
Education

A Primer on Python for Life Science
Researchers
Sebastian Bassi

Introduction

This article introduces the world of the Python
computer language. It is assumed that readers have
some previous programming experience in at least

one computer language and are familiar with basic concepts
such as data types, flow control, and functions.

Python can be used to solve several problems that research
laboratories face almost everyday. Data manipulation,
biological data retrieval and parsing, automation, and
simulation of biological problems are some of the tasks that
can be performed in an effective way with computers and a
suitable programming language.

The purpose of this tutorial is to provide a bird’s-eye view
of the Python language, showing the basics of the language
and the capabilities it offers. Main data structures and flow
control statements are presented. After these basic concepts,
topics such as file access, functions, and modules are covered
in more detail. Finally, Biopython, a collection of tools for
computational molecular biology, is introduced and its use
shown with two scripts. For more advanced topics in Python,
there are references at the end.

Features of Python

Python is a modern programming language developed in
the early 1990s by Guido van Rossum [1]. It is a dynamic high-
level language with an easily readable syntax. Python
programs are interpreted, meaning that there is no need for
compilation into a binary form before executing the
programs. This makes Python programs a little slower than
programs written in a compiled language, but at current
computer speeds and for most tasks this is not an issue and
the portability that Python gains as a result of being
interpreted is a worthwhile tradeoff.

The more important and relevant features of Python for
our use are that: it is easy to learn, easy to read, interpreted,
and multiplatform (Python programs run on most operating
systems); it offers free access to source code; internal and
external libraries are available; and it has a supportive
Internet community.

Python is an excellent choice as a learning language [2].
The language’s simple syntax uses mandatory indentation and
looks similar to the pseudocode found in textbooks that are

oriented to non-programming students. Its simplicity is a
design choice, made in order to facilitate the learning and use
of the language. Another advantage well-suited to newcomers
is the optional interactive mode that gives immediate
feedback of each statement, which certainly encourages
experimentation.
There are also some drawbacks to Python that must be

noted. First, execution time is slower than for compiled
languages. Second, there are fewer numerical and statistical
functions available than in specialized tools like R or
MATLAB. (However, Numpy module [3] provides several
numeric and matrix manipulation functions for Python.) And
third, Python is not as widely used as JAVA, C, or Perl.

Tutorial
Notations. Program functions and reserved words are

written in bold type, while user-defined names are in italics.
For computer code, a monospaced font is used. Three angle
braces (...) are used to indicate that a command should be
executed in the Python interactive console. The line shown
after the user-typed command is the result of that command.
The absolute basics. Python can be run in script mode (like

C and Perl), or using its built-in interactive console (like R
and Ruby). The interactive console provides command-line
editing and command history, although some
implementations vary in features. In the interactive mode,
there is a command prompt consisting of three angle braces
(...).
Script mode is a reliable and repeatable approach to

running most tasks. Input file names, parameter values, and
code version numbers should be included within a script,
allowing a task to be repeated. Output can be directed to a
log file for storage. The interactive console is used mostly for
small tasks and testing.
Python programs can be written using any general purpose

text editor, such as Emacs or Kate. The latter provides color-
cued syntax and access to Python’s interactive mode through
an integrated shell. There are also specialized editors such as
PythonWin, Eclipse, and IDLE, the built-in Python text
editor.

Editor: Fran Lewitter, Whitehead Institute, United States of America

Citation: Bassi S (2007) A primer on Python for life science researchers. PLoS
Comput Biol 3(11): e199. doi:10.1371/journal.pcbi.0030199

Copyright: � 2007 Sebastian Bassi. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: HSP, high-scoring pairs

Sebastian Bassi is with the Universidad Nacional de Quilmes, Buenos Aires,
Argentina. E-mail: sbassi@genes.unq.edu.ar

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e1992052

When running a Python script under a Unix operating
system, the first line should start with ‘‘#!’’ plus the path to the
Python interpreter, such as ‘‘#!/usr/bin/python’’, to indicate to
the UNIX shell which interpreter to employ for the script.
Without this line, the program will not run from the
command line and must be called by using the interpreter
(for example, ‘‘python myprogram.py’’).

