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A B S T R A C T

Background: Sepsis is a heterogenous syndrome and individualized management strategy is the key to suc-
cessful treatment. Genome wide expression profiling has been utilized for identifying subclasses of sepsis,
but the clinical utility of these subclasses was limited because of the classification instability, and the lack of
a robust class prediction model with extensive external validation. The study aimed to develop a parsimoni-
ous class model for the prediction of class membership and validate the model for its prognostic and predic-
tive capability in external datasets.
Methods: The Gene Expression Omnibus (GEO) and ArrayExpress databases were searched from inception to
April 2020. Datasets containing whole blood gene expression profiling in adult sepsis patients were included.
Autoencoder was used to extract representative features for k-means clustering. Genetic algorithms (GA)
were employed to derive a parsimonious 5-gene class prediction model. The class model was then applied to
external datasets (n = 780) to evaluate its prognostic and predictive performance.
Findings: A total of 12 datasets involving 1613 patients were included. Two classes were identified in the
discovery cohort (n = 685). Class 1 was characterized by immunosuppression with higher mortality than class
2 (21.8% [70/321] vs. 12.1% [44/364]; p < 0.01 for Chi-square test). A 5-gene class model (C14orf159, AKNA,
PILRA, STOM and USP4) was developed with GA. In external validation cohorts, the 5-gene class model (AUC:
0.707; 95% CI: 0.664 � 0.750) performed better in predicting mortality than sepsis response signature (SRS)
endotypes (AUC: 0.610; 95% CI: 0.521 � 0.700), and performed equivalently to the APACHE II score (AUC:
0.681; 95% CI: 0.595 � 0.767). In the dataset E-MTAB-7581, the use of hydrocortisone was associated with
increased risk of mortality (OR: 3.15 [1.13, 8.82]; p = 0.029) in class 2. The effect was not statistically signifi-
cant in class 1 (OR: 1.88 [0.70, 5.09]; p = 0.211).
Interpretation: Our study identified two classes of sepsis that showed different mortality rates and responses
to hydrocortisone therapy. Class 1 was characterized by immunosuppression with higher mortality rate than
class 2. We further developed a 5-gene class model to predict class membership.
Funding: The study was funded by the National Natural Science Foundation of China (Grant No. 81,901,929).
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Sepsis is a heterogenous syndrome consistingof many disease
entities, all with individual pathophysiology and variations in host
response [1�3]. Undifferentiated sepsis syndromes, therefore, lack
genuine homogeneity and are the wrong point of entry for studies.
That is why many large sepsis trials fail to identify a statistically and
clinically significant results [4�7]. Thus, it is unwise to use the “one-
size-fit-all” model in the management of critically ill patients with
sepsis. Many efforts have been made to realize the individualized
treatment strategy for sepsis [8, 9]. Our study group previously
reported that critically ill patients with sepsis could be categorized
into subphenotypes and these subphenotypes responded differently
to the amount of fluid infusion (Z. [10]). Others also identified several
subphenotypes by utilizing large clinical database and showed that
these subphenotypes can have important implications for clinical
treatment and trial design [3,11,12]. However, these studies input
routinely collected clinical data as features for clustering analysis.
While these features are readily available even in resource limited
conditions, they may fail to capture important pathophysiological
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Research in Context

Evidence before this study

Sepsis is a heterogenous syndrome consisting of many disease
entities, all with individual pathophysiology and variations in
host response. Thus, individualized management strategy is the
key to successful treatment. Genome wide expression profiling
has been utilized for identifying subclasses of sepsis, but the
clinical utility of these subclasses was limited because of the
classification instability, and the lack of a robust class prediction
model with extensive external validation.

Added value of this study

The study identified two endotypes of sepsis by using deep
learning-based approach. The novel classification system iden-
tified two subtypes of sepsis that showed different responses to
hydrocortisone therapy.

Implications of all the available evidence

The classification system developed in our study showed good
prognostic and predictive values for the management of sepsis
in clinical practice. Different subtypes of sepsis should be
treated with different therapies. The functional enrichment
analysis also revealed differing biological mechanisms underly-
ing these subtypes.
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alterations and cannot reveal underlying mechanisms. Pathophysio-
logically, thousands of genes are differentially expressed in response
to infectious stimulus [13], and some of these genes can provide
important prognostic and predictive information. We use the terms
“prognostic” and “predictive” to refer to different things in the
study. A prognostic biomarker/scores/model informs about a likely
outcome (eg, disease recurrence, disease progression, death) inde-
pendent of treatment received. A biomarker is predictive if the
treatment effect (experimental compared with control) is different
for biomarker-positive patients compared with biomarker-negative
patients [14, 15].

