
Citation: Duan, S.; Buxton, I.L.O.

Evolution of Medical Approaches

and Prominent Therapies in Breast

Cancer. Cancers 2022, 14, 2450.

https://doi.org/10.3390/

cancers14102450

Academic Editor: Sara A. Hurvitz

Received: 11 April 2022

Accepted: 9 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Evolution of Medical Approaches and Prominent Therapies in
Breast Cancer
Suzann Duan 1 and Iain L. O. Buxton 2,*

1 Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA;
sduan@email.arizona.edu

2 Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
* Correspondence: ibuxton@med.unr.edu

Simple Summary: Breast cancer is a leading cause of morbidity and mortality in women worldwide,
with mortality rates largely driven by metastatic disease. Despite concerted efforts to uncover and
target the mechanisms underlying these events, the five-year relative survival rate for metastatic
breast cancer remains an abysmal 27%. To better inform future directions for managing this disease,
it is helpful to examine the evolution of cancer research, from foundational concepts to therapies and
their pitfalls. This review aims to provide a rich overview of the history of breast cancer therapies
spanning antiquity to the modern era, concluding with the rapid advancements in immunotherapies
and our eventual progression towards personalized medicine.

Abstract: An examination of the origins of medical approaches to breast cancer marks this disease as
one of the most difficult to manage. As the early identification, diagnosis and treatment of breast
cancer evolve, we will move to a time when each patient and their cancer can be assessed to determine
unique patient-specific (personalized) approaches to therapy. Humans have attempted to manage
breast cancer for millennia. Even today, the disease claims thousands of lives each year. In light of
the increasingly sophisticated understanding of cancer diagnosis and treatment, together with our
ultimate failure to offer a cure in the most difficult cases, it is instructive to reflect on the beginnings
of our understanding.
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1. Introduction
1.1. Origins in Antiquity

Long regarded as a symbol of allurement and fertility, few aspects of the human
physique are subject to greater praise and scrutiny than the female breast. Under the
sharpened gaze of a physician-scientist, however, the breast renders a unique quandary
dating back to the 17th century B.C.E. Perplexed by incidences of a disfiguring and incurable
malady of the breast, ancient Egyptian physicians were among the first to note the organ
with medical interest. Some experts contend that these first accounts of breast cancer
were recorded in the Edwin Smith Surgical Papyrus by the infamous Egyptian physician
Imhotep himself [1]. The ancient text was acquired in 1862 by the American collector Edwin
Smith and documents the first medical rationale for treating tumors of the breast with
cauterization [2]. The Egyptian treatise remains one of four medical papyri dating back
to antiquity and demonstrates a profound grasp of surgery and medicine that rivaled the
practice of Grecian physicians born a millennium later.

Ancient Hellenistic writings further documented early cases of breast cancer and
introduced the usage of modern medical terminology to describe carcinoma and metastatic
disease [3]. The word cancer itself lends its origins to the Greek physician Hippocrates
(c. 460–370 B.C.E.), who likened a tumor and its vascular fragments to the depiction of a
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crab [4]. Hippocrates postulated that imbalances in four bodily humors preceded disease,
including tumors, and treatment during this period largely focused on dietary intervention
and the then-common practice of bloodletting. Such minimally invasive treatments were
aligned with ancient Greek tradition that frowned upon surgical intervention [5]. While his
humor-centric theory was later disapproved, Hippocrates’ early distinction between benign
and malignant disease remains a pillar of modern oncology. Strongly influenced by Hip-
pocrates’ teachings, the Greek physician and philosopher Claudius Galen (c. 129–216 C.E.)
further contributed to the carcinos nomenclature first introduced by his predecessor. The
modern derivation of the term oncology originated from Galen’s usage of the Greek word
oncos, meaning swollen, to describe all tumors [4]. Galen’s belief that cancer manifested
from an accumulation of black bile, a humor previously born from Hippocratic theory,
remained a prevailing doctrine for centuries to come [6].