Computer languages can be characterized by their data
structures (or types) and flow control statements. Data
structures in Python are diverse and versatile. There are
numeric data types that hold ‘‘primitive’’ data (integer, float,
Boolean, and complex) and there are ‘‘collection’’ types that
can handle several objects at once (string, list, tuple, set, and
dictionary). Descriptions and examples of numeric data types

are summarized in Table 1. Container types can be divided
according to how their elements are accessed. When ordered,
they are sequence types (string, list, and tuple being the most
prominent). Sequence types can be accessed in a given order,
using an index. Their differences, methods, and properties
are summarized in Box 1. There are also unordered types
(sets and dictionaries). Both unordered types are described in
Box 2.
Flow control statements control whether program code is

executed or not, or executed many times in a loop based on a
conditional. Conditional execution (if, elif, else) and looping
(for and while) are explained in Box 3.
Functions. Python allows programmers to define their own

functions. The def keyword is used followed by the name of
the function and a list of comma-separated arguments
between parentheses. Parentheses are mandatory, even for
functions without arguments.
Python’s function structure is:
def FunctionName(argument1, argument2, ...):
function_block
return value

Arguments are passed by reference and without specifying
data types. It is up the programmer to check data types. When
a function is called, the arguments must be supplied in the
same order as defined, unless arguments are provided by
using keyword–value pairs (keyword¼value). Default arguments
can be defined by using keyword–value pairs in the function
definition. This way a function can be called without
supplying arguments. To deal with an arbitrary number of
arguments, the last argument in the function definition must
be preceded with an asterisk in the form *name. This specifies
that the last value is set to a tuple for all remaining
parameters.
The return statement terminates the execution of the

function and returns a single value. To return multiple values,
a list or a tuple must be used.
Modules. In Python, functions, classes and constants can be

saved in a file, called a ‘‘module,’’ for later use. Modules can
be called from a program or in interactive mode using the
‘‘import’’ statement, such as:
import ModuleName

where ModuleName is the name of the file without an
extension. When a module is imported for the first time, its

Table 1. Numeric Data Types

Numeric Data Type Description Example

Integer Holds integer numbers without any limit (besides your hardware). Some texts still refers to

a ‘‘long integer’’ type since there were differences in usage for numbers higher than

232 � 1. These differences are now reserved for language internal use.

42, 0, �77

Float Handles the floating point arithmetic as defined in ANSI/IEE Standard 754 [43], known

as ‘‘double precision.’’ Internal representation of float numbers is not exact, but

accurate enough for most applications. The ‘‘decimal’’ module [44] has more precision at

the expense of computing time.

424.323334, 0.00000009, 3.4e-49

Complex Complex numbers are the sum of a real and an imaginary number and is represented with

a ‘‘j’’ next to the real part. This real part can be an integer or a float number. j is

the notation for imaginary number, equal to the square root of �1.

3 þ 12j, j

9j

Boolean True and False are defined as values of the Boolean type. Empty objects, None, and

numeric zero are considered False. Objects are considered True.

False, True

doi:1011371/journal.pcbi.0030199.t001

Box 1. Most-Used Sequence Data Types

String: Usually enclosed by quotes (’) or double quotes ("). Triple quotes
(’’’) are used to delimit multiline strings. Strings are immutable. Once
created they can’t be modified. String methods are available at http://
www.python.org/doc/2.5/lib/string-methods.html.
For example:
... s0¼’A regular string’

List: Defined as an ordered collection of objects; a versatile and useful
data type. C programmers will find lists similar to vectors. Lists are
created by enclosing their comma-separated items in square brackets,
and can contain different objects.
For example:
... MyList¼[3,99,12,"one","five"]
This statement creates a list with five elements (three numbers and two
strings) and binds it to the name ‘‘MyList’’. Each element of the list can
be referred to by an integer index enclosed between square brackets.
The index starts from 0, therefore MyList[3] returns ‘‘one’’. All list
operations are available at http://www.python.org/doc/2.5/lib/
typesseq-mutable.html.