Many studies have reported the genome-wide expression profil-
ing of sepsis [13,16,17]. The differential gene expression has been
well characterized between sepsis versus non-sepsis inflammatory
responses [18], survivors versus non-survivors [19, 20], and sepsis of
viral versus bacterial causes [21]. Two endotypes of sepsis were iden-
tified [20,22,23]. However, these studies developed prognostic mod-
els with complex machine learning algorithms involving tens of
thousands of genes, making the models difficult to use. Furthermore,
clustering methods were applied in a high-dimensional space, mak-
ing the distances between points become relatively uniform, and the
efficiency of clustering analysis could be reduced. Finally, studies
combined children and adult population for pooled analysis [24]. We
felt that more meaningful subclasses could be identified by focusing
on more homogenous populations.

The availability of a large number of transcriptomic profiling data-
bases provides unprecedented opportunity to use sophisticated deep
learning algorithms for discovering novel prognostic and predictive
biomarkers. These datasets also allow extensive external validations.
Our study systematically reviewed available transcriptomic profiling
datasets. We first used autoencoder to extract important representa-
tive features of the transcriptomic profile and then performed k-means
clustering analysis on this lower dimension space. We further devel-
oped a parsimonious prediction model to predict the class member-
ship obtained by clustering (class model). The class model was then
used to predict class membership in external datasets. The predictive
and prognostic values of the class membership were evaluated in
several independent datasets. Interactions between class membership
and use of hydrocortisone versus placebo, and vasopressin versus nor-
epinephrine were explored. We hypothesized that the newly inferred
classes of sepsis can have good prognostic and predictive performance.
We have tried to overcome the limitation of overfitting by firstly per-
forming dimension reduction with autoencoders; and then GA was
employed for feature selection. Finally, we validated the model perfor-
mance in external datasets (non-overlapping).

Methods

Datasets

The Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)
databases were searched from inception to April 2020 to identify rele-
vant transcriptomic profiling datasets. Datasets containing whole
blood transcriptomic profiling in Homo sapiens were potentially eligi-
ble. Datasets were excluded if they included pediatric patients, were in
vitro experiments, not assaying whole blood samples, not measuring
mRNA, focusing on diseases caused by special pathogen such as hepa-
titis, human immunodeficiency virus (HIV) and hepatitis B virus (HBV).
Furthermore, datasets did not report mortality outcome, or did not
contain complete expression dataset were also excluded. Additional
datasets could be added by manual search of the reference of included
studies. The workflow of the study is shown in Fig. 1.

Ethics

The study utilized publicly available datasets with preexisting
ethics approval from original studies. Informed consent was obtained
for each participant. The study was conducted in accordance to the
Helsinki declaration.

Datasets normalization and datasets combination

The raw datasets were downloaded and normalized according to
the original studies. Probes with missing gene symbols were
excluded. The maximum expression intensity was used when there
were multiple probe sets mapping to the same gene symbol. The
batch effects were adjusted for by using an empirical Bayes frame-
work [25,26]. Common genes across all included datasets were
retained for model discovery and validation.

Autoencoder

An autoencoder is a type of deep learning neural network used to
learn efficient data representation in an unsupervised manner. The
aim of an autoencoder is to learn a representation (encoding) for a
set of data, typically for dimensionality reduction, by training the net-
work to ignore signal “noise”. The benefit of autoencoder against the
commonly used principal component analysis is that it can perform
non-linear dimensionality reduction [27]. Technical details of the
training of autoencoder are shown in supplemental digital content
(SDC Table S1).