Medical practice in the subsequent millennium (c. 500–1500 C.E.) was dominated
by the dissemination of religious philosophies that favored faith-based healing over the
seemingly barbaric nature of invasive surgery. During a period marked by surgical stag-
nation, cauterization and application of arsenic-containing caustic pastes were preferred
treatments for tumors of the breast [7]. The invention of the compound microscope by
Dutch spectacle-maker Zacharias Janssen in 1595 ushered a new era of medicine character-
ized by the emergence of surgery during the 18th and 19th centuries [8]. Refinement of the
single-lens microscope by Dutch scientist Antony van Leeuwenhoek (1632–1723) and his
subsequent identification of bacteria and blood cells became an inflection point in medical
history. Van Leeuwenhoek’s discoveries, combined with those made by Robert Hooke
and other prominent microscope enthusiasts of the time [9], marked a departure from the
metaphysical teachings of Hippocrates and Galen in favor of the empiricism of cellular
pathology [10]. Such revelations were critical to catalyzing the golden age of discovery and
catapulted Europe into a new era of cancer research and pathology.

1.2. A Cellular Basis for Cancer

Cases of lumpectomies, mastectomies, and axilla removal began to fill European
medical records, having been touted by prominent surgeons such as Jean Louis Petit
(1674–1750) and Lorenz Heister (1683–1758) [11]. The 19th-century surgical practices saw
growing success rates with the introduction of anesthesia (1846) and antiseptic techniques
(1867) [12,13]. Such advancements led to a definitive rejection of Hippocrates’ humor-
centric view in favor of lymphatic theory and exploration. French physician Henri Le
Dran (1685–1770) first noted that breast cancer could infiltrate the axillary lymph nodes,
resulting in a poorer prognosis [11]. Similarly, Scottish surgeon John Hunter (1728–1793)
cited the lymphatic system as a direct source of cancer, from which it could invade into
other tissues [11].

The theory that lymph and cancer were synonymous entities greatly weakened after
German pathologists Johannes Muller (1801–1858) and Rudolf Virchow (1821–1902) detailed
a cellular basis for tumors [14]. A prolific writer and scientist, Virchow released several
works including his acclaimed Die Cellularpathologie (1858), describing the cellular origins
of cancer [15]. Virchow postulated that cancer cells derived from pre-existing cells through
a process stimulated by chronic inflammation. Prominent English pathologist and surgeon
James Paget (1814–1899) further contributed to the pathological basis of cancer through his
Lectures on Tumours (1851) and Lectures on Surgical Pathology (1853) [16,17]. Paget observed
physical changes to the nipple and areola of the breast 1–2 years prior to tumor onset,
leading to the first description of Paget’s disease as detailed in his 1874 publication On
Disease of the Mammary Areola Preceding Cancer of the Mammary Gland [18]. As a result of their
collective contributions, Virchow and Paget are frequently cited as the founding fathers of
cellular pathology [19,20].

A comprehensive understanding of how cancers spread remained a lacking feature
of the early 19th century. In his 1829 publication Recherches sur le Traitement du Cancer [21],
French gynecologist Joseph Recamier (1774–1852) coined the term metastasis to describe the
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spread of cancer to blood and other tissues [22]. Karl Thiersch (1822–1895) further refined
this concept by demonstrating that metastasis arose from the spread of malignant cells
rather than from blood itself [11]. Not to be usurped by his father’s legacy, Stephen Paget
(1855–1926) made the critical observation that the distribution of malignant growths among
secondary organs was non-stochastic. Paget examined the necropsy results of 735 fatal
cases of breast cancer and found that secondary growths manifested more frequently in
the liver (241 cases or 33%), lungs (70 cases or 10%), ovaries (37 cases or 5%), and bone
(at least 14 overt cases with additional reports of bones afflicted by brittleness) [23]. Paget
concluded in his famed The Distribution of Secondary Growths in Cancer of the Breast (1889)
that metastatic tumor cells, despite being ubiquitous in the bloodstream, only grew at
compatible tissue sites. Similar to a plant’s seeds being disseminated by the wind, Paget
argued that malignant cells carried by blood preferentially survived and grew through
elected interaction with the “congenial soil” of remote organs [23]. Having stood the test of
time, Paget’s “seed and soil” hypothesis remains steadfast in shaping modern-day views
of metastasis.

