frequencies.
CHGN-1 (CSGALNACT1, frequency = 40) is a key enzyme for
the production of CSPGs, participating in the demyelination,
remyelination, axonal degeneration, and regeneration of the
central nervous system (Saigoh et al., 2016). SLC15A2 (PEPT2,
frequency = 24) can affect the production of pro-inflammatory
cytokines by macrophages (Gupta et al., 2013). The excessive
release of pro-inflammatory cytokines causes neuronal damage
(Shen et al., 2004).
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FIGURE 3 | The results of the Kruskal–Wallis test for aging scores of ND individuals and normal individuals in different age groups. (A) Age ≥ 50; (B) Age ≥ 55;
(C) Age ≥ 60; (D) Age ≥ 65; (E) Age ≥ 70; (F) Age ≥ 75; and (G) Age ≥ 80.

In AD, CDCA7L was with the highest absolute MCMC
difference. It was associated with the intelligence quotient
(Pan et al., 2011), which could even inhibit the Monoamine
oxidase A(MAOA) promoter as well as neuronal cell death
(Ou et al., 2006).

EFNB2 had the highest absolute MCMC difference in PD.
EFNB2 was involved in adjusting the development of the nervous
system and the neuronal migration (Lévy et al., 2018), and could
also activate the Eph/efn forward signaling pathway as well as cell
apoptosis (Zhong et al., 2019).
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FIGURE 4 | The degree distribution of the acceleration aging network. (A) AD; (B) PD; (C) PSP; (D) FTD; and (E) All NDs.

In PSP, the marker with the highest absolute MCMC
difference was BCL2, which could affect the activity of the
mitochondrial complex (Chong et al., 2020). BCL2 could also
enhance the anti-apoptotic effect of nerve growth factor (NGF)
and promote the survival and differentiation of nerve cells
(Troullinaki et al., 2019).

In FTD, MICAL1 had the highest absolute MCMC difference.
Through interacting with STK38 and STK38L, it acted as a
negative regulator of cell apoptosis (Zhou et al., 2011). MICAL1
is also involved in the regulation of lamina specific connections
in the nervous system (Schmidt et al., 2008).

The Network Marker Revealed Critical
Mechanisms Between Aging and ND
The potential network markers were also found out based on
each “aging-ND” pair from the results of sensitivity analysis
by summarizing the betweenness in the aging acceleration
differential network, as shown in Table 6, Figure 7, and
Supplementary Figure 2. As a result, DUSP12 had the
largest betweenness across the four ND types. DUSP12 could
regulate the c-Jun N-terminal kinase (JNK) signaling pathway
by dephosphorylating its substrate, which was critical to cell
differentiation, apoptosis, and other neural functions in ND
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TABLE 4 | Network markers of the highest degree.

Gene Index Gene Symbol Degree Function References

AD cg09414535 GRIP1 945 GRIP1 mediates synaptic and non-synaptic signals. It plays an
important role in the development and function of oligodendrocytes and
their precursors in vivo

Kula et al., 2019

PD cg11672225 RNF185 2478 (1) E3 ubiquitin ligase regulates selective mitochondrial autophagy by
mediating “lys-63” linked multi ubiquitination of BNIP1
(2) Plays a role in the endoplasmic reticulum related degradation
pathway, which targets misfolded proteins accumulated in the
endoplasmic reticulum for ubiquitination and subsequent proteasome
mediated degradation, and protects cells from endoplasmic reticulum
stress-induced apoptosis

Tang et al., 2011;
Kaneko et al., 2016

PSP cg14448116 GPR21 720 A constitutively active receptor that can be coupled with Gαq type G
protein, leading to the activation of mitogen activated protein kinase,
thus inducing cell senescence, growth arrest, and cell death

Anerillas et al., 2020

FTD cg15784615 LTBR 706 (1) Promoting apoptosis through TRAF3 and TRAF5
(2) Leading to constitutive activation of the non-canonical NF-κB
pathway, which is involved in cellular immune response, growth control,
and apoptosis

Crowe et al., 1994;
Keats et al., 2007

ND cg09414535 GRIP1 1114 Acting as local scaffolds for the assembly of multi protein signaling
complexes and mediators for the transport of their binding partners at
specific subcellular locations of neurons

Dong et al., 1997

progression (Ha et al., 2019). It also has been reported that
the overexpression of DUSP12 inhibited the production of pro-
inflammatory cytokines and chemokines (Cho et al., 2017).