As recommended by other studies [28,29], we reduced the origi-
nal high-dimensional space into a space comprising 100 compressed
representative features. These features were then filtered (p < 0.05)
with univariate analysis against mortality outcome, aiming to ensure
that the class membership obtained in subsequent k-mean clustering
could have enough prognostic power.

k-means clustering analysis

We obtained 50 representative features after univariate filtering
on mortality. These features were then used for k-means clustering
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Fig. 1. Workflow of the study.
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analysis. The number of clusters was determined by Elbow Method
and Average Silhouette Method [30]. The number of classes was fur-
ther confirmed by a Monte Carlo based approach for testing statistical
significance [31]. The clustering analysis was performed in the dis-
covery dataset (GSE65682).
Functional analysis of the two classes

Gene differential expression (GDE) was analysed between the two
classes (class 1-class 2). Over- or under-expressed genes were ana-
lysed using the limma package and visualized with volcano plot [32].
Differentially expressed genes were subject to gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis. Both gene set enrichment analysis (GSEA) and overrepre-
sentation analysis were performed [33].
Genetic algorithms to develop a parsimonious model to predict class
membership

A parsimonious class prediction model was developed for the
ease of clinical utility [34]. The discovery cohort (GSE65682) was
split into training and testing subsets by the ratio of 4:1. The train-
ing set (n = 548) was used to develop a model for the prediction of
class membership derived from above mentioned k-means cluster-
ing, and the prediction model was then validated in the testing set.
Variable selection was performed by using the genetic algorithms
(GA) [35]. We run 1000 evolution cycles. A maximum of 200 gener-
ations were allowed in each one cycle of evolution. The model per-
formance was evaluated by the area under receiver operating
characteristic curve (AUC) with 3-fold cross validation. Since each
evolution would result in one best fit chromosome, we obtained
1000 chromosomes after GA iteration. A parsimonious representa-
tive model was then developed by forward selection procedure to
predict the class membership (5-gene class model). Details of the
GA are shown in the SDC. The class model was tested in the testing
set (n = 137).

Validation in multiple external datasets

The 5-gene class model was used to predict class membership in
external datasets. The prognostic value of the 5-gene class model was
compared against the sepsis response signature (SRS), Acute Physiol-
ogy And Chronic Health Evaluation II (APACHE II) and age. The SRS
endotype was previously developed using hierarchical clustering by
using features with the most variable probes [23]. The presence of
SRS1 identifies individuals with an immunosuppressed phenotype
that included features of endotoxin tolerance, T-cell exhaustion, and
downregulation of human leucocyte antigen (HLA) class II. SRS1 was
associated with higher 14-day mortality than was SRS2. APACHE II is a
severity-of-disease classification system with a final score of 0 to 71,
with higher scores corresponding to more severe disease and a higher
risk of death. It is determined within 24 hrs of admission to an inten-
sive care unit (ICU). Because the 5-gene class model was trained on
class membership (e.g. using class membership as the response vari-
able), it was not surprising that the 5-gene class model had moderate
prognostic performance. In order to explore whether the 5 genes car-
ried prognostic information, we trained a 5-gene mortality model (e.g.
using mortality as the response variable) in the dataset GSE65682 and
then validated in the non-overlapping external datasets.

Statistics

Predictive value of the 5-gene class model was explored by using
logistic regression models. The interactions between predicted class
membership and interventions (hydrocortisone versus control; vaso-
pressin versus norepinephrine) were included in the models. To test
whether the predictive value was solely explained by severity of
illness, we also explored whether there was significant interaction
between APACHE II and interventions.
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Role of the funding source

The funding sources had no role in the study design, data collec-
tion, data analysis, interpretation, or writing of the manuscript.

Results

Datasets

The initial search identified 280 datasets from GEO and ArrayEx-
press databases. A total of 228 datasets were screened after removal
of 52 duplicated datasets. A total of 187 datasets were excluded due
to a variety of exclusion criteria including pediatric patients, in vitro
experiment, diseases other than sepsis. The remaining 41 datasets
were screened by downloading the gene expression and clinical
information datasets. After exclusion of 29 datasets due to incom-
plete expression or outcome data, we finally included 12 datasets for
both qualitative and quantitative analysis (Fig. 2). General features of
included datasets are shown in Table 1.

k-means clustering analysis

A total of 6392 gene expression values were obtained after merg-
ing the 12 datasets. Autoencoder was performed on these features in
the dataset GSE65682, resulting in 100 representative features
(Figure S1). These autoencoder features were then further reduced to
50 features by univariate filtering on mortality (e.g. variables with
p < 0.05 for t-test were used for further analysis).
Fig. 2. Flowchart of d
Clustering analysis was performed using the 50 representative
features obtained via autoencoder and univariate filtering. The opti-
mal number of clusters was determined to be two by measuring the
total within sum of square and average silhouette width (Fig. 3a and
b). The two classes can be well separated in the first two major
dimensions (Fig. 3c).

