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Abstract
Leptin is produced primarily by adipocytes and functions in a
feedback loop regulating body weight. Leptin deficiency results in
severe obesity and a variety of endocrine abnormalities in animals
and humans. Several studies indicated that leptin plays an important
role in immune responses. It exerts protective anti-inflammatory
effects in models of acute inflammation and during activation of
innate immune responses. In contrast, leptin stimulates T lympho-
cyte responses, thus having rather a proinflammatory role in
experimental models of autoimmune diseases. Clinical studies have
so far yielded inconsistent results, suggesting a rather complex role
for leptin in immune-mediated inflammatory conditions in humans.

Introduction
Leptin is a 16 kDa peptide hormone with the tertiary structure
of a cytokine that is highly conserved among mammalian
species [1]. It is structurally and functionally related to the IL-
6 cytokine family. Leptin functions as a signal in a feedback
loop regulating food intake and body weight [2]. The leptin
receptor Ob-R (or Lepr), is a member of the class I cytokine
receptor family, which includes gp-130, the common signal
transducing receptor for the IL-6 related family of cytokines
[3]. Alternative splicing of the leptin receptor gene produces
at least six transcripts designated Ob-Ra through Ob-Rf
(Figure 1) [4]. Two of the isoforms have been described in
only one species each, Ob-Rd in mice and Ob-Rf in rats [5].
In humans, only expression of Ob-Ra, Ob-Rb and Ob-Rc
mRNA has been reported [5]. Ob-Re is a secreted isoform of
the receptor, lacking transmembrane and cytoplasmic
domains. In humans, transcripts corresponding to Ob-Re
have not been described, but soluble leptin receptor protein
can be generated by proteolytic cleavage of the Ob-Rb and
Ob-Ra isoforms [6].

Ob-Rb is abundantly expressed in the hypothalamus, an area
in the brain involved in the control of food intake. The
anorexigenic effect of leptin is dependent on binding to the

long form of its receptor, Ob-Rb [7]. Both leptin-deficient
(ob/ob) and leptin receptor (Ob-Rb)-deficient (db/db) mice
display a severe hereditary obesity phenotype, characterized
by increased food intake and body weight, associated with
decreased energy expenditure [8]. Administration of leptin
reverses the obese phenotype in ob/ob mice, but not in
db/db mice, and decreases food intake in normal mice. Lack
of response to leptin is also well described in obese Zucker
rats, which bear a mutation (fa) in the leptin receptor gene
[9]. Mutations in leptin and Ob-R genes associated with
obesity have also been described in humans [10,11]. Leptin
is produced predominantly by adipocytes, although low levels
have been detected in the hypothalamus, pituitary [12],
stomach [13], skeletal muscle [14], mammary epithelia [15],
chondrocytes [16] and a variety of other tissues [17]. Plasma
leptin concentrations correlate with the amount of fat tissue
and, thus, obese individuals produce higher levels of leptin
than do lean ones [18]. The correlation between serum leptin
concentrations and the percentage of body fat suggests that
most obese people are insensitive to endogenously produced
leptin [18].

In addition to the regulation of appetite and energy
expenditure, leptin exhibits a variety of other effects [19-22].
Consistently, ob/ob and db/db mice are not only severely
obese, but display also several hormonal imbalances, abnor-
malities in thermoregulation, increased bone mass, infertility,
and evidence of immune and hematopoietic defects [17,19,
20,22-25]. In humans, congenital leptin deficiency is
associated with hypogonadotropic hypogonadism, morbid
obesity and frequent deaths due to infections [11,26].

The role of leptin in immunity and
inflammation
In addition to the central role of lipid storage, adipose tissue
has major endocrine functions and releases a variety of pro-
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inflammatory and anti-inflammatory factors, including adipo-
cytokines, such as leptin, adiponectin and resistin, as well as
cytokines and chemokines. Altered levels of different adipo-
cytokines have been observed in a variety of inflammatory
conditions (reviewed in [27]) and, in particular, the role of
leptin in immune responses and inflammation has lately
become increasingly evident. Altered leptin production during
infection and inflammation strongly suggests that leptin is a
part of the cytokine cascade, which orchestrates the innate
immune response and host defense mechanisms [28,29].
Like other members of the IL-6 family, leptin was shown to
activate the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) pathway (Figure 2) [3]. Leptin also
induces the expression of the suppressor-of-cytokine signaling
(SOCS)-3, which inhibits STAT signaling [30]. In addition,
stimulation of leptin receptor triggers activation of phos-
phatidylinositol 3-kinase (PI3K) and mitogen-activated protein
kinase (MAPK) [31]. Activation of these pathways is also
characteristic for the signaling of other cytokines belonging to
the IL-6 family [32]. Physiological levels of leptin can modulate
the response to an inflammatory challenge by altering
production of proinflammatory and anti-inflammatory cytokines
and may also affect cytokine signaling by a variety of
mechanisms, including induction of SOCS-3 [33].