Furthermore, the genes (cpg site) within each shortest
“aging-ND” path were also identified. For example, the top
network (betweenness) marker in AD was RALGPS2. It
has hitherto been revealed that RALGPS2 silencing induces
cell apoptosis, by improving cell cycle inhibitors p27 and
p21 (Santos et al., 2016). The top network marker in PD
was MEOX2 (GAX). The deletion of MEOX2 can lead to
decreased capillary density as well as resting cerebral blood
flow, and then promote the loss of hypoxic angiogenesis in
the brain. It causes hypoxia reaction and cell death (Wu et al.,
2005). QRSL1, whose mutation may lead to dysfunction of
mitochondrial energy production and mitochondrial disorder
(Albers and Beal, 2002), was the top network marker in
PSP. The top network marker in FTD was C3. C3 uptake
by cells reduces stress-related cell death (e.g., oxidative stress
or starvation). In the process of inflammation, storing C3
in cells can prevent some substances that induce cell death
(Kulkarni et al., 2019). In brief, these network markers were
also informative and indicate the relationship between cellular
homeostasis and NDs.

DISCUSSION

In this article, a series of computational methods were integrated
to explore the potential mechanisms between aging and four
types of ND, as well as the commonalities and specificities of
these four types of ND based on aging acceleration. Firstly, aging
markers and ND markers were identified by the aging predictor
and disease predictor, respectively. Secondly, according to the
selected aging markers, the aging score of dementia patients
showed an accelerated aging pattern compared with normal aged

people. Furthermore, the aging acceleration differential network
was constructed based on the aging score, then crucial shortest
“aging-ND” paths were discovered.

The aging markers (using MCMC) indicated that an
imbalance in cellular homeostasis is the key bridge, linking
accelerated aging and ND. For example, the top aging
marker was TSC2, as a risk marker of ND by affecting the
inflammatory response (Kumar et al., 2017). Furthermore,
other aging markers revealed the critical roles of cellular
homeostasis in ND progression. CHGN (CSGALNACT1) and
SLC15A2. CHGN-1 are the critical enzymes for CSPG production
(Saigoh et al., 2016), which is the main pericellular and
extracellular component of the regulatory environment (Hu
et al., 2018). SLC15A2 (PEPT2) plays a key role in regulating
the concentration of neuropeptides in extracellular fluid (Dheen
et al., 2007).

The top risk marker in the AD predictor was SMARCA4,
which participated in cellular biological processes by altering
the contact of DNA histone in the nucleosome (Euskirchen
et al., 2012). RALGPS2 was with the largest betweenness in AD
and as a potential pathogenic index of AD (Liu et al., 2007).
The marker with the highest absolute MCMC difference in
AD was CDCA7L, as the regulator of caspase-3, which played
a significant role in cell death progression (Yosefzon et al.,
2018). The enrichment result of AD indicated apoptosis. Our
results emphasize that cellular homeostasis disorder in patients
with AD may be due to the imbalance of intracellular calcium
homeostasis and abnormal DNA repair, resulting in excessive
cellular apoptosis and then leading to AD.

DUSP12 was the top risk marker in the PD predictor, as
a regulator of the cell cycle (Kozarova et al., 2011). MEOX2
was the top network marker in PD, leading to the loss of
neurons and a significant reduction in the microvessels associated
with plaque, which further indicated the synergistic effect of
vascular compromise and amyloid deposition on the dysfunction
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FIGURE 5 | The shortest paths for enrichment analysis of KEGG and BP. (A,B) AD enrichment results; (C,D) PD enrichment results; (E,F) PSP enrichment results;
(G,H) FTD enrichment results; (A,C,E,G) enriched KEGG pathway; (B,D,F,H) enriched BP terms; The yellow nodes represent the aging biomarkers, the blue nodes
represent the genes connecting aging biomarkers and ND biomarkers, the green nodes represent the ND biomarkers, and the genes in the red square frames
coincide with those genes in the enriched functions.

of neurons (Soto et al., 2016). EFNB2 (with the maximum
differential MCMC value) is closely related to the cellular
autophagy pathway (Zhong et al., 2019); it could also activate

the quiescent static stem cells and promote the depletion of
cells (Ottone et al., 2014). Enrichment results identified the
cytokine receptor interaction involved in many cellular processes,
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TABLE 5 | Enrichment analysis results (minimum p-value and FDR) of the four disease enrichment pathways are observed, respectively.

ND Name P-value FDR Function References

AD KEGG APOPTOSIS 5.9864e-05 0.0111 Excessive apoptosis can lead to AD Behl, 2000; Obulesu and
Lakshmi, 2014

BP ORGAN OR TISSUE
SPECIFIC IMMUNE
RESPONSE
(GO:0002251)

4.3415e-06 0.0329 (1) Complement proteins are involved in the
pathogenesis of Alzheimer’s disease by attaching to
diseased tissues or activating cells related to the
immune system
(2) Neuroinflammatory response promotes the
progression of neurodegeneration in AD

McGeer et al., 1989;
Burgaletto et al., 2020

PD KEGG CYTOKINE-CYTOKINE
RECEPTOR
INTERACTION

6.2665e-07 1.1656e-04 In PD patients, dopamine is induced by programmed
cell death (apoptosis) caused by increased levels of
cytokines.