Tuple: Also an ordered collection of objects, but tuples, unlike lists, are
immutable. They share most methods with lists, but only those that
don’t change the elements inside the tuple. Attempting to change a
tuple raises an exception. Tuples are created by enclosing their comma-
separated items between parentheses. Tuples are similar to Pascal
records or C structs; they are small collections of related data that are
operated on as a group. They are used mostly for encapsulating function
arguments, or any data that are tightly coupled.
For example:
... MyTuple¼(2,3,10)
Tuple operations are available at http://www.python.org/doc/2.5/lib/
typesseq.html.

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e1992053

code is interpreted and executed. Execution upon import of
certain code can be prevented by putting the code into an
import executable conditional statement (if __name__ ¼¼
__main__). The ’__name__’ attribute of the module is the
name of the module and is ’__main__’ only when the module
is run as a standalone program. Successive imports of the
same module have no effect.

Python provides several modules and there are many more
that can be downloaded from the Internet (like SciPy [4],
which provides scientific and numeric tools for Python,
Matplotlib [5] for plotting, and so on).

An example:
... import math
... dir(math)
[’__doc__’, ’__file__’, ’__name__’, ’acos’, ’asin’, ’atan’, ’atan2’,

’ceil’, ’cos’, ’cosh’, ’degrees’, ’e’, ’exp’, ’fabs’, ’floor’, ’fmod’,
’frexp’, ’hypot’, ’ldexp’, ’log’, ’log10’, ’modf’, ’pi’, ’pow’,
’radians’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

No error message returned by the interpreter means that
the module was successfully imported. dir() is a built-in
function that returns a list of the attributes and methods of
any chosen object. To access an object from a module, the
syntax is module.object, since importing a module creates a
namespace.

For example:
... math.log(2)
0.69314718055994529

Python in Action: Net Charge from an Amino Acid
Sequence

To show Python syntax and data structures in action, it is
instructive to look at solving a real problem using this
language, such as the calculation of the net charge of a protein.

Given a protein sequence, this is performed by adding up the
charges of each charged amino acid at pH¼7. This calculation
gives a rough value because it doesn’t consider whether the
residues are exposed, partly exposed, buried, or deeply buried.
This example shows functions, data types (numbers, strings,
and dictionaries) and flow control (if and for).
Code explained. This script defines a function (netcharge)

that takes a peptide sequence as an input (seq) and calculates
the net charge by adding up all the individual charged amino
acids. The main data structure is a dictionary (AACharge) with
the values of each charged amino acid. There is also a
numeric type (charge) that holds the partial charge values and
is initialized with �0.002 since this is the value of the net
charge of the amino and carboxy-terminus of the peptide.
For each amino acid, the program checks whether it is inside
the list of the keys in the dictionary and, if it is, adds its
charge values. After the function definition, a protein
sequence is called as an argument. The commented source
code is shown in Protocol S1.
Biopython. Biopython is a distributed, collaborative effort

to develop Python libraries and applications that address the
needs of current and future work in bioinformatics [6]. It
provides tools for working with biological sequences, parsers
of popular file formats used in bioinformatics (FASTA,
COMPASS [7], GenBank, PIR [8], PDB [9], BLAST output [10],
InterPro [11], LocusLink [12], PROSITE [13], Phred [14],
Phrap [15]), data retrieval from biological databases (Swiss-
Prot [16], PubMed [17], GenBank [18]), a wrapper for
bioinformatics programs (BLAST, ClustalW [19], EMBOSS
[20], Primer3 [21], and more), functions to estimate DNA and
protein properties such as isoelectric points [22,23],
restriction enzymes cutting, and many more.
A review of Biopython functions would require a far more

considerable amount of space; therefore this paper shows
only a small portion of the bigger picture. The first example
shows how to parse a BLAST output to extract and report
only required features. Since BLAST is the most commonly
used application in bioinformatics, writing a BLAST report
parser is a basic exercise in bioinformatics [24]. Other
functions like massive file processing and file format
conversion are also shown.