In vitro studies revealed that Ob-Rb is expressed in T and B
cells, macrophages and hematopoietic cells and direct
effects of leptin on those cells have been demonstrated [34-
41]. Moreover, activated T cells themselves have been shown

to express and secrete leptin, which sustained their
proliferation in an autocrine loop [42]. However, a recent
study indicated that T cell-derived leptin does not play a
major role in the regulation of the inflammatory process in
experimental models of hepatitis and colitis in mice,
emphasizing the critical role of adipose tissue-derived leptin
in immune modulation [43].

Regulation of leptin production during
inflammatory conditions
Some studies report increased levels of leptin during infectious
and inflammatory processes. Leptin expression in adipose
tissue and circulating leptin levels are increased after
administration of inflammatory stimuli such as lipopolysaccha-
ride (LPS) or turpentine to hamsters [44,45]. Endotoxin has
also been shown to stimulate the release of leptin into
peripheral blood in human and nonhuman primates [46]. LPS,
as well as proinflammatory mediators such as tumor necrosis
factor (TNF)-α and IL-1, increase the expression of leptin
mRNA in adipose tissue [45] and a statistically significant
elevation of plasma leptin concentrations has been demon-
strated in adult septic patients compared with healthy
subjects [47-50]. However, other studies have not found
increased leptin levels in inflammatory conditions, including
acute experimental endotoxemia in humans, HIV infection and
newborn sepsis [51-53]. Moreover, in tuberculosis patients,
plasma leptin concentrations were significantly reduced [54].
Similarly, decreased circulating levels of leptin were observed
in mice following intravenous injection of Staphylococcus

Figure 1

Structure and isoforms of mouse leptin receptor. Ob-Rb contains the
longest intracellular domain, which is crucial for leptin signaling. Ob-
Ra, Ob-Rc and Ob-Rd contain only short cytoplasmic domains. Ob-Re
is a secreted isoform of the leptin receptor, lacking transmembrane
and cytoplasmic parts. Cytokine receptor homology module (CRH)2 is
the main binding site for leptin on the Ob-R. The Ig-like and the FN-III
domains are critically involved in Ob-R activation. The role of CRH1
remains to be determined [111,112]. FNIII, fibronectin type III domain;
Ig-like, immunoglobulin-like fold.

Figure 2

Mechanisms of leptin signaling. Upon leptin binding to Ob-Rb, the
Janus kinase/signal transducer and activator of transcription
(JAK/STAT), mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)
pathways are activated. Akt, protein kinase B; Grb-2, growth receptor-
bound-2; IRS, insulin receptor substrate; MEK, mitogen-activated
protein kinase kinase; PIAS 3, protein inhibitor of activated STAT3; Raf,
MEK-kinase; Ras, G-protein; SHP-2, SH2-domain containing protein
tyrosine phosphatase; SOCS3, suppressor of cytokine signalling-3.
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aureus [55]. Increased leptin production is thus observed in
inflammatory conditions in many, although not all, animal
models and diseases examined.

Effects of leptin on innate immune responses
The increased sensitivity of leptin-deficient rodents to pro-
inflammatory, monocyte/macrophage-activating stimuli, sug-
gests a role for leptin in the regulation of inflammatory
responses (Table 1) [56]. Ob/ob, as well as fasted wild-type
mice, which display decreased leptin levels, are significantly
more susceptible to LPS-induced lethality, and this

phenotype was partly reversed by the administration of leptin
[57,58]. Similarly, ob/ob, db/db and fasted wild-type mice are
more likely to succumb after the administration of TNF-α. This
phenotype was again reversed by leptin treatment in ob/ob
and wild-type, but not in db/db, mice [58,59]. The protective
role of leptin against TNF-α-induced toxicity was further
supported by the deleterious effect of neutralizing anti-leptin
antibodies administered to TNF-α-injected mice [59]. Ob-R-
deficient fa/fa rats also displayed enhanced sensitivity to
LPS-induced hepatotoxicity [60]. Dysregulation in cytokine
induction after LPS stimulation may contribute to the
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Table 1

