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Gene set control analysis predicts hematopoietic control mechanisms from
genome-wide transcription factor binding data
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Transcription factors are key regulators of both normal and malignant hematopoiesis. Chro-
matin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-Seq) has
become the method of choice to interrogate the genome-wide effect of transcription factors.
We have collected and integrated 142 publicly available ChIP-Seq datasets for both normal
and leukemic murine blood cell types. In addition, we introduce the new bioinformatic tool
Gene Set Control Analysis (GSCA). GSCA predicts likely upstream regulators for lists of
genes based on statistical significance of binding event enrichment within the gene loci of
a user-supplied gene set. We show that GSCA analysis of lineage-restricted gene sets reveals
expected and previously unrecognized candidate upstream regulators. Moreover, application
of GSCA to leukemic gene sets allowed us to predict the reactivation of blood stem cell control
mechanisms as a likely contributor to LMO2 driven leukemia. It also allowed us to clarify the
recent debate on the role of Myc in leukemia stem cell transcriptional programs. As a result,
GSCA provides a valuable new addition to analyzing gene sets of interest, complementary to
Gene Ontology and Gene Set Enrichment analyses. To facilitate access to the wider research
community, we have implemented GSCA as a freely accessible web tool (http://bioinformatics.
cscr.cam.ac.uk/GSCA/GSCA.html). � 2013 ISEH - Society for Hematology and Stem
Cells. Published by Elsevier Inc.
Cell type–specific gene expression is an inherent property
of all multicellular organisms and indeed represents a major
determinant that underlies the generation of differentiated
cell types with distinct functionality. Elucidating the
molecular mechanisms controlling cell type–specific
expression has the power to reveal fundamental insights
into the regulatory circuitry controlling both human and
model organism development. Moreover, identification of
control mechanisms in normal cells provides potential
avenues for manipulating cellular fates, as exemplified by
the recent explosion in cellular reprogramming studies
[1]. It also enables the rational design of new therapies
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aiming to revert abnormal pathological cellular states
back to their normal condition [1].

The blood or hematopoietic system has long been recog-
nized as a powerful model system for studying cell type–
specific gene expression [2]. Within the blood system,
more than 10 distinct mature hematopoietic lineages (e.g.,
red blood cells, T cells, B cells) are generated from plurip-
otent hematopoietic stem cells (HSCs) via a sequence of
intermediate progenitors, often represented as a lineage
differentiation tree. Both the mature lineages as well as
the various immature blood stem and progenitor popula-
tions can be purified based on the expression of combina-
tions of specific cell surface markers, thus enabling
powerful studies of cellular differentiation.

Transcription factors have long been recognized as
major regulators of hematopoietic cell type specification
[3–6]. To understand the mechanisms underlying cell type
specification by transcription factors, it will be essential
to identify their transcriptional targets. An important
advancement in this research area was provided by the
introduction of chromatin immunoprecipitation (ChIP)
coupled to massively parallel sequencing (ChIP-Seq),
ogy and Stem Cells. Published by Elsevier Inc.
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which allows genome scale identification of all DNA
sequences (regions) bound by a given transcription factor
(TF) in a given cell type [7]. The technique has been rapidly
adopted with over 100 individual studies now deposited in
public databases for the murine hematopoietic system
alone. This wealth of new data represents unprecedented
opportunities to unravel the transcriptional control mecha-
nisms that mediate expression of specific sets of genes
within the various hematopoietic cell lineages [8].

Gene ontology [9] overrepresentation analysis provides
information on various types of functional categories en-
riched within a given gene set of interest [10] and GSEA
determines whether a gene set of interest shows statistically
significant expression differences between two or more cell
types [11]. However, neither of these approaches explicitly
links a gene set to transcriptional control mechanisms. In
this study, we report a new computational framework for
linking gene sets with transcriptional control, called Gene
Set Control Analysis (GSCA). Unlike previous algorithms
developed to provide functional enrichment [10], GSCA
links gene sets to likely upstream regulators responsible
for coordinated expression. By exploiting multiple tran-
scription factor binding patterns from genome-wide ChIP-
Seq studies, GSCA can provide previously unattainable
insights into possible transcriptional control mechanisms
operating in both normal and malignant cells. To gain
insights into combinatorial control mechanisms (i.e.
multiple transcription factors occupying the same binding
site in a gene locus), we further developed a novel tool
called combinatorial-GSCA (C-GSCA). Through integrated
analysis of 142 blood-specific ChIP-Seq binding datasets,
C-GSCA identifies likely combinatorial transcriptional
control mechanisms by revealing TF cooccupancy patterns
specifically associated with gene regulatory elements from
a given gene set. A web-based implementation of GSCA
and C-GSCA allows user-friendly access for the wider
research community, and thus provides a substantial new
addition to the bioinformatic toolbox for hematopoietic
gene set analysis.
Methods

ChIP-seq compendium
Binding events for 35 transcription factors in seven major hemato-
poietic lineages were obtained from Hannah et al. [8]. Sixty new
ChIP datasets from 18 publications and ENCODE murine datasets
were analyzed, starting from the raw data set in each case, and
peaks were identified in each sample using the protocol described
previously [8]. A supplementary website (http://bioinformatics.
cscr.cam.ac.uk/BLOOD_compendium_PUBLISHED.html) lists
the number of peaks, reference, and peak calling method for
each of the ChIP dataset. All binding events were mapped to genes
using the same protocol described previously [12]. Binding events
in the promoter and gene body were associated to the correspond-
ing gene, whereas intergene peaks were associated to the nearest
gene on either side within 50 kb, such that each peak is assigned
to at most two genes.