There were 321 patients in class 1 (46.9%) and 364 patients in
class 2 (53.1%). Patients in Class 1 showed significantly higher mortal-
ity rate in the dataset GSE65682 (21.8% [70/321] vs. 12.1% [44/364];
p < 0.01 for Chi-square test).

Functional analysis of the two classes

The top 5 most differentially expressed genes ordered by adjusted
p value were C14orf159, STOM, MMP8, RPS6KA5 and AKNA (Table
S2). Differentially expressed genes used for functional enrichment
analysis were calculated as class 1 versus (minus) class 2. Class 1, as
compared with class 2, was characterized by immunosuppression
that many important pathways were suppressed such as Th1 and
Th2 cell differentiation, T cell receptor signaling pathway, DNA-bind-
ing transcription factor activity and cell migration (Fig. 4). More visu-
alizations with upset plot (Figure S2), ridge plot (Figure S3) and
network plot (Figure S4) are provided in the SDC.

Genetic algorithm to develop a 5-gene class model

The dataset GSE65682 was split into training and testing subsets
by 4:1 ratio. Genetic algorithm was applied to the training set to
ataset selection.



Table 1
Dataset included in the study.

Accession Study population/Inclusion criteria Cohort description Timing of gene expression
profiling

Country Timing of
mortality

Mortality/Total
sample

E-MTAB-7581 Clinical evidence of infection, evidence of a systemic response to infection, and the
onset of shock within the previous 72 h (as defined by a systolic blood pressure of
<90 mm Hg despite adequate fluid replacement or a need for vasopressors for at
least 1 hour) and hypoperfusion or organ dysfunction attributable to sepsis.

Post-hoc of an RCT comparing
Vasopressin vs. Norepinephrine
for septic shock

At enrollment United Kingdom 28-day 48/176

E-MTAB-5274 Sepsis defined by ACCP/SCCM guidelines. FP was diagnosed at laparotomy as inflam-
mation of the peritoneal membrane secondary to large bowel perforation and fecal
contamination.

Sepsis due to FP First day of ICU stay UK 28-day 14/108

E-MTAB-5273 CAP was defined as a febrile illness associated with a cough, sputum production,
breathlessness, leukocytosis and radiological features of pneumonia, acquired in the
community or within two days of ICU admission.

Sepsis due to CAP, GAinS First day of ICU stay UK 28-day 22/118

E-MTAB-4451 The diagnosis of sepsis was based on the International Consensus Criteria with all
patients reported here showing some degree of organ dysfunction during ICU
admission.

Sepsis due to CAP On ICU admission UK 28-day 57/114

GSE65682 ICU patients with suspected CAP for which the attending physician started antibiotic
therapy. CAP diagnosis was based on International Sepsis Forum Consensus Confer-
ence definition.

Sepsis due to CAP and HAP +
non-infectious control

On ICU admission Netherlands
and UK

28-day 114/802

GSE54514 Sepsis was defined as documented bacterial infection in addition to the presence of at
least two of the following four clinical criteria: (a) fever or hypothermia (tempera-
ture > 38 °C or < 36 °C); (b) tachycardia (>90 beats/min); (c) tachypnea
(>20 breaths/min or PaCO2 < 32 mmHg) or the need for mechanical ventilation; (d)
an altered white blood cell count of more than 12,000 cells/mL, less than 4000 cells/
mL, or the presence of more than 10% band forms

Sepsis In 24 h of ICU admission Australia ICU stay 9/53

GSE63042 Adults at the ED with known or suspected acute infection and presence of at least two
SIRS criteria

Sepsis in CAPSOD study Day of enrollment upon
presentation to the ED

United States 28-day 28/106

GSE95233 Septic shock as defined by a systolic blood pressure of <90 mm Hg despite adequate
fluid replacement or a need for vasopressors for at least 1 hour.

Septic shock Day 1 of ICU admission France 28-day 34/102

GSE106878 Septic shock as defined by a systolic blood pressure of <90 mm Hg despite adequate
fluid replacement or a need for vasopressors for at least 1 hour.

Hydrocortisone application in
septic shock

Before hydrocortisone
application

International 28-day 13/47

GSE33119 Septic shock activated protein C in septic
shock

12 hrs after diagnosis France NA 10/20

GSE48080 Patients older than 18 years were enrolled within 48 hrs of the first occurrence of
organ dysfunction indicative of severe sepsis or septic shock.

severe sepsis or septic shock Day 0 Brazil NA 5/10

GSE33118 Septic shock with a systolic blood pressure of <90 mm Hg despite adequate fluid
replacement or a need for vasopressors for at least 1 hour.