Effects of leptin or leptin receptor deficiency and leptin administration in experimental models of innate immune response in
rodents 

Ob-R-deficient 
Model WT mice/rats ob/ob mice mice/rats Leptin administration References

LPS-induced lethality Fasted mice: ↑ Susceptibility Fasted WT mice: effect [57]
↑ Susceptibility ↓ IL-10 reversed
↑ TNF-α ↓ IL-1Ra ob/ob mice: effect partly 
↓ Interferon-γ reversed

LPS ip ↓ TNF-α fa/fa rats: [64]
↓ IL-6 ↓ TNF-α

↓ IL-6

LPS-induced ↑ Sensitivity fa/fa rats: [60]
hepatotoxicity ↓ Hepatic CD4+NK ↑ Sensitivity

T cells ↑ IFN-γ mRNA
↑ Serum IL-18 ↓ IL-12 mRNA
↑ Hepatic IL-18 and 
IL-12
↓ Hepatic IL-10
↑ IFN-γ

TNF-α-induced Fasted mice: ↑ Susceptibility ↑ Susceptibility Fasted WT mice: effect not [58]
lethality ↑ Susceptibility reversed

Leptin antagonist: Leptin antagonist: effect partly 
↑ Susceptibility reversed

ob/ob mice: effect reversed

Pancreatitis WT rats: protective effects [62]
↑ IL-4
↓ TNF-α and IL-1β

Escherichia coli iv ↓ Clearance [64]
infusion Smaller fraction of 

E. coli killed

Klebsiella ↑ Leptin after ↑ Mortality [65]
pneumoniae infection ↑ Bacterial counts
intratracheal in lungs and blood
challenge

Candida albicans fa/fa rats: [66]
iv infusion ↑ Yeast/g organ

Staphylococcus ↓ Leptin production WT mice: [55]
aureus-induced ↓ Severity
arthritis ↓ IL-6

Zymosan-induced ↑ Joint inflammation ↑ Joint inflammation [90]
arthritis ↑ SAA and IL-6 ↑ SAA and IL-6

Up and down arrows indicate increase and decrease, respectively. ip, intraperitoneal; iv, intravenous; LPS, lipopolysaccharide; ob/ob, leptin
deficient mice; Ob-R, leptin receptor; SAA, serum amyloid A; TNF, tumor necrosis factor; WT, wild-type.



increased susceptibility to LPS toxicity, as demonstrated in a
number of experimental studies in transgenic and gene knock-
out animals. Lower levels of anti-inflammatory cytokines, such
as IL-10, and IL-1Ra, and higher levels of the proinflammatory
cytokines IL-12, IL-18 and interferon (IFN)-γ have been
detected after LPS injection in ob/ob mice [57,60,61].
Consistently, protective effects of leptin demonstrated in a
model of experimental pancreatitis were attributed to increased
IL-4 production and to reduced serum TNF-α or IL-1β
[62,63]. Anti-inflammatory effects of leptin were further
demonstrated by reduced TNF-α and IL-6 responses in
endotoxin treated primates [33]. Taken together, these
different observations are mostly consistent with the notion
that leptin deficiency constitutes a proinflammatory state.