Nagatsu et al., 2000

BP CYTOLYSIS
(GO:0019835)

3.4288e-06 0.0260 Cytochrome C in the form of peroxidase catalyzes cell
lysis, which leads to the death of neurons in PD

Everse et al., 2011

PSP KEGG JAK STAT SIGNALING
PATHWAY

1.4895 e-04 0.0277 (1) Involved in many biological processes such as cell
proliferation and apoptosis
(2) Overactivation mediates the imbalance of
intracellular homeostasis and leads to premature aging
(3) JAK/STAT plays an important role in the
development and function of innate and adaptive
immunity
(4) Abnormal activation of the JAK/STAT pathway is
obvious in neuroinflammatory diseases
(5) When the pathway is abnormally activated, it
regulates the anti-inflammatory response of microglia

Yan et al., 2018; Liu et al.,
2019; Porro et al., 2019;
Ashrafizadeh et al., 2020

BP GENETIC IMPRINTING
(GO:0071514)

4.3415e-06 0.0329 (1) DNA methylation is significantly correlated with
neurodevelopment and neurodegeneration
(2) Plays an indispensable role in adult learning,
memory, and cognition
(3) Can affect age-related cognitive function and the
occurrence and progress of ND.

Cui and Xu, 2018; Starr,
2019

FTD KEGG CYTOSOLIC DNA
SENSING PATHWAY

3.4269e-05 0.0013 (1) There is cytoplasmic DNA in macrophages, which
has a significant effect on the activation of
macrophages
(2) When cytoplasmic DNA is detected, the signal is
transmitted through CGAs penetration pathway
(3) CGAs usually mediate immune monitoring and
neuroprotection, but excessive involvement will cause
damage to the nervous system

Luo et al., 2020; Paul et al.,
2021

BP POSITIVE
REGULATION OF
EPITHELIAL CELL
DIFFERENTIATION
(GO:0030858)

4.2830e-05 0.0476 Intestinal epithelial cells are used to balance the innate
immune response, thus affecting the early stage of the
subsequent neurodegenerative cascade

Caputi and Giron, 2018

including cell growth, cell differentiation, cell apoptosis, cellular
homeostasis, and so on. Our results suggest that the disorder
of cytokines, oxidative stress, and protein deposition may lead
to disorder of homeostasis and cell death, and then trigger the
occurrence of PD.

The results indicate that BRCA1 was the top risk marker in
PSP. The high expression of BRCA1 can affect the DNA self
repair pathway and cause DNA damage (Densham et al., 2016). In
addition, the top network marker (with the highest betweenness)
was QRSL1. The mitochondrial dysfunctions induced by QRSL1
play an important role in advanced PSP (Albers and Beal,
2002). BCL2 was with the highest absolute MCMC difference in
PSP, which could prevent oxidative stress-induced DNA damage
as well as cell death (Chong et al., 2020). It is also the key
regulator of cell apoptosis (Roberts, 2020). In summary, DNA

damage, advanced neuroinflammation, and cell death induce the
occurrence of PSP.

The top FTD risk marker IKBKB plays an important role in
the NF-κB signaling pathway (Salmerón et al., 2001), which is
the main cause of FTD (Alquézar et al., 2016). Furthermore,
MICAL was with the highest absolute MCMC difference in
FTD, playing an important role in cellular redox regulation,
survival, development, and death (Ortegón Salas et al., 2020).
C3 was the top network marker in FTD. The content of C3
in FTD was significantly increased (Katzeff et al., 2020). The
enrichment results showed that the cytosolic DNA sensing
pathway can damage the nervous system. Therefore, based on the
above studies, FTD is considered the imbalance of intracellular
inflammatory factors and excessive oxidative stress, leading to an
imbalance of cellular homeostasis.
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FIGURE 6 | The common enriched KEGG pathway across ND types.

The extracellular fluid, cellular metabolisms, and
inflammatory response were considered the common
characteristics of the cellular homeostasis imbalance across
different types of ND in the context of aging acceleration.
Another study found that the extracellular fluid of microglia can
affect cellular homeostasis and cell survival (Erny et al., 2015).
Cell metabolites are also crucial for cellular homeostasis (Koo and
Guan, 2018). Cellular inflammation can trigger a cellular stress
response. When neuroinflammation occurs, extracellular fluid
is considered the key index of cellular homeostasis imbalance.
There is various evidence to suggest that many types of ND are
related to the inflammatory response (Stephenson et al., 2018).
Moreover, these risk factors interact with each other and promote
the development of NDs.