2. The Reign of the Knife

Expanding knowledge on cancer’s cellular origins heralded a blossoming awareness
for more sophisticated treatment regimens. As a result, the late 19th and early 20th
centuries saw major advancements in both surgical and alternative therapies for breast
cancer [11]. In 1894, American surgeon William Halsted developed the radical mastectomy,
arguing for the precise and complete removal of the afflicted breast, axillary lymph nodes,
and pectoralis major to limit further recurrence [24–26]. Halsted’s procedure was quickly
adopted as the leading standard of care for breast cancer treatment until modifications to
preserve the chest wall and axilla were introduced several decades later [27]. Popularity
in radical mastectomies rapidly declined during the second half of the 20th century as
cancer became increasingly viewed as a systemic disease [28,29]. A shift toward less
invasive procedures coincided with the results of a large-scale prospective clinical trial
comparing radical mastectomy with alternative treatments. The study, which detailed a
postoperative follow-up of 1665 patients (2–6 years post-treatment), showed no added
benefit of radical mastectomies compared to more minimally invasive procedures [30].
Surgical treatments circumventing the breast also began to emerge during Halsted’s reign.
Sir George Thomas Beatson (1848–1933) discovered that bilateral oophorectomy resulted in
improved outcomes for patients with advanced breast cancer. Published in his 1896 On
Treatment of Inoperable Cases of Carcinoma of the Mamma, Beatson’s findings were among the
first to suggest anti-hormonal treatment for advanced breast cancer [31].

2.1. The Race toward Radiotherapy

A series of seminal discoveries made at the cusp of the 20th century birthed a new
paradigm for cancer treatment and revolutionized modern oncology. Following the dis-
covery of X-rays in 1895 by Wilhem Roentgen (1845–1923), scientists across the globe
raced to understand and harness the properties of radiation. Emerging at the forefront
were French physicists Henri Becquerel (1852–1908) and Pierre Curie (1859–1906), and
Polish-French physicist and chemist Marie Sklodowska Curie (1867–1923) [32]. The trio
was awarded the 1903 Nobel Prize in Physics for their revolutionary work on uncovering
natural radioactivity [33]. Prior to their discoveries, radiation, though previously shown
to kill diseased cells, remained poorly understood and its use in medicine lingered in its
infancy. In 1896, Victor Despeignes (1866–1937) and Emil Grubbe (1875–1960) were among
the first to use X-ray machines on cancer patients (diagnosed with cancer of the stomach
and breast, respectively), but were met with limited success [34,35]. As knowledge on
radioactive elements and methods for their isolation grew, radiotherapy quickly emerged
as a powerful tool to combat malignancy.

Pierre and Marie Curie’s discovery of radium and polonium, which earned the latter
the 1911 Nobel Prize in Chemistry, further contributed to the use of radiotherapy to combat
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cancer. In contrast to the X-ray, which could only be administered over a broad surface,
radium could be delivered locally, topically (via radium salts), and interstitially (via radium
emanating rods) [36]. Thus, radium therapy prevailed as a popular treatment for solid
and cutaneous malignancies [37–41], while the X-ray remained a pragmatic approach for
treating lymph-infiltrating cancers [42,43]. Marie Curie’s remarkable achievements also had
far-reaching implications in cancer imaging and diagnostics; her isolation and application
of radioisotopes enabled future studies on the use of radiolabeling for intravital imaging
of solid tumors [44]. Knowledge on the detrimental health effects of radium exposure
surfaced during the latter half of the 20th century, leading to its succinct demise as a
monolith of radiotherapy. Subsequent precautions and modifications in X-ray and radiation
technologies have ensured their continued use throughout modern history. Nevertheless,
plateauing remission rates and safety concerns associated with radiotherapy signaled the
emergence of a second pillar of oncology: chemotherapy.