Parsing BLAST Files

The program below extracts the title and sequence from
some high-scoring pairs (HSP), but there are many more
features to extract from a BLAST output, if needed.
Biopython provides the Blast Record class under
Bio.Blast.NCBIXML.Record. Internal documentation for this
object can be accessed with help(NCBIXML.Record) after
importing NCBIXML from Bio.Blast.
Code explained. For this program, the user has to perform

a BLAST search and save the result in XML mode because this
format tends to be more stable than HTML or text versions
(and hence the Biopython parser should be able to handle it
without any problem [25]). The BLAST search can be
performed using the NCBI Web server (http://www.ncbi.nlm.
nih.gov/BLAST/). To generate XML output, select XML as the
format option on the BLAST page. When using the
standalone version of BLAST, the m parameter in the blastall
command should be set to 7. Biopython can also be used to
run the BLAST program; in this case the output defaults to

Box 2. Unordered Types

Set: An unordered collection of immutable values. It is mostly used for
membership testing and removing duplicates from a sequence. Sets are
created by passing any sequential object to the set constructor, such as:
set([1,2,3])
For more information on sets, please refer to http://www.python.org/
doc/2.5/lib/types-set.html.
For example:
... ResEzSet1¼set([’BamH1’, ’HindIII’, ’EcoR1’, ’SalI’])
... ResEzSet2¼set([’PlaA’, ’EcoR1’, ’Eco143’])
... ResEzSet1&ResEzSet2
set([’EcoR1’])

Dictionary:
A data type that stores unordered one-to-one relationships between
keys and values. Unordered in this context means that each key–value
pair is stored without any particular order in the dictionary. It is
analogous to a hash in Perl or a Hashtable class in Java. Dictionaries are
created by placing a comma-separated list of key–value pairs within
braces.
For example:
Set Translate as a dictionary with codon triplets as keys and the
corresponding amino acids as values:
... Translate¼f"cca":"P","cag":"Q","agg":"R"g
Creating a new entry:
... Translate["gat"]¼"D"
To see what is inside the dictionary:
... Translate
f’agg’: ’R’, ’cag’: ’Q’, ’gat’: ’D’, ’cca’: ’P’g
Dictionaries share some methods with lists. A complete list of methods
on can be seen at: http://www.python.org/doc/2.5/lib/typesmapping.
html.

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e1992054

XML. A sample XML BLAST output (Blast2.xml) is provided
in Protocol S4. The objective is to print out only the
sequences with an HSP larger than 80 base pairs in a specific
chromosome.

This program, blastparser2.py, takes a BLAST output in
XML format and shows the sequence of hits in Chromosome
5 that are larger than 80 base pairs long. A file handle named
bout with the BLAST output in XML format is created, and
then the file is parsed using the Bio.Blast.NCBIXML.parse
function. To parse another type of BLAST output, the parser
should be changed. Instead of using NCBIXML, use
NCBIStandalone. All BLAST records are stored in an iterator
called b_records. Using a for loop, the program steps through
all the BLAST records. For each hit, the program checks all
HSP for the presence of the ‘‘chromosome 5’’ string and a
length of the hit sequence (without gaps) greater than 80 base
pairs. The source code is shown in Protocol S2.

Consolidate Several Sequence Files into One FASTA
File

In this example we use a simulated output provided by an
external sequencing service. It consists of more than 6,000
directories (one for each clone), and there are three files per
directory (a formatted report with a pdf extension, the
sequencing machine output with an ab1 extension, and a

plain text file with the sequence). This directory structure and
its files are available as Protocol S4. The program retrieves all
the sequences and writes them into a FASTA-formatted file
for further analysis.
The program fromdir2fasta.py to scan a directory (mydir)

where the output of the sequencing service is downloaded.
The names of all the directories under that directory are
obtained with the os.listdir function and stored into a list
(lsdir). For each directory (x), the list of files are stored into a
list (fs). For each file (curfile), the program checks if it ends in
‘‘txt,’’ and if it does the script retrieves the sequence from the
file as a Seq object (dna). Using the title from the filename and
the seq object, it creates a SeqRecord object (seq_rec) and
adds it to a list (sequences). After the directory had been
scanned and the sequences list filled with SeqRecord objects
corresponding to all the files, the sequences are written to a
file in FASTA format. This is done with the SeqIO.write
function. For an explanation of file handling, see Box 4. To
get the output in another format, the third parameter of this
function should be changed. For more information on SeqIO,
including a table with supported formats, see http://
biopython.org/wiki/SeqIO. The commented source code is
shown in Protocol S3.