Tissue-specific enhancer elements in mouse were downloaded
from [13] and p value was calculated for overlap between each of
the 61 tissue-specific enhancer regions and blood-specific regula-
tory regions [8] using a hyper-geometric test (Supplementary
Table 1, online only, available at www.exphem).

GSCA method
Of270,261 genomic regions bound by at least oneTF (N), for a set of
user-defined genes, we calculate the number of genomic regions
mapped to the genes (n). For each ChIP-Seq ChIP dataset, the
number of peaks (m) near user defined genes (k) is calculated. The
p value is calculated using a hypergeometric test (Fischer exact test).

cGSCA method
A matrix of binding events with 270,261 genomic regions as rows
and overrepresented ChIP-seq data sets (K) from GSCA step as
columns is generated. The ChIP-seq data sets (K columns) are
then clustered using a hierarchic clustering with Pearson’s correla-
tion coefficient as a distance measure.

Reference data set
Gene sets for 80 clusters of tightly coexpressed genes (their induc-
tion patterns) in 38 hematopoietic cell types were obtained from
Novershtern et al. [14]. Human genes were mapped to orthologous
mouse genes using MGI mammalian orthology (http://www.
informatics.jax.org/orthology.shtml). We calculated the p value
for each gene set with respect to each signature cluster using a hy-
pergeometric test. We used the number of Novershtern clusters
significantly overrepresented (Bonferroni corrected p ! 0.001)
for one or more transcription factor targets as a measure to eval-
uate performance while comparing different methods.

Gene expression datasets
Nine gene expression signatures (d-erythroid, differentiated,
d-lymphoid, d-myeloid, r-myelolymphoid, s-erythroid, s-mpp,
s-myelolymphoid, and stem)were obtained from [15]. Differentially
expressed genes in various leukemia datasets were downloaded from
their respective publications. Gene lists were then interrogated
against the ChIP-seq compendium using both GSCA and C-GSCA.

GSCA web tool
The GSCA output was produced using R, and the web user inter-
face of the application was done using Perl/CGI/HTML. R
commands are executed through the perl–cgi script to produce
the image. The web tool can be accessed at the following URL:
http://bioinformatics.cscr.cam.ac.uk/GSCA/GSCA.html.
Results

Definition of a candidate regulatory genome in mouse
hematopoiesis
We recently reported a compendium of more than 50 TF
ChIP-Seq experiments in mouse blood cells collected
from publicly available datasets [8]. We have doubled the
compendium by adding 60 new ChIP datasets from 18
recently published studies [16–33] and ENCODE murine
unpublished datasets to obtain genome-wide binding
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patterns for 53 unique transcription factors in 15 major
blood lineages and three types of leukemia (Table 1). TF-
bound peaks were determined for all new datasets using
the same parameters as before [8], which resulted in a total
of 270,261 genomic regions bound by at least one transcrip-
tion factor. When added together, these 270,261 regions
corresponded to 936 Mb, thus constituting 5.78% of the
mouse genome. ChIP-Seq samples of the same transcription
factor in related cell types were merged together to provide
a consolidated set of 78 samples (Table 1).

Pennacchio et al. [13] developed a phylogenetic conser-
vation and motif based approach to predict tissue specific
enhancers, which allowed them to annotate w5,500 high-
confidence mouse tissue-specific enhancers for 61 murine
tissue types by integrating tissue-specific expression data,
conservation information, and cis-regulatory motifs. Only
4 of these 61 tissues corresponded to hematopoietic cells,
and predicted only enhancers for those four tissues showed
significant overlap with our ChIP-enriched regions (B220þ

B cells, p 5 1.9e-10; CD4þ T cells, p 5 1.4e-4; CD8þ T
cells, p 5 7.0e-7; lymph node, p 5 1.0e-4; see
Supplementary table 1). This analysis therefore supports
the validity of a compendium built on TF binding events
in hematopoietic cells.

A new GSCA tool matches weighted TF-peak lists to
gene sets
We next explored whether our blood-specific TF ChIP-Seq
peak catalogue could be used to predict transcriptional control
mechanisms that may regulate the coordinated expression of
a given set of genes. Computational tools for the identification
of statistically significant overlaps between a given gene set
Table 1. Seventy-eight ChIP-Seq binding peak files covering 53 unique transcri

Cell type

Lymphocytes

B cells E2A, Eb

T cells Gata3, F

Thymocytes Cbfb, R

Progenitors

HPC Gata2, L

HPC7 Erg, Fli1

EML Runx1,

Erythroid progenitors Gata1, G

MK progenitors Cbfb, R

Myeloid progenitors Myb

Pro B cells Ebf1, Sm

Myeloerythroid

MK (megakaryocytes) Gata1

Macrophages Cebpa,

Erythroid Eto2, G

Leukemias

Leukemia Notch1

MLL leukemia Af9

T cell leukemia RbpJ

T-ALL Notch1

MEL Cmyb, C
and peak regions from single ChIP-Seq experiments have
been described previously [34,35]. However, these tools do
not exploit the ever-increasing number of datasets for
multiple TFs in the same or related cell types.