2.2. The Second Coming: Chemotherapy

The conception of chemotherapy can be ascribed to the prominent chemist Paul Ehrlich
(1854–1915), whose research aimed to discover a “therapia sterilisans magna” (great sterilizing
therapy) for the treatment of bacterial disease [45]. With its modern birthplace entrenched
amidst the carnage of World War I, chemotherapy arose as a conscious harnessing of
chemical warfare and its cytotoxic properties. Faced with fears of a Second World War and
deployment of the mustard gas that proved so deadly during World War I, the U.S. Office
of Scientific Research and Development commissioned censored studies on chemical agents
for allied use. Yale pharmacologists Louis Goodman and Alfred Gilman were assigned the
task of elucidating the toxic and therapeutic properties of nitrogen mustard [46]. Using
animal models challenged with lymphoid tumors, Goodman and Gilman observed marked
regressions in tumor size that prompted further investigation into the chemical’s cytotoxic
effects [47–49]. In collaboration with their colleague and thoracic surgeon Gustaf Lindskog,
the trio admitted into their study a male patient with advanced radiation-resistant lym-
phosarcoma. The event marked the first documented case of intravenous chemotherapy
treatment, and was maintained in secrecy until its publication nearly four years later in
1946 [50]. While the patient ultimately succumbed to treatment, the trial imparted two key
observations on nitrogen mustard. First, delivery of the compound induced immediate
tumor regression and short-term remission. Second, the absence of a durable response was
exacerbated by chemoresistance and severe bone marrow suppression, important features
that continue to plague modern-day chemotherapies [51].

Goodman and Gilman’s early work on nitrogen mustard fed the frenzy to screen the
compound, its derivatives, and alternative chemical agents in animal models of cancer as
well as in patients. The latter half of the 20th century saw the emergence of several new
chemotherapies whose development was largely supported by WWII-related initiatives [52].
Nutritional studies led by Sidney Farber (1903–1973) supported the development of folic
acid antagonists that produced unprecedented but temporary remission rates in children
with acute lymphoblastic leukemia [53]. Among the tested compounds, a 4-amino deriva-
tive of folate called aminopterin was used for the development of a less toxic analogue
now known as methotrexate (formerly amethopterin). In subsequent studies pioneered by
Jane Wright (1919–2013), methotrexate was shown to induce durable remission in adults
with incurable neoplastic disease. Notably, of ten patients with metastatic breast carcinoma,
three responded favorably to treatment, and 54 of the 93 enrolled patients showed some
measure of improvement [54]. Wright’s study was the first to both test and prove a positive
association between methotrexate and remission in solid malignancies, thus paving a path
forward for its continued use in modern oncology.

Several other chemotherapies seemingly materialized overnight and were rapidly
approved by the U.S. Food and Drug Administration. Among these, the purine analogue
6-mercaptopurine synthesized by Gertrude Elion (1918–1999) was used against childhood
leukemia and earned Elion the 1988 Nobel Prize [55,56]. This was followed by the devel-
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opment and application of cyclophosphamide, a mustard-based derivative and alkylating
agent found to disrupt DNA synthesis [57]. Charles Heidelberger (1920–1983) later de-
veloped the first major chemotherapy targeted to non-hematological malignancies. The
fluorine pyrimidine 5-fluorouracil demonstrated tumor-inhibitory effects across a wide
spectrum of solid tumors and was quickly adopted for use in patients [58]. However, it
was not until after the 1960s that chemotherapy became accepted as a beneficial treatment
for metastatic malignant disease. Chinese-American oncologist Min Chiu Li (1919–1980)
forged a new paradigm for chemotherapy after he noticed declining levels of circulating
human chorionic gonadotropin (hCG) in patients receiving methotrexate. Li hypothesized
that some tumors actively secrete hCG, and chemotherapy-induced tumor shrinkage could
be monitored through urine hCG levels. Li tested his controversial theory on three patients
with metastatic choriocarcinoma by using hCG to determine the frequency, dosage, and
duration of methotrexate treatment [59]. In opposition to the standard of care, Li insisted
that patients with high residual hCG levels should continue to receive chemotherapy,
despite demonstrating complete remission in metastatic disease. Although the National
Cancer Institute criticized Li’s actions as unprecedented and unnecessary, Li was later
exonerated by reports of relapse in patients whose chemotherapy was suspended [52]. Li’s
intuitive use of hCG as the first circulating tumor biomarker was followed by yet another
original and impactful discovery; combination treatment with multiple chemotherapies
was effective in cases of metastatic malignancy [60].