Summary

Python’s capabilities include scientific plotting [5,26–29],
GUI building [30–32], automatic Web page generation [33–
35], and interfacing with Windows components [36,37] and
with external programs like R [38] and Matlab [39]. As
hardware becomes faster, a computer’s raw processing time is
less relevant than scientist’s time [40]. Scripting languages
allow the programmer to do more in less time, making
Python an excellent choice for bioinformatics data analysis.

Additional Reading

One common problem for non-computer science
researchers who start programming is that they usually stick
to basic concepts and don’t take advantage of many modern

Box 4. Dealing with Text Files

Reading a text file in Python is a three-step process.
1: Open the file, creating a handle.
handle¼open(’PathToFile’,’r’)
The first parameter is the filename location. The second parameter is the
first letter of the open mode, that is, r, w, and a, corresponding to read,
write, and append. This function returns a file object (handle).

2: Read the file. There are several methods to gain access to the contents
of a file:
handle.read(n): Reads the first n bytes of a file and returns a string.
Without arguments, reads the file until the end of file (EOF).
handle.readline(n): Reads a line of the file and returns a string. When it
reaches the EOF, it returns an empty string.
handle.readlines(): Reads all the lines and returns a list of strings. The
‘‘end of line’’ (EOL) is determined based on host operating system.
For efficient iteration over a file, use ‘‘for line in handle’’.

3: Close the file:
handle.close(): Closes the file.

Writing a file is very similar to reading a file. Steps 1 and 3 are the same
as reading a file. The main difference is in step 2, where the file’s
contents are written with the write method, as:
handle.write(‘‘This text will make it into a text file\n’’)
There is also a writelines method that writes each member of the list to a
file.

Box 3. Control Structures

If statement: Tests for a condition and acts upon the result of that
condition. If the condition is true, the block of code after the ‘‘if
condition’’ will be executed. If it is false, the program will skip that block
and will test for the next condition (if any). Several conditions can be
tested using elif. If all conditions are false, the block under else will be
executed. Elif can be used to emulate a C ‘‘switch-case’’ statement.
Scheme of an if statement:

if condition1:
block1

elif condition2:
block2

else:
block3

For loop: Iterates over all the members of a sequence of values (as in
Perl’s ‘‘foreach’’). It is different from C and VB because there isn’t a
variable that increments or decrements on each cycle. This sequence
could be any type of iterable object like a list, string, tuple, or dictionary.
The code inside a for loop will be executed once for each item in the
sequence, and at the same time the variable will take the value of each
item in the sequence. There could be an optional else clause. If it is
present, the block under the else clause is executed when the loop
terminates through exhaustion of the list, but not when the loop is
terminated by a break statement.
The structure of a for loop is:

for variable in sequence:
block1

else:
block2

while loop: Executes a block of code as long as a condition is true. As
the for loop, there could be an optional else clause. When present, the
block under the else clause is executed when the condition becomes
false but not when the loop is terminated by a break statement.
The general form is:

while condition:
block1

else:
block2

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e1992055

tools that are available [41]. Version control, project
management, and automatic unit testing are only a handful of
useful software engineering techniques that are virtually
unknown to most researchers [42].

There are many good quality resources for learning
Python. Some of these have already been mentioned and a
summary of resources is presented in Table 2. Since code
written in Python is easy to read, modifying other people’s
code to suit your needs is a recommended path for learning.
For this reason, the table also includes code search engines
and bioinformatics software repositories.

Supporting Information
Protocol S1. This Program Defines a Function To Calculate the Net
Charge of a Protein Based on the Charges of Its Amino Acids

On the last line of the code the function is called.

Found at doi:10.1371/journal.pcbi.0030199.sd001 (107 KB DOC).

Protocol S2. This Program Reads the Output of a BLAST Run Using
the Parse Function on the NCBIXML Module

Found at doi:10.1371/journal.pcbi.0030199.sd002 (107 KB DOC).

Protocol S3. This Program Shows How To Use Python to Mass-
Convert Sequence Files from Plain Text to FASTA Format with
Biopython SeqIO Module

Found at doi:10.1371/journal.pcbi.0030199.sd003 (48 KB DOC).