NA Day 0 France NA 10/20

FP: fecal peritonitis; GAinS: UK Genomic Advances in Sepsis; SIRS: systematic inflammatory response syndrome; CAP: community acquired pneumonia.
Note: Some datasets contained duplicated samples which would be deleted in subsequent analyses.
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Fig. 3. k-means clustering analysis. a) total within sum of square (WSS) plotted against the number of clusters. Note that the WSS dropped rapidly from 1 to 2 classes. The dropping
rate flattened after k = 2. b) Average silhouette width plotted against the number of clusters, which indicated that the 2-cluster was the best choice. c) Distribution of subjects in the
two most important dimensions. d) Hierarchical clustering also indicated that the two-class model was appropriate. P values for statistical significance were obtained by Monte
Carlo based approach. The approach was implemented as a sequential testing procedure guaranteeing control of the family-wise error rate (FWER).
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develop a neural network model (5-gene class model). The most fre-
quently selected genes were C14orf159, AKNA, PILRA and STOM
(Figure S5). The convergence of the GA was determined by the analy-
sis of the frequency of each gene appeared in the chromosome popu-
lation. As chromosomes selected by the frequency of each gene in the
population will change until no new solutions are found. Therefore,
monitoring the stability of gene ranks (based on their frequency)
offers the possibility to visualize model convergence. Our results
showed that the rank of the top 4 genes (C14orf159, AKNA, PILRA
and STOM) were stabilized after 100 evolution cycles, and the fifth
ranked gene (USP4) was stabilized after approximately 600 evolution
cycles. A representative model comprising 5 genes (C14orf159,
AKNA, PILRA, STOM and USP4) was developed by forward selection
procedure (Figure S6). When the model was evaluated in the testing
set (n = 137), the AUC of the 5-gene class model in predicting class
membership was 0.960 (95% CI: 0.932 � 0.988).

Biological functions of the 5 genes

C14orf159 is also known as DGLUCY and is a protein-coding gene.
The protein is D-glutamate cyclase that converts D-glutamate to 5-
oxo-D-proline [36]. There is also evidence that loss of C14orf159 is
associated with the progression of gastric cancer [37]. The product of
AKNA may act as a transcription factor that specifically activates the
expression of the CD40 receptor and its ligand CD40L/CD154, two
cell surface molecules on lymphocytes that are critical for antigen-
dependent-B-cell development [38]. PILRA is thought to act as a cel-
lular signaling inhibitory receptor by recruiting cytoplasmic phos-
phatases like PTPN6/SHP-1 and PTPN11/SHP-2 via their SH2 domains
that block signal transduction through dephosphorylation of signal-
ing molecules [39]. STOM regulates ion channel activity and trans-
membrane ion transport and regulates ASIC2 and ASIC3 channel
activity [40]. USP4 (Ubiquitin Specific Peptidase 4) is able to remove
conjugated ubiquitin from target proteins [41, 42].
External validation in independent datasets

This section validated our 5-gene class model in the external data-
sets (n = 780). There were 53 duplicated samples in the datasets E-
MTAB-4451 and E-MTAB-5273, which were excluded from analysis.
The AUC of the 5-gene class model to predict mortality outcome was
0.707 (95% CI: 0.664 � 0.750), which was better than the age (AUC:
0.572; 95% CI: 0.524 � 0.619). Because the 5-gene class model was
not trained on mortality outcome, it is not surprising that the prog-
nostic performance was less than satisfactory. We further trained a
model (5-gene mortality model) on mortality with the same 5 genes
to examine whether the 5 genes carried prognostic information. The
mortality model was trained on the training set (n = 548). When the
5-gene mortality model was tested in the non-overlapping external
datasets (n = 780), the AUC was 0.889 (95% CI: 0.861 - 0.917; Fig. 5a).
The 5-gene class model performed better than the APACH II score in



Fig. 4. Functional enrichment analysis for differentially expressed genes between class 1 and 2. a) volcano plot showing differentially expressed genes. Genes with greater than 1
log2 fold changes are annotated. The difference was calculated as Class1- Class2. For example, MMP8 was over expressed in class 1 versus class 2; whereas MME was under-
expressed in class 1 versus class 2. b) GO biological pathway enrichment (overrepresentation analysis). c) KEGG gene set enrichment analysis showed that nitrogen metabolism
pathway was activated and T cell receptor signaling pathway was suppressed in class 1 versus class 2. d) GO gene set enrichment analysis.
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the dataset E-MTAB-7581 (Fig. 5b), the SRS reported in previous stud-
ies (Fig. 5c and d).