To combat waning support throughout the next decade, medical oncologists curated
new applications for chemotherapy. Combination chemotherapy emerged in the late 1960s
as a viable treatment for advanced breast cancer [61], with a cyclical delivery regimen
consisting of cyclophosphamide, methotrexate, and fluorouracil (CMF) inducing response
rates exceeding 50% [62]. The advent of adjuvant chemotherapy arrived with the pub-
lication of several prominent studies spearheaded by Gianni Bonadonna and Bernard
Fisher. Bonadonna and Fisher, respectively, investigated the administration of CMF and L-
phenylalanine mustard to breast cancer patients following mastectomy and demonstrated
overwhelmingly favorable results [63,64]. Breast-conserving surgeries rose to popularity as
an increasing number of studies showed improved remission rates associated with lumpec-
tomy followed by adjuvant combination chemotherapy [65,66]. Following the success
of adjuvant chemotherapy, medical oncologists expanded their practice to include other
modalities of chemotherapy delivery. Among these, neoadjuvant chemotherapy increased
remission rates by inducing tumor shrinkage prior to surgical resection [67,68].

Spurred by renewed public interest on the “war on cancer” and the passage of the
National Cancer Act in 1971, new classes of chemotherapies were rapidly introduced and
approved for patient use. The application of improved screening models, including the
use of human xenografts in nude mice, was critical to shaping their success [69,70]. During
this period, a class of DNA-intercalating agents isolated from Streptomyces bacteria gained
international fame for exerting broad anti-tumor effects across several cancers [71,72].
Known as the anthracyclines, the family includes the widely used doxorubicin and is still
administered in up to 30% of breast cancer cases [73]. Moreover, neoadjuvant delivery
of anthracyclines in certain cases of aggressive breast cancer has been shown to improve
patient response [74].

In addition to the anthracyclines, the taxanes encompass another class of anti-tumor
compounds isolated from natural sources that demonstrated clinical success. Originally
derived from Taxus brevifolia (the Pacific yew tree), paclitaxel and docetaxel were shown to
induce cell cycle arrest by stabilizing tubulin and preventing mitotic division [75–77]. The
taxanes were heralded for their novel mechanism of action and ability to induce impressive
remission rates throughout the 1990s. Presently, the use of paclitaxel and docetaxel remains
a popular choice by medical oncologists for the treatment of breast cancer and other
solid malignancies [78].
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2.3. Targeted Therapies Take Hold

Support for a hormonal basis for cancer burgeoned half a century after Beatson’s origi-
nal studies on applying oophorectomy to treat breast cancer. Critical work led by Charles
Huggins (1901–1997) at the University of Chicago demonstrated regression of metastatic
prostate carcinoma following removal of the testes [79,80]. Huggins conclusively showed
that cancer cells were dependent on endogenous hormone production, and removal of
such chemical signals was effective in halting advanced metastatic disease [81,82]. Hug-
gins was later awarded the 1966 Nobel Prize for his work in fortifying the endocrine
axis in cancer etiology, which birthed a new paradigm for cancer treatment. A new
wave of endocrine therapies began with additive delivery of steroid compounds, such
as estrogen [83], androgen [84], and corticosteroids [85] to patients with metastatic breast
cancer, and evolved with growing knowledge on the mechanisms that regulate estro-
gen signaling [86].