In cell death and neurodegenerative theory, the dynamic
balance of neurons is induced by advanced brain aging,
and accompanied by pathological changes (Andreone et al.,
2020), such as mitochondrial dysfunction, and oxidative
stress, which are causes that drive advanced cell apoptosis.
The abnormal apoptosis of nerve cells then leads to a
decline in normal function and eventually the occurrence of
ND. Our results also found critical mechanisms of cellular
homeostasis imbalance in different ND progressions, thus
both the common and specific cellular homeostasis imbalances
are summarized. Moreover, these results indicate the critical
mechanisms of cellular homeostasis imbalance in different ND
types, thus both the common and specific cellular homeostasis
imbalances were summarized (Figure 8). Interestingly, the
common characteristics were identified as extracellular fluid,
cell metabolism, and the inflammatory response, based on
aging acceleration. In terms of specific characteristics, abnormal
calcium homeostasis and the DNA repair pathway damage
lead to advanced cell death and then promote the occurrence
of AD. This may be due to abnormal protein deposition,
oxide accumulation, and cytokine disorder (related to advanced
oxidative stress), leading to the progression of PD. DNA
damage and mitochondrial dysfunction induce PSP. Abnormal

cellular differentiation or the overloading of cytoplasmic DNA in
macrophages triggers extra inflammatory factors in FTD.

CONCLUSION

The present study used machine learning methods to identify
the risk markers of different types of ND and the normal
aging process for each disease, respectively. The aging score
was thereby summarized. The results showed that ND sample
individuals exhibited significantly accelerated aging patterns. By
comparing the correlation of each pair of cpg sites between
ND and the normal aged group, aging acceleration differential
networks were constructed. In addition, the mechanisms of
cellular homeostasis imbalances across different ND types were
found based on enrichment analysis and sensitivity analysis.
The results showed that in the background of accelerated
aging, extracellular fluid, cell metabolism, and the inflammatory
response induce imbalances in cellular homeostasis, which
trigger ND progression. The specific mechanisms of AD,
PD, PSP, and FTD were also identified, including Ca ion
disorder, protein deposition, DNA damage, and dysfunctions in
macrophages, respectively.

MATERIALS AND METHODS

DNA Methylation Profiles and Data
Pre-processing
The DNA methylation profiles were obtained from the Gene
Expression Omnibus (GEO) database (Supplementary Table 1),
including GSE15745, GSE51923, GSE53740, GSE57361,
GSE66351, and GSE138597, along with the age index. These
datasets were from seven different platforms: GPL6104,
GPL8178, GPL8490, GPL5175, GPL13534, GPL 11154, and GPL
21145.
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TABLE 6 | The top network markers.

cpg index Gene symbol Betweenness Permutation p-value

D cg02198582 TSC2 6 0

cg07044282 ANGPTL1 6 0

cg14643978 TMC1 5 0

cg26660631 FLJ32011 5 0

cg00513467 KLHL9 4 0.002

cg00594952 RIMS3 4 0

cg01430807 NDUFB8 3 0

cg04183425 ASF1A 3 0

cg04682845 TMEM42 3 0

cg05347567 ZC3H10 3 0

AD cg10559803 RALGPS2 37 0

cg08959992 PCBP2 37 0

cg00032227 NAT9 37 0

cg12085660 C19orf37 37 0

cg13629753 GBP2 37 0

cg14191109 SLC25A16 37 0

cg21049762 TCIRG1 37 0

cg24705286 JMJD5 37 0

cg05040447 QP-C 36 0

cg01869233 C20orf75 31 0

PD cg10303487 DPYS 76 0

cg00003994 MEOX2 69 0

cg00107187 FLJ42486 69 0

cg01078434 MAS1L 65 0

cg00497084 PPEF1 52 0

cg03245641 GPHA2 43 0

cg05019661 ADK 40 0

cg02748539 SLC9A3 39 0

cg03993463 KCNJ15 39 0

cg07356189 CXorf2 39 0

PSP cg04145477 QRSL1 37 0

cg00614413 PTPRS 35 0

cg00834796 JAKMIP2 35 0

cg12347740 MGC34647 35 0

cg20252016 CDCA5 35 0

cg00093177 FLJ43826 34 0

cg05628549 PRKCDBP 33 0

cg17720231 IGSF9 33 0

cg18139769 SGCE 33 0

cg11655691 CBARA1 32 0

FTD cg04089739 C3 51 0

cg23756219 DRP2 50 0

cg15427656 ECD 45 0

cg24921089 AMPD3 45 0

cg19177941 ALDH1A3 43 0

cg02982734 MAGEL2 42 0

cg17241657 C4orf16 42 0

cg02800334 ANXA13 41 0

cg12885244 LOC51315 41 0

cg12796229 C18orf43 36 0

The steps of obtaining DNA methylation profiles were as
follows:

(1) cpg sites with missing values ≥ 30% were deleted.
(2) According to different brain regions, the k-nearest

neighbor algorithm (k = 10, with the Euclidean distance)
was used to supplement the missing values.