Novershtern et al. [14] reported gene expression profiles
in 38 distinct purified populations of human hematopoietic
cells ranging from hematopoietic stem cells, through
multiple progenitor and intermediate maturation states, to
12 terminally differentiated cell types. Using the Module
Networks algorithm [36], they identified 80 modules or
gene sets of tightly coexpressed genes with distinct expres-
sion patterns and enrichment for specific biological func-
tions, which they termed induction patterns. When we
used the 80 Novershtern modules as gene sets, 37 of 80
gene sets (Supplementary Table 2, online only, available
at www.exphem) showed a statistically significant correla-
tion with one or more TF peak files from our compendium
when using the previously described ChIP Enrichment
Analysis (ChEA) [34] and Csan [35] tools. Of note, there
was a good overlap between the cell type used for ChIP-
Seq and the expression/induction patterns as annotated by
Novershtern et al. (Supplementary Table 2). For example,
gene set 727 with induction pattern ‘‘Late Erythroid’’ was
associated with Eto2 in Erythroid, Scl, and Ldb1 in HSCs
and Scl in MELs, and gene set 979 overrepresented for
‘‘immune response’’ genes with induction pattern ‘‘Late
MYE’’ was associated with Cebpa, Cebpb, P65, Pparg,
and Stat1 in macrophages.

Because the ChEA [34] and Csan [35] tools could asso-
ciate candidate upstream regulators to less than half of the
80 Novershtern gene sets, we set out to develop an alterna-
tive approach by incorporating the concept of weighted
ption factors in 15 major blood lineages

Transcription factors

f, Foxo1, Oct2, Pax5, Pu.1

li1, Pu.1, Stat3, Stat4, Stat5, Stat5a, Stat5b, Stat6, Tbet

ag2, Ring1b, Runx1

db1, Scl

, Gata2, Gfi1b, Lmo2, Meis1, Pu.1, Lyl1, Runx1, Scl

Tcf7

ata2, Smad1

ing1b, Runx1

ad1

Cebpb, P65, Pparg, Pu.1, Stat1

ata1, Ldb1, Mtgr1, Pu.1, Scl

myc, Chd2, Gata1, JunD, MafK, Max, Mxi1, NelfE, Scl, Smc3, Tbp, Usf2

http://www.exphem
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peak-to-gene mapping recently reported as part of the
Genomic Regions Enrichment of Annotations Tool
(GREAT) [37]. GREAT links a list of ChIP-Seq peak
regions to gene lists with particular functional significance
and unlike previous approaches incorporates binding sites
not only in the promoter region of a gene. Taking inspira-
tion from this approach, we developed a new tool by
mapping each peak to its nearest gene within 50 kb and
then considering the number of binding events in each
gene locus to calculate the significance of association
between a gene locus and a given upstream regulator.
(Essentially this is the reverse of GREAT, which associates
peaks with genes, whereas our new procedure associates
genes with peaks). Specifically, our new tool determines
the number of binding events in the loci of genes of interest
for each ChIP dataset (Fig. 1A, red arrows), and then calcu-
lates a p value using a simple hypergeometric test. Datasets
with statistically significant overlaps (corrected p value cut-
off !0.001) are then selected by interrogating all ChIP da-
tasets independently against the gene list (Fig. 1B). When
applied to the 80 gene modules from Novershtern et al.
[14], our new tool reported significant associations with
ChIP-Seq peaks for 65 gene modules (Supplementary
Table 2, online only, available at www.exphem), which
corresponds to 81% of all gene sets compared with only
46% using the previously reported ChEA and Cscan tools.
Incorporation of weighted gene lists therefore results in
a significant increase in the percentage of gene modules
that can be linked to candidate upstream regulators. We
named this new approach Gene Set Control Analysis, or
GSCA. Only 61% of all Novershtern gene sets (49 of 80
gene modules) were enriched when the binding events
only in promoters were selected, thus highlighting the
likely importance of binding to nonpromoter regions, which
compose 57% of all binding events in our datasets.

GSCA correlates relevant combinations of transcription
factors with hematopoietic gene sets
To investigate the potential biological relevance of the
candidate upstream regulatory transcription factors
matched with the 65 Novershtern gene sets by GSCA, we
again used the induction patterns defined by Novershtern
et al. as a measure of lineage-specific expression. The
majority of gene sets (97%) showed good correspondence
between the induction patterns and the cell types in which
the TFs had been chipped (Supplementary Table 3, online
only, available at www.exphem).

For example, gene sets 667 and 829 (enriched for T cell
receptor activity) were associated by GSCA with Stats and
Gata3 in T cells, whereas gene sets 649 and 961 (enriched
for B cell receptor activity) were associated with Pu.1,
E2A, and Pax5 in B cells. Gene set 721 (involved in inflam-
matory and antibacterial response) was linked by GSCA
with Cebpa, Cebpb, P65, Pu.1, and Stat1 in macrophages.
Gene sets 727 and 889 with Late Ery induction pattern (en-
riched for protein amino acid glycosylation and blood
group antigen functional annotations) significantly overlap-
ped only with targets of Eto2, Gata2, Ldb1, Mtgr1, and Scl
in erythroid cells. Taken together therefore, there is good
concordance between the induction patterns of Novershtern
gene sets and the matching ChIP-Sequencing TF datasets
identified by GSCA.