Effects of leptin on phagocytes
The role of leptin in the regulation of important macrophage
functions is further emphasized by alterations in the
phenotype of those cells during chronic leptin deficiency.
Impaired phagocytic functions resulting in reduced bacterial
elimination have been described for macrophages from leptin-
deficient mice during infections with Escherichia coli,
Candida albicans and Klebsiella pneumoniae (Table 1)
[64-66]. In addition to modulating phagocytosis and cytokine
production by macrophages, leptin has recently been shown
to regulate other aspects of the innate immune response.
Leptin was indeed reported to enhance oxidative species
production by stimulated polymorphonuclear leukocytes
(PMNs) [36], whereas another study provides evidence that
leptin inhibits neutrophil migration in response to classical
chemoattractants [67]. These findings, as well as an
increased rate of death due to infections among leptin-
deficient individuals [26], suggest that leptin contributes to
host defense against microorganisms. Several recent studies
demonstrated that PMNs express the short (Ob-Ra), but not
the long isoform Ob-Rb. Whether Ob-Ra can deliver
intracellular signals or not remains a matter of debate [67-
69]. For instance, the effect of leptin on CD11b expression in
neutrophils is likely to be indirect and mediated by the
induction of TNF-α production by monocytes [69]. In
contrast, it was reported that leptin directly activates neutro-
phils and delays spontaneous apoptosis of these cells by
inhibiting proapoptotic events proximal to mitochondria, the
effect being mediated via PI3K and p38 MAPK signaling
pathways [68]. In general, leptin thus appears to increase the
activity of phagocytes and may thereby contribute to efficient
host defense.

Effects of leptin on adaptive immune
responses
Leptin was reported to stimulate the proliferation of T cells in
vitro, to promote T helper (Th)1 responses and to protect
T cells from corticosteroid-induced apoptosis [38,39]. Ob/ob
mice display a higher level of thymocyte apoptosis and
reduced thymic cellularity compared to control mice and
these effects were reversed by peripheral administration of

recombinant leptin [38]. In the same study, wild-type mice
treated with leptin during a 48 hour fast were completely
protected against the profound thymic atrophy observed in
non-treated fasted mice [38]. Ob/ob mice also exhibit defec-
tive cellular and humoral immune responses and are protec-
ted from immune-mediated inflammation in various models,
such as experimental colitis, T-cell mediated hepatitis, glomeru-
lonephritis and experimental autoimmune encephalomyelitis
(EAE), an experimental model for multiple sclerosis (Table 2)
[19,28,70-74]. Leptin replacement in ob/ob mice converted
resistance to EAE into susceptibility and this effect was
accompanied by a switch from a Th2 to a Th1 pattern of
cytokine release and consequent reversal of Ig subclass
production [72]. Likewise, administration of leptin to EAE
susceptible mice after disease onset increased the severity of
the symptoms and leptin administration accelerated type 1
diabetes development in NOD mice [73,75]. Conversely,
blockade of leptin with anti-leptin antibodies or with a soluble
mouse leptin receptor chimera, either before or after onset of
EAE, ameliorated the clinical symptoms, inhibited antigen-
specific T cell proliferation, and switched cytokine secretion
toward a Th2 and T regulatory profile [76].

Starvation and malnutrition are associated with reduced
leptin levels and alterations of the immune response, which
can be reversed by leptin administration [39,40,77]. Acute
starvation, which is able to prevent increases in serum leptin,
delayed EAE onset and attenuated clinical symptoms [42].
Furthermore, in humans, leptin deficiency was associated
with reduced numbers of circulating CD4+ T cells and
impaired T cell proliferation and cytokine release, all of which
were reversed by recombinant human leptin administration
[78]. In vitro, leptin dose-dependently enhances proliferation
and activation of human circulating T lymphocytes when they
are costimulated by phytohemagglutinin or concanavalin A
and modulates CD4(+) T lymphocyte activation toward a Th1
phenotype by stimulating the synthesis of IL-2 and IFN-γ [79].
Finally, human dendritic cells express leptin receptors and
leptin down-regulates their IL-10 production and drives naive
T cell polarization towards a Th1 phenotype [80]. In view of
these different observations, leptin thus seems to display a
stimulatory effect on adaptive immune responses and to favor
Th1 polarization.

Taken together, the experimental data collected suggest that
chronic leptin deficiency differently affects adaptive versus
innate immune responses: adaptive immune-mediated res-
ponses are attenuated whereas, in experimental models
involving the innate immune response, leptin deficiency causes
inadequate control of the inflammatory response. As already
mentioned, leptin and its receptor share some homologies
with the IL-6 and IL-6 receptor families, respectively [3].
Interestingly, many similarities can be observed also in the
pattern of leptin and IL-6 effects during adaptive or innate
immune response-mediated inflammation. IL-6 exerts
deleterious actions in many models of chronic immune
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mediated inflammation, whereas it has been shown to
possess protective effects in some models of innate immune
response-mediated inflammation [81].