Predictive value of the 5-gene class model

The dataset E-MTAB-7581 provided information on the use of
vasopressin versus norepinephrine, and hydrocortisone versus pla-
cebo. The dataset was collected from the VANISH randomized trial
with patients randomized to receive either norepinephrine or vaso-
pressin followed by hydrocortisone or placebo [43]. The randomiza-
tion procedure guarantees the comparability between treated and
control groups. We tested whether there was interaction between
class membership and the treatment in logistic regression models, by
using the binary mortality outcome as the response variable. The
result showed that there was no modification effect of both SRS and
our Class membership for vasopressin (Table 2). In class 2, the use of
hydrocortisone was associated with increased risk of mortality (OR:
3.15 (1.13, 8.82); p = 0.029 for likelihood ratio test). The use of hydro-
cortisone was not associated with changed mortality (OR: 1.88 (0.70,
5.09); p = 0.211 for likelihood ratio test) in class 1. SRS overlapped
with our classification system in cross tabulation (Table 3).

Discussion

Our study analyzed 12 datasets with whole blood gene expression
profiling. We firstly identified two classes of sepsis: class 1 was char-
acterized by immunosuppression and higher mortality rate than class
2. We then developed a 5-gene class model to predict the class mem-
bership using genetic algorithms and validated this parsimonious
model in external datasets. Our 5-gene class model showed higher
prognostic performance than age, APACHE II and SRS. More impor-
tantly, the class membership designated by the 5-gene class model
had modification effect on hydrocortisone treatment. Our study sup-
ports the notion that sepsis is a heterogenous syndrome. Two sub-
classes with distinct inflammatory responses were identified in the
discovery cohort, which is consistent with previous studies [22, 23].
Furthermore, our study used autoencoder to better capture the gene
expression features of different endotypes of sepsis. By filtering on



Fig. 5. External validation of the 5-gene class model. Because not all datasets reported the SRS classification, the performance of SRS was reported in individual datasets.
a) the evaluation of the performance of the 5-gene class model in Datasets excluding GSE65682 (n = 780). b) Validation of the 5-gene mortality model in E-MTAB-7581 (n = 175),

which showed significantly better discrimination than the APACHE II score. c) The performance of SRS in E-MTAB-4451 (n = 106). d) The performance of SRS in E-MTAB-5273
(n = 118).
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mortality before k-means clustering, our model had better prognostic
performance than the SRS classification system. Finally, we developed
a parsimonious 5-gene class model for the ease of clinical utility. Our
preliminary post-hoc analysis showed there was modification effect
for the use of hydrocortisone, which was one step closer to the individ-
ualized treatment.

Endotypes of sepsis have been widely studied in the literature.
The UK Genomic Advances in Sepsis (GAinS) study included criti-
cally ill patients with sepsis due to community-acquired pneumo-
nia (CAP) and identified two subclasses SRS1 and SRS2 [23], which
showed distinct inflammatory responses to infectious stimuli. Sim-
ilar SRS endotypes were replicated in sepsis caused by fecal perito-
nitis [22]. This SRS group membership could not modify the effect
of vasopressin versus norepinephrine [43]. Consistent with the
GAinS study, our results showed that although the newly devel-
oped classification system could not modify the effect of vasopres-
sin versus norepinephrine, class 2 showed significantly higher
mortality risk when assigned to the hydrocortisone group. Class 2
is relatively immunocompetent with lower mortality rate as com-
pared to class 1. The use of hydrocortisone suppresses the immune
system [44, 45], whereby transforming them to the class 1 group
of immunosuppression, and the mortality rate might be increased.
This can explain the modification effect of the newly developed
classification system for the application of hydrocortisone. Another
study utilized cohort from the Molecular Diagnosis and Risk Strati-
fication of Sepsis (MARS) project to perform consensus clustering.
They identified four subclasses of sepsis [46]. However, that study
only reported that these subclasses had different survival out-
comes, further clinical utility of the MARS classification was not
investigated. The difference in our study is that we used represen-
tative features derived from autoencoder, rather than the original
gene expression value, to perform clustering analysis. We showed
that the prognostic and predictive value of our 5-gene class model
had potential clinical utility.