Protocol S4. Python Code and Needed Files To Run Programs

Found at doi:10.1371/journal.pcbi.0030199.sd004 (172 KB GZ).

Acknowledgments

The author wishes to thank Virginia C. Gonzalez for her help, Dr.
Diego Golombek, the anonymous reviewers for helpful comments, all
the Biopython team for their work, and the local Python community
(PyAR) for their support.

Funding. The author received no specific funding for this article.

Competing interests. The author has declared that no competing
interests exist.

References
1. Van Rossum G, de Boer J (1991) Interactively testing remote servers using

the Python programming language. CWI Quarterly 4: 283–303.
2. Chou PH (2002) Algorithm education in Python.10th International Python

Conference;4–7 February 2002; Alexandria, Virginia, United States of
America. Available: http://www.python10.org/p10-papers/index.htm.
Accessed 4 October 2007.

3. (2007) NumPy. Trelgol Publishing. Available: http://numpy.scipy.org/.
Accessed 4 October 2007.

4. SciPy (2007) Available: http://www.scipy.org/. Accessed 4 October 2007.
5. (2007) Mathplotlib. The Mathworks. Available: http://matplotlib.

sourceforge.net/. Accessed 4 October 2007.
6. (2007) Biopyton Version 1.43. Available: http://www.biopython.org/.

Accessed 4 October 2007.
7. Sadreyev R, Grishin N (2003) COMPASS: A tool for comparison of multiple

protein alignments with assessment of statistical significance. J Mol Biol
326: 317–336.

8. Wu CH, Yeh LS, Huang H, Arminski L, Castro-Alvear J, et al. (2003) The
Protein Information Resource. Nucleic Acids Res 31: 345–347.

9. Hamelryck T, Manderick B (2003) PDB file parser and structure class
implemented in Python. Bioinformatics 19: 2308–2310.

10. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997)
Gapped BLAST and PSI-BLAST: A new generation of protein database
search programs. Nucleic Acids Res 25: 3389–3402.

11. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2005)
InterPro, progress and status in 2005. Nucleic Acids Res 33: D201–D205.

12. The Centre for Applied Genomics (2007) NCBI Locus Link in BioXRT
Database. Available: http://projects.tcag.ca/bioxrt/locuslink/. Accessed 4
October 2007.

13. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, et al. (2006) The
PROSITE database. Nucleic Acids Res 34: D227–D230.

14. Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated
sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–
185.

15. Laboratory of Phil Green (2007) Phred, Phrap, Consed. Available: http://
www.phrap.org/phredphrapconsed.html#block_phrap. Accessed 4 October
2007.

16. Bairoch A, Boeckmann B, Ferro S, Gasteiger E (2004) Swiss-Prot: Juggling
between evolution and stability. Brief Bioinform 5: 39–55.

17. PubMed (2007) Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi.
Accessed 4 October 2007.

Table 2. Resources for Learning Python and Biopython

Source Type Address Description

Python www.python.org Official site of Python. Documentation and last program version can be

downloaded from here.

www.ibiblio.org/obp/thinkCSpy Online book How to Think Like a Computer Scientist. Learning with Python.

Recommended as a first book on Python.

www.diveintopython.org Book for intermediate and advanced programmers.

www.rgruet.free.fr/#QuickRef Complete Python reference with color highlighting of differences between

Python versions.

www.awaretek.com/tutorials.html More than 300 Python tutorials carefully sorted by topic and category.

#python channel on the irc.freenode.net IRC server Real-time chat about Python with an average of 200 users at any time.

An ICR client is required.

www.python.org/mailman/listinfo/python-list High volume mailing list where everyone can ask for help on Python.

www.scipy.org Resources for Python in science.

wiki.python.org/moin/PythonSpeed/PerformanceTips Tips for enhance the speed of you Python programs.

Biopython www.biopython.org Official site of Biopython.

www.biopython.org/DIST/docs/tutorial/Tutorial.html Biopython cookbook. Best place to start for biopython.

www.pasteur.fr/recherche/unites/sis/formation/python/ Bioinformatics course in Python at the Pasteur Institute. Full of samples.