Direct and indirect effects of leptin during
immune response and inflammation
As mentioned above, leptin exerts various direct effects on
cells involved in the immune and inflammatory responses.
However, the connection between leptin, immune responses
and inflammation in vivo is complex. Indeed, leptin/leptin
receptor deficiency causes multiple neuroendocrine and
metabolic modifications in ob/ob or db/db mice, including the
activation of the hypothalamic-pituitary-adrenal axis and
hypercorticosteronemia, hyperglycemia and diabetes, which
may also indirectly affect the immune system. Similarly, leptin
deficiency after starvation in rodents is linked to increased
glucocorticoid levels, and decreased levels of thyroid and
growth hormone, each of which may mediate immune
suppression [77,82-84]. Numerous neuroendocrine defects
have been also reported in human leptin-deficient patients.
These include decreased symphathetic tone, elevated thyroid

stimulating hormone, parathyroid hormone, cortisol and
adrenocorticotropic hormone (ACTH) levels, abnormal
growth hormone stimulation, thyroid function, and others [26],
which could indirectly contribute to the development of
immune system dysfunction in those patients. All these data
underscore the potential importance of both direct and
indirect effects of leptin or leptin deficiency during immune
response and inflammation. In addition, leptin deficiency
results in morbid obesity and multiple immunomodulatory
functions have been recently described for adipose tissue
[85-87]. In fact, obesity itself may represent a low grade
systemic inflammatory state and could thus favor different
immune and inflammatory responses.

To investigate the relative contributions of direct and indirect
effects of leptin on the immune system in a normal environ-
ment, we recently generated bone marrow chimeras by trans-
plantation of leptin receptor-deficient db/db bone marrow
cells into wild-type recipients (GP and CG, manuscript
submitted). The size and cellularity of the thymus, as well as
cellular and humoral immune responses were normal when
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Table 2

Effects of leptin or leptin receptor deficiency and leptin administration in disease models mediated by adaptive immune responses
in mice

Models WT mice ob/ob mice db/db mice Leptin injection References

Non-obese diabetic ↑ Serum leptin ↑ Destruction of insulin- [75]
mice before onset of producing β-cells

diabetes ↑ IFN-γ production by 
T lymphocytes

AIA ↓ Arthritis severity ↓ Arthritis severity [35]
↓ Anti-mBSA Abs ↓ Anti-mBSA Abs
↓ Ex vivo T-cell ↓ Ex vivo T-cell 
proliferation proliferation
↓ IFN-γ and ↓ IFN-γ and 
↑ IL-10 production ↑ IL-10 production

EAE ↑ Serum leptin before ↓ Susceptibility ↑ Severity in SJL females [42]
onset of EAE SJL males: become susceptible
Serum leptin Restored susceptibility in 
correlated with ob/ob mice associated to
EAE susceptibility Th2 to Th1 switch
Administration of 
anti-leptin Abs or 
soluble leptin 
receptors: 
↓ Disease severity

T-cell mediated Protected from liver ob/ob mice: restored [70,110]
hepatitis damage susceptibility

↓ TNF-α and IL-18

Colitis ↓ Severity [71]
↓ Local release of 
proinflammatory cytokines 

Immune-mediated Protected [74]
glomerulonephritis

Up and down arrows indicate increase and decrease, respectively. Abs, antibodies; AIA, antigen-induced arthritis; db/db, leptin receptor deficient
mice; EAE, autoimmune encephalomyelitis; ob/ob, leptin deficient mice; Th, T helper; TNF, tumor necrosis factor; WT, wild-type.



db/db bone marrow was grafted into wild-type mice. Direct
effects of leptin on lymphocytes are thus not necessary for
T cell maturation and immune response in a normal
environment. Conversely, thymus weight and cell number
were decreased in the reverse graft setting when wild-type
bone marrow was transferred into db/db mice, indicating that
expression of the leptin receptor in the systemic and/or local
environment is mandatory for T cell development. Based on
these observations, it appears that in mice major effects of
leptin receptor-deficiency on the immune system are indirect.

Interestingly, in contrast to leptin or leptin receptor-deficient
rodents, in human patients, gradual compensations of several
endocrine functions that were initially impaired due to a
mutated leptin molecule were observed, possibly due to the
longevity of humans [26]. The authors suggest that, over a
time span of several decades, other factors seem to bring
back to normal functions that were initially dysregulated in the
absence of leptin, such as thyroid axis activity, reproduction,
and possibly immunity. These observations further emphasize
the complexity of the neuroendocrine regulatory and
compensatory mechanisms in leptin-deficiency.