As compared with previous studies to identify endotypes of sep-
sis, our study developed a classification system for sepsis with vari-
ous causes, under the hypothesis that different infection sites can
cause systematic inflammatory response, leading to sepsis-related
organ dysfunction. The final common pathway is similar across dif-
ferent clinical phenotypes. Thus, we employed the largest sepsis
dataset from the MARS consortium (also contained a validation
cohort from the GAinS study), containing sepsis from various causes.
We proposed that a prediction model developed in this way can have
more generalizability to sepsis with various causes. This is supported



Table 2
Comparisons of the Predictive value of 5-gene class model versus dis-
ease severity and SRS.

Models OR (95% CI) p

Use of hydrocortisone in Class 2 3.15 [1.13, 8.82] 0.029
Use of hydrocortisone in Class 1 1.88 [0.70, 5.09] 0.211
Use of hydrocortisone in SRS 2 3.76 [1.41, 10.04] 0.008
Use of hydrocortisone in SRS 1 1.25 [0.47, 3.36] 0.658
Use of hydrocortisone by APACHE II 0.94 [0.86, 1.03] 0.210
Use of vasopressin in SRS 2 0.69 [0.18, 2.62] 0.583
Use of vasopressin in SRS 1 1.50 [0.40, 3.89] 0.403
Use of vasopressin in Class 2 2.52 [0.62, 10.74] 0.201
Use of vasopressin in Class 1 1.51 [0.54, 4.24] 0.433
Use of vasopressin by APACHE II 0.96 [0.87, 1.06] 0.427

The logistic regression models integrating interactions between treat-
ment allocation and SRS, Class or APACHE II were built in the dataset
E-MTAB-7581. A total of 6 logistic regression models were built by
using mortality as the response variable and respective predictors and
interactions were: hydrocortisone £ Class, hydrocortisone £ SRS,
hydrocortisone £ APACHE II, vasopressin £ Class, vasopressin £ SRS,
vasopressin £ APACHE II. A significant (p < 0.05) interaction indicated
that the classification method was of predictive value because it identi-
fies a subgroup of patients respond differently to treatment.
SRS classification was used as previously reported.
The 5-gene class model developed and validated in GSE65682 was
used to classify patients into Class 1 and Class 2.
Abbreviations: SRS: sepsis response signature; APACHE II: Acute Physi-
ology and Chronic Health Evaluation.
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by the finding that the 5-gene class model performed better than SRS
in predicting mortality in external independent cohorts.

Our study has several limitations. First, many publicly available sep-
sis datasets did not report mortality outcome; these studies primarily
focused on the differential diagnosis of sepsis versus non-infectious sys-
tematic inflammatory response syndrome. The exclusion of these data-
sets may introduce potential selection bias. Second, many genes were
excluded during the merging of datasets, resulting in the loss of some
important genes. However, because we needed to validate our model in
independent datasets, we must ensure that the genes used for model
construction were also available in the testing datasets. Third, the data-
set used for investigation of the interaction between class membership
and treatment was of limited sample size. Large sample size can
increase the statistical power to detect clinically meaningful modifica-
tion effect by subclasses. Forth, there is a possibility that the sepsis is
not categorized by the 5 genes. Rather, the categorization might reflect
the progression (stage) of the disease. In other words, the results may
not be discoveries of different kinds of sepsis but may be observation of
different stages of the disease. In the case of mortality prediction, it
might mean that the treatment was too late. Finally, the sepsis patients
included in our analysis were not guaranteed to be free of other dis-
eases. However, since the original datasets did not provide full details of
other diseases/comorbidities, the impact of other diseases on the predic-
tive performance of our model cannot be fully addressed. The study is
also limited by the relative sparsity of individual instances versus the
potential feature space. We have tried to do the primary testing on the
more parsimonious set, but the problem of overfitting is still present.
Table 3
Cross tabulation of subclass
membership for Class and SRS
classification system.

Class 1 Class 2

SRS 1 64 29
SRS 2 34 49

Abbreviations: SRS: sepsis
response signature.
In conclusion, our study identified two classes of sepsis that
showed different mortality outcome and response to hydrocorti-
sone therapy. Class 1 was characterized by immunosuppression
with higher mortality rate; whereas class 2 was relatively immuno-
competent. We further developed a 5-gene class model to predict
class membership.
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