(3) Individuals without the age index were deleted.
(4) Patients with early onset ND (age ≤ 50) were removed.

z-score
(5) normalization was performed based on the healthy

aged individuals.

(6) The Singular Value Decomposition (SVD) method was
used to eliminate inter-sample variation based on the top
three principal components in healthy aged individuals.

(7) The z-score was then utilized to normalize all individuals
based on the mean and standard deviation of healthy
aged individuals.

The final sample included 366 healthy youth samples
(age ≤ 50, 250, in the training data and 116 in the test data), 442
normal old individuals (age > 50, 300+142), 128 AD individuals
(85+43), 36 PD individuals (25+11), 123 FTD individuals
(85+38), and 42 PSP individuals (30+12). The DNA methylation
data set included 22905 cpg sites (Supplementary Text 2).

Modeling the Aging Predictor as Well as
Each ND Predictor
After randomization as well as a random disorder, the healthy
population samples were divided into training data set and test
data set. The ratio of training data set samples to test data set
samples were close to 2:1. The ReliefF algorithm was used to
select key features, then the first 50 models were studied to
train predictors. The optimal model was selected by 10-cross
validation. To verify the accuracy of the aging predictor, the
selected model was verified in the test data set.

(1) The normal aged group (age > 50) were labeled as 1 and
the young healthy group (age ≤ 50) were labeled as 0.

(2) The 22,905 cpg sites were sorted by the ReliefF algorithm.
(3) The predictor was generated using the ensemble

learning algorithm.
The ensemble learning algorithm established 100 decision

tree models, and then put the data in the 100 classifiers for
decision-making. The classification result was optimized to get
the most answers from the 100 classifiers. For 100 classifiers, weak
weight was given to the classifiers with more wrong classification
results using the formula of the weight coefficient. The calculation
method was as follows:

Dn = Dn−1 ×
1− εn

εn
(D1 =

1
m

) (1)

εn =
∑

Dn
∣∣∣∣yi =/ hi(xi)

(2)

and the classifier weight was:

αn =
1
2

ln
(

1− εn

εn

)
(3)

where m was the number of predicted variables; Dn was the
weight of each sample;

εn was the classifier error; xn was the member of predicted
variables; yn represented the corresponding attribute value of xn
and hn was each attribute.

One hundred weak classifiers were superimposed to generate
the strongest classifier. The optimal model was selected by 10-fold
cross validation. Ultimately, the model with the highest accuracy
rate was chosen. The identified features were considered as aging
and each ND marker, respectively.
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FIGURE 7 | The network marker with the highest betweenness of ND.

To construct disease predictors, 442 healthy aged individuals,
128 AD individuals, 36 PD individuals, 123 FTD individuals, and
42 PSP individuals were randomly chosen. In the classification
process of each disease predictor, the ND sample was labeled
as 1 and the normal aged sample was labeled as 0. To avoid
the unbalance of samples in machine learning, the normal aged
group (training data) were divided into 3, 9, 7, and 3 subgroups
to compare with AD, PD, PSP, and FTD (Supplementary
Table 2), respectively.

Calculating the Aging Score
For each sample, the aging score was calculated as follows:

(1) The regression result (from young as 0 to old as 1) was used
as the aging score using the ensemble learning algorithm
from 100 regression tree models based on aging markers.

(2) The K–S test was used to test whether the aging score
came from the normal distribution. The p-value was the
least significant level to reject the original hypothesis. The
smaller the p-value, the easier it was to reject the original
hypothesis. Both the original aging score and the score
adjusted by the transformation of the chronological age
were tested, where the chronological age was transformed
using the sigmoid function:

transformated age =
1

1+ exp(−(age− 50)/50)
(4)

The transformed age was predicted based on the aging scores
using linear regression:

Adjusted_score = b∗aging_score− transformated age (5)

where b is the regression coefficient for aging score.

(3) The Kruskal–Wallis test was used to compare the
accelerated aging pattern between ND and normal aged
individuals for different age groups.

(4) In addition, the risk score of each ND predictor was also
calculated for further network analysis.

Constructing the Aging Acceleration
Differential Network
To further reveal the relationship between aging and ND, the
aging acceleration network was constructed based on the training
data set and test data set.

(1) To compare the relationship of each pair of cpg sites
in the context of the aging process, both the Pearson
correlation coefficient for each pair of cpg sites and the
partial correlation coefficient based on the aging score was
calculated based on the normal aged group and each ND
group, respectively.

(2) The Benjamin-Hochberg False Discovery Rates (FDR)
method was used to adjust the p-values of the correlation
coefficient as well as the partial correlation coefficient.

(3) The differences of correlation and partial correlation
were summarized for each ND group as well as the
normal aged group.