The role of leptin in experimental models of
arthritis
A potential role of leptin has been recently investigated in
several models of arthritis depending on acquired or innate
immune responses. Antigen-induced arthritis (AIA) is an
experimental model of rheumatoid arthritis (RA), which is
based on the induction of a local Arthus reaction by intra-
articular injection of methylated bovine serum albumin
(mBSA) into the knee joint of mBSA-immunized mice. Ob/ob
and db/db mice had a milder form of AIA than their lean
littermates [35]. In addition, ex vivo proliferation and IFN-γ
production following the stimulation of lymph node cells by
mBSA were significantly reduced in ob/ob and db/db mice. In
contrast, IL-10 production by lymph node cells from ob/ob
and db/db mice was increased [35]. The levels of anti-mBSA
antibodies were also decreased in immunized ob/ob and
db/db mice compared to their controls. These results indicate
that leptin contributes to joint inflammation in AIA by regula-
ting both humoral and cell-mediated immune responses.

To investigate a potential effect of leptin on inflammatory
events in the joint, we explored the role of leptin in zymosan-
induced arthritis, a mouse model of arthritis that is not
dependent on the adaptive immune response. This model
relies on intra-articular injection of zymosan A, which is a
ligand for toll-like receptor 2, as well as an activator of the
alternative complement pathway, and which triggers a local
activation of the innate immune system, causing inflammation
of the injected joint [88,89]. We observed that both ob/ob
and db/db mice exhibited a delayed resolution of the
inflammatory process and an increased acute-phase response
during zymosan-induced arthritis compared to their lean
littermates [90]. It is noteworthy that this increased inflam-

matory response was observed in ob/ob and db/db mice,
despite the presence of elevated glucocorticoid levels. This
observation is in agreement with data obtained in another
study, where treatment of wild-type mice with leptin caused a
significant decrease in the severity of septic arthritis induced
by S. aureus, which also strongly depends on innate immunity
[55].

Overall, the data obtained in experimental models of arthritis
suggest that, like in other experimental disease models,
chronic leptin deficiency differently affects acquired versus
innate immune responses: adaptive immune-mediated res-
ponses are attenuated, whereas in models involving the
innate immune response, leptin deficiency causes inadequate
control of inflammation.

Role of leptin in rheumatoid arthritis
As described above, leptin contributes to adaptive immunity-
mediated inflammation in different models in rodents (Table 2).
However, studies in humans show more controversial results.
A potential role of leptin in RA, one of the most frequent
immune-mediated inflammatory diseases in humans, has
been investigated in several studies (Table 3). Only a couple
of studies so far demonstrated elevated leptin concentrations
in RA patients [91]. One of those studies showed increased
plasma levels of leptin in RA patients compared to healthy
controls, associated with significantly lower leptin levels in
matched synovial fluid samples [91]. However, the lack of
data concerning the body mass index (BMI) limits
interpretation of the results of this study [56]. In another
study, gender distribution differs between the groups
(male:female ratio in RA patient group is 9:22, whereas in
healthy controls 8:10) [92]. Plasma leptin levels are more
than twice as high in healthy females than in males of
corresponding weight status [93]; therefore, interpretation of
these data is also limited. In addition, the only indication
regarding disease activity in both these studies is measure-
ment of C-reactive protein (CRP) levels, which either
correlates [92] or not [91] with serum leptin levels.

Moreover, two other studies showed that serum levels of
leptin were not increased in RA patients compared with
controls and the only correlations observed were between
leptin and BMI or the percentage of body fat [94,95]. Yet
another study showed even lower plasma leptin levels in RA
patients than in controls and leptin did not correlate with BMI,
CRP, total fat mass or disease activity score [96]. Finally, a
significant inverse correlation was found between inflam-
mation and leptin concentrations in one study on patients
with active RA, although plasma leptin concentrations did not
significantly differ from those in healthy controls [97]. Short
course anti-TNF-α treatment did not modify leptin
concentrations, despite significant reductions of CRP and
IL-6. It was reported that fasting leads to an improvement of
RA activity associated with a marked decrease in serum
leptin and a shift toward Th2 cytokine production [98],
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reminiscent of the features observed during antigen-induced
arthritis in ob/ob mice (Table 2). However, after a seven day
ketogenic diet in RA patients, there were no significant
changes in any clinical or biological measurements of disease
activity, despite a significant decrease in serum leptin
concentrations [99]. In conclusion, in the light of the present
controversial data, it seems difficult to make an unambiguous
conclusion about a potential role of leptin in RA.