Combinatorial regulatory pattern discovery from
multi factor ChIP-Seq data
Compared with previous tools, our new GSCA tool performs
better by associating gene lists with ChIP-Seq peaks by
calculating weighted associations between factors and genes
based on the number of binding events within a gene locus.
However, all individual ChIP-Seq datasets are treated inde-
pendently, thus making it difficult to infer whether two over-
represented transcription factors work combinatorially (e.g.
whether they show statistically significant co-occupancy of
the same regulatory regions), rather than binding to overlap-
ping sets of gene loci, but using distinct cis-regulatory
regions. To address this issue of combinatorial binding, we
developed a new tool called combinatorial GSCA (C-
GSCA), and then applied this new tool to our hematopoietic
ChIP-Seq compendium. For a given gene list, we first run
GSCA to select the TFs showing overrepresented binding.
Assuming that m TFs are selected out of 78 ChIP-seq data-
sets, we generate a binary matrix (n� m) of m columns rep-
resenting the m ChIP datasets and n rows representing the
genomic regions occupied by two or more of the m TFs,
with 1s and 0s indicating the presence or absence of binding,
respectively. We filter genomic regions bound by only one
factor (w16% of genomic regions; Supplementary Table 2,
online only, available at www.exphem) because they are
not informative in terms of combinatorial control mecha-
nisms. We then perform hierarchical clustering of n overrep-
resented ChIP datasets using Pearson’s correlation
coefficient as a distance measure. Unlike GSCA, all overrep-
resented ChIP datasets are considered together, making the
prediction of combinatorial control feasible (Fig. 2).

Using ChIP-Seq analysis of 10 transcription factors in the
hematopoietic progenitor cell line HPC7, we have shown
previously that combinatorial interactions between a heptad
of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and
FLI-1) were overrepresented in the loci of genes specifically
expressed in HSPCs and therefore associated with gene sets
specifically expressed in HSCs [12]. When the heptad-bound
genes were interrogated using GSCA, 49 of 78 ChIP-Seq
datasets were enriched, thus identifying multiple new tran-
scription factors as candidate upstream regulators in addition
to the seven factors (Supplementary Figure 1, online only,
available at www.exphem). Using C-GSCA, these 49 data-
sets could be split into four cell type–specific groups of T
cells, macrophages, HSCs, and erythroid (Supplementary
Figure 1, online only, available at www.exphem). This obser-
vation suggests that gene loci bound by the heptad in blood

http://www.exphem
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Figure 1. Schematic representation of the Gene Set Control Analysis (GSCA) protocol. For a given gene set of interest (red arrows), the number of peaks in

gene loci is determined and a p value is calculated using a hypergeometric test. The TFs from overrepresented ChIP datasets (corrected p ! 0.001, yellow

bars in the figure) are then reported as candidate upstream transcriptional regulators. (For interpretation of the reference to color in this figure legend, the

reader is referred to the web version of this article.)
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stem and progenitor cells not only include genes specifically
expressed in HSCs, but could also include a subset of genes
affiliated with various different hematopoietic differentiation
programsdan observation that would be consistent with the
concept of lineage priming developed in the 1990s [38].
These results suggested that the C-GSCA procedure outlined
heremay be useful more generally to associate hematopoietic
gene sets to upstream regulators and thus able to predict
combinatorial control mechanisms driving the expression
of a given gene set.
We next applied the new C-GSCA tool to all 80 hema-
topoietic gene sets from the Novershtern et al. study [14],
which allowed us to associate 65 of the 80 Novershtern
gene sets overrepresented for ChIP datasets using GSCA
for combinatorial TF signatures. For example, Novershtern
gene set 583 with induction pattern ‘‘Late Ery þ T/B
cell þ GRAN’’ is associated with entirely different sets
of transcription factors in two different cell types, because
it was linked with Gata1, Gata2, Scl, and Smad1 in
erythroid progenitors, and Rag2 in thymocytes, Max,
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Figure 2. (A) Schematic representation of combinatorial Gene Set Control Analysis (cGSCA). A binary matrix of combinatorial binding patterns is gener-

ated using the overrepresented ChIP datasets from GSCA. (B) A hierarchical tree is then generated by clustering similar patterns. Color figure online.
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Mxi1, and Tbp in mouse erythroleukemia (MEL) (Fig. 3A).
Similarly, gene set 745 with induction pattern ‘‘NK þ T
cell’’ is linked with Myb in myeloid progenitors and
Stat3, Stat4, and Stat5 in T cells (Fig. 3B). Indeed, more
than 60% (40 of 65) of the overrepresented Novershtern
gene sets with matched upstream regulators were linked
with more than one combinatorial pattern (Supplementary
Table 3, online only, available at www.exphem). Therefore,
unlike the GSCA approach (Fig. 1), C-GSCA has the poten-
tial to identify distinct subsets of candidate upstream regu-
lators for a given gene set (Fig. 2).