(4) The edge between the two cpg sites was retained if the sign
of the difference value in the ND group and the normal
aged group was opposite, as well as FDR < 0.1 in step (2).

(5) The scale-free characteristics of aging acceleration
differential networks were verified by the
power-law distribution.

(6) The shortest path between each pair of aging and
ND markers was picked out based on each aging
acceleration differential network using the Dijkstra
algorithm, respectively.

(7) The network was constructed based on the training data
and used for further analysis (i.e., identifying the shortest
path, exploring potential functions between aging and ND,
etc.), and the network constructed based on the test data
was used to validate the training network.

As a result, five types of aging differential networks were
constructed: AD, PD, PSP, FTD, and all four NDs together.

Global Sensitivity Analysis Using the
Markov Chain Monte Carlo Method
Global sensitivity analysis was used to investigate different
cellular homeostasis imbalances in the background of aging
acceleration, based on the MCMC method. Both the common
and specific characteristics across different ND types were
analyzed. To explore the common characteristics among different
ND, we made a presumption that if the marker indicated the high
risk scores in more than one ND type, then it might reveal the
common mechanisms across multiple ND types.

The MCMC method was used for sampling from certain
posterior distributions following a given probabilistic
background in a high-dimensional space. The key step in MCMC
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FIGURE 8 | The mechanism of ND induced by acceleration aging. The brown gene is a biomarker of ND. The gray gene is the top MCMC marker of aging. The red
gene is the top MCMC marker of each ND type. The pink gene is the network node with highest betweenness. The yellow arrow indicates the connection of Calcium
homeostasis. The purple arrow represents a link to DNA damage repair response. The green arrow represents the link with the mitochondrial function. The brown
arrow represents a link to oxidative stress. The black arrow indicates the connection with ubiquitin. The red arrow indicates the connection of the intracellular signal.

was to construct a Markov chain whose equilibrium distribution
equals the target probability distribution. It proceeded as follows:

(1) Construct a transition kernel of an ergodic Markov chain.
In this study, the prior distribution for each of the
parameters was the normal distribution based on both
aging and disease markers for each ND types, respectively.

(1) Simulate the chain until it reaches an equilibrium.
The Metropolis-Hastings sampling method was used to
determine whether the new sample (θ∗) is acceptable based
on the α value:

α =
P(θ

∗

| X)∗q(θn
→ θ

∗

)

P(θn
| X)∗q(θn

→ θ
∗
)

(6)

where P(θn| X) and P(θ∗| X) are the posterior probabilities of the
n-th accepted sample and the new sample, q(θn

→θ∗) represents
the transition probability from the n th accepted sample to the
new sample, and q(θ∗→θn) is the transition probability from the
new sample to the n th accepted sample.

In this article, the mean value of the aging score as well as
four types of ND scores were used to evaluate the common
characteristics across multiple types of ND. The mean value of
the aging score and each ND risk score was used to evaluate the
special characteristics of each type of ND.

1. Perform global sensitivity analysis. In this study, the K–S
statistic was used to calculate the sensitivity of each parameter.

K-S = sup|F1− F2| (7)

where F1 was the cumulative distribution of samples with a
minus value after normalization, whereas F2 was the cumulative
distribution of samples with the plus value. The interval for the
K–S statistic was set to two (based on the sign of normalized
DNA methylation profiles). The MCMC pseudocode is provided
in Supplementary Text 4, 5.

Enrichment Analysis
The biological functions of the existing genes were found by
enrichment analysis. Gene Ontology (GO) terminology and
KEGG pathway were taken from the gene set enrichment analysis
(GSEA) platform (version 7.2)1. A hypergeometric test was used
to estimate the enrichment degree of the KEGG pathway or go BP
term. The hypergeometric test formula was:

P(X ≥ x) = 1−
x−1∑
k=0

ck
M × cn−k

N−M

ck
M

(8)

where N was the gene set of the whole gene, M was the known
genes (e.g., KEGG pathway, or BP terms), N was the number

1http://software.broadinstitute.org/gsea/downloads.jsp
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of identified genes in each shortest pathway, and k was the
number of common genes between the known genes and the
identified candidate genes (in each aging-ND shortest path).
The p-values of each pathway were controlled by the Benjamin-
Hochberg (BH) method. To ensure the reliability of the results,
FDR < 0.05 was selected.
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S., et al. (2017). Tau protein in neurodegenerative diseases – a review. Rom. J.
Morphol. Embryol. 58, 1141–1150.