In 1966, an accidental discovery made by scientists at the England-based ICI Pharma-
ceuticals led to the development of the first anti-estrogen compound that later became the
gold standard in breast cancer treatment. In an effort to screen potential anti-fertility com-
pounds for contraceptive use, a team led by Arthur Wapole identified a potent anti-estrogen
previously synthesized and supplied by organic chemist Dora Richardson. Compound
ICI 46,474 later proved ineffective as a contraceptive, but at Wapole’s insistence, was car-
ried into preclinical and phase II clinical trials for palliative treatment of advanced breast
cancer [87]. Further testing of the compound in the U.S. revealed that it acted as a selective
estrogen receptor modulator (SERM) and blocked 3[H]-estradiol-mediated ER activation.
In a novel finding, ICI 46,474, now reinvented under the name tamoxifen, was shown to
block both the growth of rat mammary carcinoma, as well as chemical induction of carcino-
genesis [88]. These results prompted application of the hormonal therapy in clinical trials,
where it was shown to induce remission in women with early and node-positive breast
cancer [89–91]. Currently, long-term delivery of tamoxifen (i.e., a five- or ten-year course)
is commonly used to treat pre- and postmenopausal women with ER+ breast cancer [92].

Subsequent years saw the development of other SERMs, in addition to a new class
of estrogen-modulating compounds for the treatment of advanced breast carcinoma. The
discovery that testosterone could be converted to estrogen through a process called aroma-
tization laid the foundation for further research into aromatase inhibitors [93–96]. Aminog-
lutithemide was among the first of such compounds to be adopted as a second-line therapy
for breast cancer; however, the drug failed to match the efficacy and safety profile of tamox-
ifen. Despite achieving up to 90% aromatase inhibition, aminoglutithemide and subsequent
second-generation aromatase inhibitors struggled to demonstrate robust suppression of
estrogen levels [97]. To address these concerns, a third-generation of more potent aro-
matase inhibitors were developed. Compounds within this group, including anastrozole,
letrozole and exemestane, demonstrated up to 98% aromatase inhibition and estrogen
suppression [98–101]. Subsequent phase III clinical trials comparing these compounds to
tamoxifen revealed superior remission rates in both early and metastatic breast cancers,
thus securing their spot amidst modern-era therapies [102–104].

The introduction of DNA and genome sequencing technologies during the late 1960s
led to the identification of numerous genetic targets for therapeutic intervention. Identi-
fication of the first oncogene in 1970 bolstered the search for additional oncogenes and
proto-oncogenes regulating growth factor signaling and carcinogenesis [105,106]. These
events spurred the development of targeted therapies to suppress signaling at the tran-
scriptional and translational levels. The expansion of hybridoma technologies in the
early 1970s enabled production of monoclonal antibodies that targeted various mitogens,
receptor tyrosine kinases, and transcription factors frequently over-activated in human
cancers [107–109]. When delivered alongside chemotherapy, targeted antibodies improved
remission rates beyond those experienced with chemotherapy alone [110]. Such antibodies
were most frequently generated against cellular transmembrane receptors functioning
as signal transducer elements, and thus were commonly referred to as signal transducer
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inhibitors (STIs). Among the most popular STIs are trastuzumab and pertuzumab, re-
combinant antibodies targeted to Human Epidermal Growth Factor Receptor 2 (HER2 or
ErBB2) [111–113]. Trastuzumab, commercially known as Herceptin, and its close relative
pertuzumab may be administered alongside chemotherapies (typically with paclitaxel or
anastrozole) to patients with HER2-amplified breast cancer [114,115]. Other prominent
STIs that emerged in breast cancer treatment include everolimus, a second-generation
inhibitor of the Mammalian Target of Rapamycin (mTOR) [116,117], and inhibitors of
Cyclin-Dependent Kinases (CDKs) [118]. These compounds suppress mitogenic signaling
pathways often required for supporting solid tumor growth.