Role of leptin in other immune-mediated
inflammatory conditions
Several studies suggest a potential implication of leptin in the
pathogenesis of other autoimmune inflammatory conditions in
humans. However, the results of these studies do not
consistently show a correlation between leptin levels and
activity of immune-mediated diseases (Table 3). In patients
with multiple sclerosis, serum levels of leptin were com-
parable to those of healthy controls [100,101]. Nonetheless,
variable effects of IFN-β treatment on leptin levels were
reported in two studies. In the first study, circulating leptin
levels were increased before clinical exacerbation in relapsing
patients and significantly decreased after IFN-β treatment
[100]. In another study, leptin levels were increased in IFN-β
treated patients compared to untreated controls during both
active disease and remission [101]. Moreover, leptin induced
secretion of IL-10, an anti-inflammatory cytokine, by peri-
pheral blood mononuclear cells from multiple sclerosis
patients in culture.

Elevated serum levels of leptin were found in women with
systemic lupus erythematosus [102]. However, leptin levels
correlated with BMI, but not with disease activity, as
assessed by the Mexican SLE disease activity index. In
contrast, in systemic sclerosis patients, decreased serum
leptin levels were found [103]. There was no correlation
between serum leptin levels and the duration of the
symptoms of systemic sclerosis, while serum leptin levels
correlated with BMI. In 35 patients with Behçet’s syndrome,
leptin levels were significantly higher than in healthy controls
and correlated positively with disease activity [104]. Finally,
some investigations suggest an association of leptin levels
with several inflammatory markers, such as soluble TNF
receptors [105,106] or CRP in healthy humans [107].
However, several recent clinical studies failed to demonstrate
an effect of leptin administration on proinflammatory markers
in healthy lean or obese humans [105,108,109].

Taken together, the results of these different studies do not
consistently show a correlation between leptin levels and
activity of immune-mediated disease. In addition, although
circulating leptin levels correlated with inflammatory markers
in some studies, there is no evidence for pro-inflammatory
effects induced by leptin administration.

Conclusions
Taken together, results of in vitro and experimental animal
studies suggest that leptin acts mostly as a proinflammatory
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Table 3

Circulating leptin levels in patients with immune-mediated inflammatory diseases

Leptin levels: 
patients versus Correlation of leptin levels with 

Diseases healthy controls disease activity Comments References

RA Elevated No correlation with CRP No data on BMI [91]

RA Elevated Correlation with CRP Different gender distribution in the groups [92]

RA Similar No correlation Correlated with BMI and percentage of body fat [94]

RA Similar No correlation Correlated with BMI [95]

RA Similar Negative correlation with CRP No effect of short course anti-TNF-α therapy [97]
and IL-6 on leptin levels

RA Reduced No correlation No correlation with BMI, CRP or total fat mass [96]

SLE Elevated No correlation Correlated with BMI [102]

Systemic Reduced No correlation Correlated with BMI [103]
sclerosis

Behçet‘s Elevated Positive correlation Gender ratio, age and BMI similar in patient [104]
disease and control groups

Multiple Similar Positive correlation Leptin levels increased before exacerbation [100]
sclerosis and decreased after treatment with IFN-β

Multiple Similar No correlation Leptin levels increased in IFN-β treated patients [101]
sclerosis during active disease and remission

BMI, body mass index; CRP, C-reactive protein; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; TNF, tumor necrosis factor.



agent during adaptive immune responses, whereas in
processes involving innate immunity, anti-inflammatory effects
of leptin are prevalent. However, it is difficult to elucidate the
role, if any, of leptin during inflammatory conditions in human
patients as different clinical studies have so far yielded
inconsistent results, suggesting that leptin has a rather
complex role in immune response and inflammation in
humans. In particular, indirect effects of leptin or leptin
deficiency are likely to considerably influence immune
responses and inflammatory processes, and potentially
opposite direct and indirect effects of leptin might thus partly
account for some controversies observed in different
investigations.
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