Porro, C., Cianciulli, A., Trotta, T., Lofrumento, D. D., and Panaro, M. A.
(2019). Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS
signaling pathway in BV-2 microglial cells. Biology (Basel) 8:51. doi: 10.3390/
biology8030051

Qiu, Z., and Ghosh, A. (2008). A calcium-dependent switch in a CREST-BRG1
complex regulates activity-dependent gene expression. Neuron 60, 775–787.
doi: 10.1016/j.neuron.2008.09.040

Radi, E., Formichi, P., Battisti, C., and Federico, A. (2014). Apoptosis and oxidative
stress in neurodegenerative diseases. J. Alzheimers Dis. 42(Suppl. 3), S125–S152.
doi: 10.3233/JAD-132738

Roberts, A. W. (2020). Therapeutic development and current uses of BCL-2
inhibition. Hematology Am. Soc. Hematol. Educ. Program. 2020, 1–9. doi: 10.
1182/hematology.2020000154

Saigoh, K., Yoshimura, S., Izumikawa, T., Miyata, S., Tabara, Y., Matsushita,
T., et al. (2016). Chondroitin sulfate β-1,4-N-acetylgalactosaminyltransferase-
1 (ChGn-1) polymorphism: association with progression of multiple sclerosis.
Neurosci. Res. 108, 55–59. doi: 10.1016/j.neures.2016.01.002

Salmerón, A., Janzen, J., Soneji, Y., Bump, N., Kamens, J., Allen, H., et al. (2001).
Direct phosphorylation of NF-kappaB1 p105 by the IkappaB kinase complex
on serine 927 is essential for signal-induced p105 proteolysis. J. Biol. Chem. 276,
22215–22222. doi: 10.1074/jbc.M101754200

Santiago, J. A., Bottero, V., and Potashkin, J. A. (2020). Transcriptomic and
network analysis identifies shared and unique pathways across dementia
spectrum disorders. Int. J. Mol. Sci. 21:2050. doi: 10.3390/ijms21062050

Santos, A., Parrini, M. C., and Camonis, J. (2016). RalGPS2 is essential for
survival and cell cycle progression of lung cancer cells independently of its
established substrates ral GTPases. PLoS One 11:e0154840. doi: 10.1371/journal.
pone.0154840

Schmidt, E. F., Shim, S. O., and Strittmatter, S. M. (2008). Release of MICAL
autoinhibition by semaphorin-plexin signaling promotes interaction with
collapsin response mediator protein. J. Neurosci. 28, 2287–2297. doi: 10.1523/
JNEUROSCI.5646-07.2008

Shen, H., Smith, D. E., Keep, R. F., and Brosius, F. C. III (2004).
Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in
developing rat brain. Mol. Pharm. 1, 248–256. doi: 10.1021/mp049944b

Soto, I., Grabowska, W. A., Onos, K. D., Graham, L. C., Jackson, H. M., Simeone,
S. N., et al. (2016). Meox2 haploinsufficiency increases neuronal cell loss in a
mouse model of Alzheimer’s disease. Neurobiol. Aging 42, 50–60. doi: 10.1016/
j.neurobiolaging.2016.02.025

Starr, J. M. (2019). Ageing and epigenetics: linking neurodevelopmental and
neurodegenerative disorders. Dev. Med. Child Neurol. 61, 1134–1138. doi: 10.
1111/dmcn.14210

Stephenson, J., Nutma, E., van der Valk, P., and Amor, S. (2018). Inflammation in
CNS neurodegenerative diseases. Immunology 154, 204–219. doi: 10.1111/imm.
12922

Stopa, E. G., Tanis, K. Q., Miller, M. C., Nikonova, E. V., Podtelezhnikov, A. A.,
Finney, E. M., et al. (2018). Comparative transcriptomics of choroid plexus
in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease:
implications for CSF homeostasis. Fluids Barriers CNS 15, 18. doi: 10.1186/
s12987-018-0102-9

Su, L., Lv, X., Xu, J., Yin, D., Zhang, H., Li, Y., et al. (2009). Neural stem cell
differentiation is mediated by integrin beta4 in vitro. Int. J. Biochem. Cell Biol.
41, 916–924. doi: 10.1016/j.biocel.2008.09.001

Tang, F., Wang, B., Li, N., Wu, Y., Jia, J., Suo, T., et al. (2011). RNF185,
a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through
interaction with BNIP1. PLoS One 6:e24367. doi: 10.1371/journal.pone.002
4367

Troullinaki, M., Alexaki, V. I., Mitroulis, I., Witt, A., Klotzsche-von Ameln, A.,
Chung, K. J., et al. (2019). Nerve growth factor regulates endothelial cell survival
and pathological retinal angiogenesis. J. Cell Mol. Med. 23, 2362–2371. doi:
10.1111/jcmm.14002

Wu, Z., Guo, H., Chow, N., Sallstrom, J., Bell, R. D., Deane, R., et al. (2005).
Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer
disease. Nat. Med. 11, 959–965. doi: 10.1038/nm1287