2.4. Immunotherapy: A Third Pillar Is Erected

The 2018 Nobel Prize in Physiology and Medicine was awarded to James Allison
and Tasuko Honjo, two immunologists whose original discoveries significantly impacted
modern cancer treatment. Thus, it might seem startling that a glimpse into their nascent
careers would reveal pervasive skepticism surrounding the notion of immune modulation
to combat cancer [119]. Indeed, the journey toward understanding the role of immunity in
cancer and asserting a path for therapeutic targeting has long been a tumultuous one. The
first immune-based therapy to treat neoplastic disease was introduced by surgeon William
Coley (1862–1936) during the late 19th century. After researching cases where concomitant
infection in cancer patients improved their conditions, Coley conceived the idea that
infection-induced immunity could effectively eliminate cancer cells. After cases of fatal
trial and error, Coley discovered that injecting patients with a mixture of heat-inactivated
Gram-positive and Gram-negative bacteria induced complete disease remission [120,121].
Then, viewed as haphazard, Coley’s actions were largely condemned by the medical
establishment and the use of “Coley’s fluid” was laid to rest in subsequent decades [122].

The establishment of the New York Cancer Research Institute in 1953 by Coley’s
daughter, Helen Coley Nauts, supported the re-emergence of harnessing the immune
system to treat cancer [123]. These efforts were bolstered by a series of seminal discoveries
that elucidated the function of T cells [124], dendritic cells [125], and natural killer (NK)
cells [126]. Subsequent years saw the introduction of immune-based therapies to treat
hematological malignancies, including bone marrow transplantation and recombinant
interferon delivery [127]. Further evidence to support T cell-mediated tumor immunity
came in 1998 and revealed an interferon gamma (IFNγ)-dependent mechanism for inducing
tumor immune surveillance [128]. Subsequent work showed that cooperative signaling
between lymphocytes (T, NK, and B) and IFNγ mediates tumor cell pruning; however,
gradual selection pressure exerted through this process leads to the enrichment of tumor
cells demonstrating reduced immunogenicity, thus supporting a direct route toward tumor
immune evasion [129].

The immuno-oncology field slowly garnered interest after multiple independent
studies identified the Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) as a negative regulator
of T cell activation and proliferation [130,131]. In the same year, James Allison’s team at UC
Berkeley demonstrated that CTLA-4 activation was one of two opposing signals (the other
being CD28 stimulation) integrated by T cells that determine an anti-tumor response [132].
Allison’s group provided definitive evidence to support CTLA-4′s role as a critical immune
checkpoint that could be inhibited to enhance anti-tumor immunity [133]. Despite igniting
interest into this regulatory mechanism, it was not until a decade later that the first CTLA-4
inhibitor, ipilimumab, entered phase III clinical trials. Ipilimumab was shown to improve
survival rates for patients with stage IV melanoma, thus fast tracking its approval by the
FDA for treatment of melanoma in 2011 [134].

In the years leading up to the discovery of CTLA-4 as a critical immune regulator, an
independent team at Kyoto University had taken similar steps to characterize a related
and then-unknown immune checkpoint. Led by Tasuko Honjo, the group was credited
for isolating Programmed Cell Death 1 (PD-1) on murine T cells and was among the first
groups to identify its involvement in autoimmune function and negative regulation of T
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cell activation [135,136]. Subsequent studies identified an antigen that directly engaged
with PD-1 to elicit the previously observed immuno-inhibitory effects [137–139]. Initially
called B7-H1, the antigen was later renamed Programmed Cell Death Ligand 1 (PD-L1)
and revealed to be highly expressed on stromal cells adjacent to T cells within the tumor
microenvironment [140]. Further research identified a PD-L1 isoform (PD-L2) and ad-
ditional binding partners, including those that were previously shown to engage with
CTLA-4 [141–143]. Accumulating evidence to support disruption of PD-1/PD-L1 as a can-
cer therapeutic led to the development of multiple PD-1/PD-L1 checkpoint inhibitors [144].
The most prominent of these include pembrolizumab, the first anti-PD-1 therapy to re-
ceive FDA approval, in addition to nivolumab (anti-PD-1), atezolizumab (anti-PD-L1),
and avelumab (anti-PD-L1) [145]. Clinical trials comparing anti-PD-1/PD-L1 therapies to
ipilimumab showed improved survival outcomes and reduced toxicity associated with
the former [146].