GSCA web tool
AsGSCA andC-GSCAprovide potentially powerful ways of
predicting candidate upstream regulators for a given list, we
developed a web tool to facilitate gene set control analysis for
the wider community (http://bioinformatics.cscr.cam.ac.uk/
GSCA/GSCA.html). In this section we provide a brief expla-
nation of the functionality of the GSCA web tool using
a recent transcriptome analysis of murine HSCs and early
multipotent, bipotent, and unipotent progenitors [15], which
reported nine gene expression signatures ranging from those
characteristic for the most immature HSCs to those affiliated
with differentiation into the individual hematopoietic line-
ages. We interrogated these nine experimentally obtained
gene expression signatures using the GSCA web tool. Eight
of these nine mouse stem–progenitor gene signatures showed
significant overlap with multiple ChIP-Seq data sets, thus
providing an independent test case to examine the biological
relevance of predicted combinatorial regulatory signatures in

http://www.exphem
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Figure 3. (A) Overrepresented regulators determined using GSCA (left) and C-GSCA (right) for gene module 583 from Novershtern et al. [14], with ‘‘Late

Ery þ T/B cells þ GRAN’’ induction pattern. Unlike GSCA, C-GSCA can separate overrepresented independent binding patterns in different cell types

(Gata1, Gata2, and Smad1 Erythroid progenitors and Max, Mxi1, and Tbp in MELs in this case).
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addition to testing the functionality of the web tool
(Supplementary Figure 3, online only, available at www.
exphem). Figure 4A shows a screenshot of the web tool in
which users can paste a query gene list or upload it from
a file (human or mouse).

Upon choosing GSCA, a gene list of interest is interro-
gated against 78 ChIP-Seq datasets across 15 blood cell
types. GSCA calculates the significance of overlap between
each ChIP-Seq dataset and the gene set of interest and
displays all ChIP-Seq datasets, with those showing enrich-
ment in yellow color. For example, the self-renewing signa-
ture (stem signature from Ng et al. [15]) is provided as
a test dataset for the users and shows statistically significant
overlap with multiple transcription factors in HPC7 and
progenitors. When the same stem signature gene list is
analyzed using C-GSCA, the overrepresented ChIP datasets
are clustered into two distinct cell type specific clusters
HPC7 and MK progenitors (Fig. 4B). Six of the seven tran-
scription factors in the HPC7 cluster overlap with the heptad
signatureda binding pattern that we have previously shown
is overrepresented in the loci of genes specifically expressed
inHSPCs and therefore associatedwith gene sets specifically
expressed in HSCs [12]. Similarly, the gene signature associ-
ated with the third wave of the myeloid lineage program
(d-my signatures) from Ng et al. [15] shows statistically
significant overlap with two combinatorial binding events,
Cebpa, Cebpb, Stat1, P65, and Pu.1 in macrophages and
Myb inmyeloid progenitors. In addition to showing the func-
tionality of the web tool, these results suggest that combina-
torial control signatures generated by C-GSCA have the
potential to provide insights into combinatorial transcrip-
tional control mechanisms, and that the GSCA web tool
provides access to this type of analysis to the wider
community.
GSCA analysis of gene sets associated with hematologic
malignancies
We have shown that GSCA can be used to link lineage-
specific gene sets to combinations of candidate upstream
regulatory TFs, and these associations are consistent with
expectations based on current knowledge of regulatory
control within hematopoiesis. This consistency attests to
the potential robustness of the GSCA approach and
suggests that it may also be useful to reveal biological
insights into transcriptional programs operating in malig-
nant hematopoietic cells, where diagnostic or prognostic
gene sets have been derived for many types of leukemia,
yet the combinations of TFs driving expression of these
gene sets remain largely unknown. We therefore explored

http://www.exphem
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Figure 3. (continued). (B) Overrepresented regulators determined using GSCA (left) and C-GSCA (right) for gene module 745 from Novershtern et al. [14]

with ‘‘NK þ T cell’’ induction pattern. C-GSCA is able to separate combinatorial patterns in T cells and myeloid progenitors.
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the utility of GSCA for linking leukemic gene sets with
candidate upstream regulators.

We first analyzed a gene set recently reported by McCor-
mack et al. [39], in which the investigators showed that over-
expression of Lmo2 in T-lymphoid progenitors induced
a preleukemic state characterized by extensive self-renewal
capacity. When the authors performed comparative gene
expression profiling of normal and LMO2 expressing thymo-
cytes, they noted upregulation of several HSC specific genes
and suggested that ectopic expression ofLmo2might activate
an HSC specific transcription program. To test this hypoth-
esis further, we analyzed the list of genes upregulated in
Lmo2 transgenic DN thymocytes [39] by GSCA. This anal-
ysis suggested that the LMO2 overexpression gene set was
under the transcriptional control of stem cell transcription
factors such as Scl, Gata2, Runx1, Fli1 and Erg and also
showed a strong overlap with LMO2 binding itself in non-
leukemic progenitor cells.