Code search engines

and repositories

www.bioinformatics.org Bioinformatics organization that host python projects.

www.koders.com A search engine for source code. Biopython project is included.

www.krugle.com Another search engine for source code. Same features as Koders with a more

rich interface.

www.google.com/codesearch Less features than Koders and Krugle, but with a bigger database and a

simpler interface.

doi:1011371/journal.pcbi.0030199.t002

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e1992056

18. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006)
GenBank. Nucleic Acids Res 34: D16–D20.

19. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple
sequence alignments. Methods Enzymol 266: 383–402.

20. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular
Biology Open Software Suite. Trends Genet 16: 276–277.

21. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for
biologist programmers. Methods Mol Biol 132: 365–386.

22. Toldo L (2007) PI EMBL WWW Gateway to Isoelectric Point Service.
Available: http://www.embl-heidelberg.de/cgi/pi-wrapper.pl. Accessed 4
October 2007.

23. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, et al. (1993) The
focusing positions of polypeptides in inmobilized pH gradients can be
predicted from their amino acid sequences. Electrophoresis 14: 1023–1031.

24. Stajich JE, Lapp H (2006) Open source tools and toolkits for
bioinformatics: Significance, and where are we? Brief Bioinform 7: 287–
296.

25. McGinnis S (2005) NCBI communication to BioPerl Team. Available: http://
www.bioperl.org/w/index.php?title¼NCBI_Blast_email&oldid¼5114.
Accessed 14 June 2007

26. Enthought (2007) Chaco. Available: http://code.enthought.com/chaco/.
Accessed 4 October 2007.

27. Ramachandran P (2007) MayaVi. Available: http://mayavi.sourceforge.net/.
Accessed 4 October 2007.

28. Computational and Information Systems Laboratory (2007) PyNGL: A
Python interface. National Center for Atmospheric Research. Available:
http://www.pyngl.ucar.edu/. Accessed 4 October 2007.

29. Max Planck Institute for Solar Research (2007) DISLIN scientific plotting
software. Available: http://www.dislin.de/. Accessed 4 October 2007.

30. Python Software Foundation (2007) PythonCard 0.8.2. Available: http://
pythoncard.sourceforge.net/. Accessed 4 October 2007.

31. (2007) EasyGUI 0.72. Available: http://www.ferg.org/easygui/. Accessed 4
October 2007.

32. (2007) Tkinter Wiki. Available: http://tkinter.unpythonic.net/wiki/. Accessed
4 October 2007.

33. Lawrence Journal-World (2007) Django. Available: http://www.
djangoproject.com/. Accessed 4 October 2007.

34. Zope Community (2007) Zope. Available: http://www.zope.org/. Accessed 4
October 2007.

35. (2007) CherryPy. Available: http://www.cherrypy.org/. Accessed 4 October
2007.

36. Hammond M (2007) Python programming on Win32 using PythonWin. In:
Hammond M, Robinson A, editors. Python programming on Win32.
O’Reilly Network. Available: http://www.onlamp.com/pub/a/python/
excerpts/chpt20/pythonwin.html. Accessed 4 October 2007

37. Codeplex Microsoft.net (2007) IronPython. Available: http://www.codeplex.
com/Wiki/View.aspx?ProjectName¼IronPython. Accessed 4 October 2007.

38. Moreira W, Warnes GR (2007) Rpy. Available: http://rpy.sourceforge.net/.
Accessed 4 October 2007.

39. Smolck A (2007) mlabwrap 1.0. The MathWorks. Available: http://mlabwrap.
sourceforge.net/. Accessed 4 October 2007.

40. Perez F, Granger BE (2007) Ipython: A system for interactive scientific
computing. CiSE 9: 21–29

41. Wilson GV (2005) Recruiters and academia. Nature 436: 600.
42. Wilson GV (2005) Where’s the real bottleneck in scientific computing? Am

Sci 94: 5.
43. Institute of Electrical and Electronics Engineers (1985) Binary Floating-

Point Arithmetic. IEEE standard 754. Piscataway (New Jersey): Institute of
Electrical and Electronics Engineers.

44. Python Software Foundation (2003) Decimal Data Type. Available: http://
www.python.org/dev/peps/pep-0327/. Accessed 4 October 2007.

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e1992057