Xu, D., Zhao, H., Jin, M., Zhu, H., Shan, B., Geng, J., et al. (2020). Modulating
TRADD to restore cellular homeostasis and inhibit apoptosis. Nature 587,
133–138. doi: 10.1038/s41586-020-2757-z

Yan, Z., Gibson, S. A., Buckley, J. A., Qin, H., and Benveniste, E. N. (2018).
Role of the JAK/STAT signaling pathway in regulation of innate immunity
in neuroinflammatory diseases. Clin. Immunol. 189, 4–13. doi: 10.1016/j.clim.
2016.09.014

Yosefzon, Y., Soteriou, D., Feldman, A., Kostic, L., Koren, E., Brown, S., et al.
(2018). Caspase-3 regulates YAP-dependent cell proliferation and organ size.
Mol. Cell 70, 573–587.e4. doi: 10.1016/j.molcel.2018.04.019

Zhong, S., Pei, D., Shi, L., Cui, Y., and Hong, Z. (2019). Ephrin-B2 inhibits
Aβ25-35-induced apoptosis by alleviating endoplasmic reticulum stress and
promoting autophagy in HT22 cells. Neurosci. Lett. 704, 50–56. doi: 10.1016/
j.neulet.2019.03.028

Zhou, Y., Adolfs, Y., Pijnappel, W. W., Fuller, S. J., Van der Schors, R. C., Li, K. W.,
et al. (2011). MICAL-1 is a negative regulator of MST-NDR kinase signaling and
apoptosis. Mol. Cell Biol. 31, 3603–3615. doi: 10.1128/MCB.01389-10

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Shi, He, Chen, Yin, Sha and Wang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 18 May 2021 | Volume 12 | Article 657636

https://doi.org/10.1007/s11064-014-1454-4
https://doi.org/10.1042/BST20190866
https://doi.org/10.1038/ncb3045
https://doi.org/10.1073/pnas.0601515103
https://doi.org/10.1016/j.pnpbp.2010.10.016
https://doi.org/10.1016/j.tins.2020.10.008
https://doi.org/10.3390/biology8030051
https://doi.org/10.3390/biology8030051
https://doi.org/10.1016/j.neuron.2008.09.040
https://doi.org/10.3233/JAD-132738
https://doi.org/10.1182/hematology.2020000154
https://doi.org/10.1182/hematology.2020000154
https://doi.org/10.1016/j.neures.2016.01.002
https://doi.org/10.1074/jbc.M101754200
https://doi.org/10.3390/ijms21062050
https://doi.org/10.1371/journal.pone.0154840
https://doi.org/10.1371/journal.pone.0154840
https://doi.org/10.1523/JNEUROSCI.5646-07.2008
https://doi.org/10.1523/JNEUROSCI.5646-07.2008
https://doi.org/10.1021/mp049944b
https://doi.org/10.1016/j.neurobiolaging.2016.02.025
https://doi.org/10.1016/j.neurobiolaging.2016.02.025
https://doi.org/10.1111/dmcn.14210
https://doi.org/10.1111/dmcn.14210
https://doi.org/10.1111/imm.12922
https://doi.org/10.1111/imm.12922
https://doi.org/10.1186/s12987-018-0102-9
https://doi.org/10.1186/s12987-018-0102-9
https://doi.org/10.1016/j.biocel.2008.09.001
https://doi.org/10.1371/journal.pone.0024367
https://doi.org/10.1371/journal.pone.0024367
https://doi.org/10.1111/jcmm.14002
https://doi.org/10.1111/jcmm.14002
https://doi.org/10.1038/nm1287
https://doi.org/10.1038/s41586-020-2757-z
https://doi.org/10.1016/j.clim.2016.09.014
https://doi.org/10.1016/j.clim.2016.09.014
https://doi.org/10.1016/j.molcel.2018.04.019
https://doi.org/10.1016/j.neulet.2019.03.028
https://doi.org/10.1016/j.neulet.2019.03.028
https://doi.org/10.1128/MCB.01389-10
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain
	Introduction
	Results
	Modeling the Aging and Disease Predictor and Identifying Relative Risk Markers
	Comparison of Aging Scores Between ND and Normal Aged Samples
	The Aging Acceleration Differential Network Provided Insights Into the Key Biological Functions of ND
	Underlying ND Mechanisms Based on the Enrichment Analysis in the Aging Acceleration Differential Network
	The Sensitivity Analysis Further Revealed Crucial Cellular Homeostasis Imbalances Across ND Types
	The Network Marker Revealed Critical Mechanisms Between Aging and ND

	Discussion
	Conclusion
	Materials and Methods
	DNA Methylation Profiles and Data Pre-processing
	Modeling the Aging Predictor as Well as Each ND Predictor
	Calculating the Aging Score
	Constructing the Aging Acceleration Differential Network
	Global Sensitivity Analysis Using the Markov Chain Monte Carlo Method
	Enrichment Analysis

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