We next analyzed gene expression profiling data gener-
ated as part of a recent study investigating transcriptional
programs downstream of mixed lineage leukemia (MLL)
transformation in mouse models of acute myeloid leukemia
(AML) [40]. Expression analyses following MLL-AF9
withdrawal had prompted the authors to propose a model
whereby MLL-AF9 enforces a Myb-coordinated program
of aberrant self-renewal that involves genes linked to
leukemia stem cell potential and poor prognosis in human
AML patients. Of note, whenwe analyzed the genes downre-
gulated following MLL-AF9 withdrawal by GSCA, we
observed statistically significant overlaps with the two Myb
ChIP-Seq datasets in our compendium (Fig. 5A). In addition,
GSCA also recovered associations with MAX and the MAX
interacting protein MXI1, both of which have also been
linked to a range of human cancers [41]. GSCA analysis
therefore not only corroborated the findings by Zuber et al.
[40]; it also provided additional hypotheses on likely mech-
anisms that might control transcriptional programs down-
stream of MLL-AF9 in AML.

The final leukemic gene set analyzed by GSCAwas taken
from a 2009 study of the transcriptional programs in
leukemic stem cells [42]. Comprehensive gene expression
profiling analysis had lead the authors to speculate that
leukemia stem cells in an MLL-driven mouse model of
AML are characterized by a transcriptional program shared
with embryonic rather than adult stem cells. This conclusion
was subsequently challenged when it was suggested that the
overlap with embryonic stem cell transcriptional programs
was the reflection for a shared dependence on c-MYCactivity
rather than related to the stemness phenotype of ES cells [43].
Analysis of the leukemia stem cell associated gene set from



Figure 4. (A) Screen shot of Gene Set Control Analysis (GSCA) web tool with an option to either paste user defined gene list or upload from file, and to

select method (GSCA or C-GSCA). (B) GSCA and C-GSCA output for stem signature dataset from Ng et al. [15] showing two cell type–specific distinct

combinatorial patterns.
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Figure 5. (A) Overrepresented regulators determined by C-GSCA for genes down regulated after MLL-AF9 withdrawal from Zuber et al. [40]. C-GSCA

supports the notion that AF9 induces an Myb coordinated response. (B) Overrepresented regulators determined by C-GSCA for genes positively correlated

with LSC frequency from Somervaille et al. [42]. C-GSCA identified cMyc and several other transcription factors to be overrepresented.
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the Somervaille et al. [42] study by GSCA revealed a strong
association with c-MYC ChIP-Seq datasets (Fig. 5B).
However, therewere also statistically significant associations
withmany additional ChIP-Seq datasets. GSCA analysis was
therefore supportive of a role for c-MYC in the similarity
between leukemic and embryonic stem cell expression signa-
tures, but suggested that TFs more specifically expressed
within blood cells also make important contributions to the
leukemia stem cell transcriptional program. Of note, genes
negatively associated with the leukemia stem cell phenotype
in the study by Somervaille et al. [42] did not show the over-
lap with c-MYC, but it showed a distinct pattern of correlated
ChIP-Seq datasets for the hematopoietic TFS,which interest-
ingly contained several datasets for mature macrophages and
was thus consistent with a relatively immature differentiation
stage for the leukemia stem cells (Supplementary Figure 2,
online only, available at www.exphem).

The application of GSCA to leukemic expression data-
sets supports the notion that integrated analysis of
genome-wide transcription factor binding maps has signif-
icant potential as a new addition to the toolbox used by
experimentalists to derive new hypothesis for experimental
validation, which in the case of our current implementation
of GSCA analysis would be geared specifically toward the
identification of transcriptional mechanisms that control the
behavior of normal and leukemic blood cells.
Discussion
Gene expression arrays have been used widely to charac-
terize genes responsible for a particular cellular phenotype.
The differentially expressed genes thus obtained can then
be used for functional enrichment analysis. However, the
important question of ‘‘What upstream regulatory mecha-
nisms are responsible for the differential expression?’’ is
not specifically addressed when using current approaches
for gene set analysis, such as Gene Ontology or Gene Se
Enrichment analysis tools.

As a result of the rapid progress in next-generation
sequencing technology, ChIP-Seq analysis has become
a favorite tool to investigate in vivo binding events because
it offers higher resolution, less noise, and greater coverage
compared with other techniques [44]. Nevertheless, the
generation of genome-wide binding maps for multiple tran-
scription factors across different cell types remains a formi-
dable challenge for individual labs [45]. ChIP-Seq datasets
from different labs can, however, be integrated at the
computational level, which we recently demonstrated using
53 mouse ChIP-Seq experiments from different laboratories
across the hematopoietic differentiation tree [8]. Since then,
we have added 60 new ChIP datasets, thus more than
doubling the size of the original compendium. In addition
to highlighting a potentially major portion of the total regu-
latory genome involved in hematopoietic gene expression,
a data compendium of this scale should have the potential
to provide new insights into regulatory mechanisms govern-
ing gene sets of interest.

To explore this further, we developed GSCA to identify en-
riched combinatorial binding patterns of transcription factors
regulating a given gene set. This method uses experimental
binding evidence, keeping the cell type specific context, unlike
prediction methods based on overrepresentation of cis-regula-
tory sequencemotifs in thepromoters [46].Using80 clusters of
tightly coexpressed genes in 38 hematopoietic cell types [14],
we demonstrated that the transcriptional control mechanisms
predicted are biologically coherent, and that GSCA performs
better than current methods. Of note, this analysis also demon-
strated that GSCA can be used in a cross-species fashion, with
human gene sets analyzed using a murine ChIP-Seq compen-
dium in this particular instance. The rationale for this cross-
species capability is provided by recent observations from
ChIP-Seq data for the same transcription factor in multiple
species where it was shown that, although a significant propor-
tion of binding locations (peaks) are not conserved, there tends
to be what was termed binding site turnover for these sites
where loss of binding in one species is accompanied by gains
elsewhere in the same gene locus in the other species [47].
The conserved and many of the nonconserved binding sites
therefore map to the same gene loci, such as in human–mouse
comparisons. Just as for many other gene set analysis tools,
cross-species capability in GSCA is facilitated by the use of
standard gene symbols that are standardized across mammals.