Currently, over a dozen immunotherapies have been approved for use in various
cancers, including melanoma, hematological malignancies, and cancer of the lung, liver,
bladder, colon, stomach, head and neck. Additional FDA approval has enabled their use as
second- and third-line therapies in cases of multiple chemoresistance or as indicated by
positive biomarker expression. While immunotherapies have achieved remarkable success
in several of these cancers, overall response to these therapies in breast cancer remains
modest [147]. The lackluster objective response rates observed in breast cancer can in
part be attributed to fundamental differences in the immunobiology of the disease and
the presence of opposing signatures between subtypes [148–150]. Key features dictating
immune checkpoint sensitivity in melanoma and other immuno-responsive cancers (i.e.,
high neo-epitope load and somatic mutational burden) are relatively less abundant and
predictable in many breast tumors [151–154]. Furthermore, PD-L1 expression in metastatic
breast cancer is comparatively low, with up to 80% of biopsies showing less than 1% of
PD-L1-expressing tumor cells [155]. Thus, therapies intended to activate or target these
features remain limited in their efficacy.

Nevertheless, multiple modalities of immune-based therapies for breast cancer are
currently being evaluated in multi-phase clinical trials, including adoptive T cell therapy,
preventative vaccines, and immune checkpoint blockade. In addition to those already tested
in clinical trials, other emerging therapies involve the use of Chimeric Antigen Receptor-
engineered T (CAR-T) cells, oncolytic viruses, and exogenous interferon delivery [147].
Stemming from the immuno-stimulatory properties of “Coley’s fluid”, these immunothera-
pies aim to launch an anti-tumor response by averting T cell exhaustion, bolstering tumor
infiltration, and priming T cell antigen presentation. As evidence of the shifting paradigm,
results from the IMPassion130 clinical trial (NCT02425891) suggest promise in combination
delivery of anti-PD-L1 inhibitors with existing chemotherapies, particularly in patients
with triple negative breast cancer (TNBC). In a historic move, the FDA granted accelerated
approval for the use of atezolizumab in combination with chemotherapy in patients with
non-operable metastatic TNBC [156].

3. Progression toward Personalized Medicine and Closing Remarks

The 21st century has seen modern cancer therapies flourish, from the novel appli-
cation of targeted and combination chemotherapies to the development and delivery of
near-curative immunotherapies. Invigorating still are the vast technologies and therapies
positioned on the horizon. Where just decades prior scientists struggled to elucidate the
basic structure of DNA, modern-day researchers have unraveled complexities in its or-
ganization, regulation, and processing that were previously deemed inconceivable. The
convergence of epigenetics, diet, lifestyle, environmental exposures, and inherited factors is
now widely recognized as predicting risk and survival outcomes. The clinical manifestation
of this knowledge has birthed a new paradigm of personalized medicine that prioritizes
the individual patient when deciphering available treatment options.
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No longer shrouded in complete mystery, tumor cells, and their respective host
environments are now being illustrated in vivid detail. Real-time assessment of circulating
tumor cells, DNA and various biomarkers weaves an epic tale of tumor evolution and
overall disease progression. This information guides modern-day treatment and enables the
precise deployment of second- and third-line therapies to combat drug-induced resistance.
Further, a plethora of biomarker panels are currently in development and being tested
for application in early cancer diagnosis and risk assessment. Emergent nanotechnologies
have directly facilitated these events and include novel detection-based systems designed
to push the limits of bioassay sensitivity.

4. Conclusions

Despite achieving improved remission rates over the past two decades, cancer re-
searchers and clinicians continue to face significant hurdles in their efforts to develop pre-
ventative and curative therapies. Among these challenges, the development of therapeutic
resistance continues to perplex researchers and plague patient response. Nevertheless,
emergent knowledge on tumor–stromal interactions and their spatiotemporal evolution in
the face of therapy will undoubtedly inform novel treatment approaches to avert adaptive
resistance. Further, as researchers’ toolkits continue to expand and intersperse across
disciplines, the need to assimilate and interpret a growing sea of data remains critical. Thus,
an imminent priority lies in curating new platforms and pipelines for data acquisition,
management, and integration into the clinic.
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