We further illustrated the utility of the GSCA tool to
unravel potential regulatory mechanisms underlying a range
of leukemia gene sets, thus suggesting potential future
application of GSCA to build hypotheses to investigate
transcriptional control mechanisms responsible for the
expression of gene sets with diagnostic, prognostic, or ther-
apeutic relevance. Finally, we built a web tool to facilitate
similar analysis for the wider scientific community.
Complementary to gene ontology functional overrepresen-
tation analysis, GSCA calculates overrepresentation of
binding events for a gene list of interest, thus predicting
possible transcriptional control mechanisms.

Given the significant investment into several collabora-
tive projects such as the ENCODE (Encyclopaedia of
DNA Elements) and modENCODE (model organism
ENCODE) initiatives [48,49], we are likely to witness
a near exponential increase in ChIP-Seq datasets over the
coming years. Although our current implementation of
the GSCA web tool is geared toward predicting candidate
upstream regulators within hematopoietic cells, the
approach can be applied easily to other tissues when suffi-
cient ChIP-Seq data become available.
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Supplementary Figure 1. GSCA analysis of Heptad signature identified by Wilson et al. [12].
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Supplementary Figure 2. Hierarchical maintenance of MLL myeloid leukemia stem cells uses a transcriptional program shared with embryonic rather than

adult stem cells [42]. (A) Probe sets positively correlated with LSC frequency. (B) Probe sets negatively correlated with leukemia stem cell (LSC) frequency.
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Supplementary Figure 3. GSCA analysis of eight of nine gene expression signatures identified by Ng et al. [15].
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Supplementary Table 1. The overlap between tissue specific enhancers

identified by Pennacchio et al. [13] and the blood compendium showing

that the enhancers in the compendium are highly blood specific

Tissue type

Number of

enhancers Overlap p value

adipose tissue 213 86 0.99995

Adrenal gland 176 47 1

Amygdala 218 24 1

B220þ B cells 212 158 1.91E-10

Bladder 225 48 1

Blastocysts 191 63 1

Bone 200 87 0.99795

Bone marrow 224 101 0.99466

Brown fat 224 47 1

CD4þ T cells 226 148 0.000149

CD8þ T cells 194 137 7.00E-07

Cerebellum 180 24 1

Cerebral cortex 190 29 1

Digits 263 56 1

Dorsal root ganglia 193 45 1

Dorsal striatum 193 30 1

Embryo day 10 171 58 1

Embryo day 6 167 68 0.99961

Embryo day 7 163 51 1

Embryo day 8 170 44 1

Embryo day 9 174 63 1

Epidermis 292 58 1

Eye 255 32 1

Fertilized egg 176 33 1

Frontal cortex 197 21 1

Heart 227 62 1

Hippocampus 201 30 1

Hypothalamus 183 25 1

Kidney 230 43 1

Large intestine 208 62 1

Liver 267 27 1

Lung 241 75 1

Lymph node 245 160 0.000102

Mammary gland 198 33 1

Med 192 40 1

Olfactory bulb 194 32 1

Oocyte 173 37 1

Ovary 192 46 1

Pancreas 211 45 1

Pituitary 187 34 1

Placenta 202 59 1

Preoptic 176 29 1

Prostate 221 49 1

Salivary gland 213 46 1

Skeletal muscle 224 44 1

Small intestine 259 65 1

Snout epidermis 275 51 1

Spinal cord lower 197 39 1

Spinal cord upper 196 26 1

Spleen 228 108 0.97033

Stomach 206 46 1

Substantia nigra 183 29 1

Testis 197 31 1

Thymus 194 111 0.15904

Thyroid 239 47 1

Tongue 289 51 1

Trachea 250 72 1

Trigeminal 193 30 1

(continued)

Supplementary Table 1. (continued )

Tissue type

Number of

enhancers Overlap p value

Umbilical cord 223 44 1

Uterus 181 58 1

Vomeralnasal organ 252 66 1
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Supplementary Table 2. Thirty-seven gene sets of 80 with respective induction patterns from Novershtern et al. [14] found enriched using the method of

Lachmann et al. [34] and Zambelli et al. [35]

Novershtern et al. clusters Candidate upstream regulators

# Induction pattern Transcription factor Cell type

583 Late Ery þ T/B cell þ GRAN TCF7

GFI1B

SCL

MAX, MXI1, NELFE, TBP

ETS1

FLI1

RAG2

EML

Erythroid

HPC

MEL

MK progenitors

T cells

Thymocytes

607 TCF7

GFI1B, SCL

P65, PPARG

MXI1, NELFE

MYB

FLI1

RAG2, RING1B

EML

HPC7

Macrophages

MEL

Myeloid progenitors

T cells

Thymocytes

649 B cell E2A, EBF1, OCT2, PAX5, PU1

RUNX1

GFI1B, LDB1, MTGR1, PU1, SCL

SCL

FLI1, GATA2, MEIS1, PU1, SCL

CEBPA, CEBPB, P65, STAT1

CMYB, CHD2, JUND, MAFK, MAX, MXI1, NELFE, SCL

GATA1

CBFB, RING1B, RUNX1

AF9

MYB

EBF1, SMAD1

RBPJ

FLI1, GATA3, PU1, STAT3, STAT5A, STAT5B, STAT5, TBET

CBFB, RAG2, RUNX1

B cells

EML

Erythroid

HPC

HPC7

Macrophages

MEL

MK cells

MK progenitors

MLL leukemia

Myeloid progenitors

Pro B cells

T cell leukemia

T cells

Thymocytes

655 Mye LDB1, SCL

NELFE, SCL

HPC

MEL

661 Late Ery þ T/B – cell þ GRAN TCF7

NELFE

FLI1

RAG2

EML

MEL

T Cells

Thymocytes

667 T cell þ NK RUNX1

GATA2, RUNX1

RUNX1

GATA3, STAT5A, STAT5B

CBFB, RUNX1

EML

HPC

HPC7

T Cells

Thymocytes

673 T/B cell E2A, EBF1, OCT2

GATA2, RUNX1, SCL

CEBPA, CEBPB, P65, PPARG

EBF1, SMAD1

FLI1, GATA3, PU1, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6

CBFB, RING1B, RUNX1

B cells

HPC7

Macrophages

Pro B cells

T cells

Thymocytes

685 Early Mye þ T/B cell þ GRAN RUNX1, TCF7

GFI1B, PU1

SCL

CEBPA, CEBPB, P65

CMYC, MAX, MXI1, NELFE, TBP

CBFB, ETS1, RUNX1

MYB

FLI1, STAT4, STAT5B, STAT6, TBET

CBFB, RAG2, RING1B, RUNX1

EML

Erythroid

HPC7

Macrophages

MEL

MK progenitors

Myeloid progenitors

T cells

Thymocytes

703 T/B cell RAG2 Thymocytes

715 Early Mye þ T/B cell þ GRAN RAG2 Thymocytes

721 Late MYE þ DCs CEBPA, CEBPB, P65 Macrophages

(continued)
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Supplementary Table 2. (continued )

Novershtern et al. clusters Candidate upstream regulators

# Induction pattern Transcription factor Cell type

727 Late Ery ETO2

LDB1, SCL

SCL

Erythroid

HPC

MEL

733 HSE þ Early Mye RUNX1, TCF7

GATA1, GATA2

GFI1B, MTGR1, SCL

GATA2, GFI1B, LMO2, MEIS1, PU1, SCL

CEBPA, CEBPB, P65, STAT1

GATA1, MAFK, MXI1, NELFE, TBP

GATA1

GATA1, GATA2, RING1B

MYB

GATA3, STAT3, STAT5A, STAT5B, STAT5, STAT6, TBET

RAG2, RING1B, RUNX1

EML

Erythroid progenitors

Erythroid

HPC7

Macrophages

MEL

MK cells

MK progenitors

Myeloid progenitors

T cells

Thymocytes

739 Late Ery þ T/B cell þ GRAN TCF7

MXI1, NELFE

FLI1

RAG2

EML

MEL

T cells

Thymocytes

763 Late MYE EBF1

RUNX1, TCF7

PU1

FLI1, GFI1B, RUNX1, SCL

CEBPA, CEBPB, P65, PPARG, STAT1

NELFE

CBFB

GATA3, STAT4, TBET

RAG2

B cells

EML

Erythroid

HPC7

Macrophages

MEL

MK progenitors

T cells

Thymocytes

793 Late Ery þ T/B – cell þ GRAN TCF7

SCL

NELFE

ETS1, RUNX1

FLI1

CBFB, RAG2

EML

HPC

MEL

MK progenitors

T cells

Thymocytes

799 NK þ T cells (2) E2A, FOX01, OCT2, PAX5, PU1

RUNX1

ETO2, PU1

GATA2, LDB1, SCL

ERG, FLI1, GATA2, GFI1B, LMO2, LYL1, MEIS1, PU1, RUNX1, SCL

CEBPA, CEBPB, P65, PPARG, PU1, STAT1

CMYB, CHD2, JUND

GATA1

CBFB, GATA1, GATA2, RING1B

MYB

SMAD1

FLI1, GATA3, PU1, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

CBFB, RAG2, RUNX1

B cells

EML

Erythroid

HPC

HPC7

Macrophages

MEL

MK cells

MK progenitors

Myeloid progenitors

Pro B cells

T cells

Thymocytes

811 Early Mye þ T/B cell þ GRAN TCF7

SCL

CMYC, MXI1, NELFE, TBP, USF2

ETS1, RUNX1

FLI1

RAG2, RUNX1

EML

HPC7

MEL

MK progenitors

T cells

Thymocytes

(continued)
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Supplementary Table 2. (continued )

Novershtern et al. clusters Candidate upstream regulators

# Induction pattern Transcription factor Cell type

817 T/B cell E2A, EBF1, OCT2, PAX5

RUNX1, TCF7

ETO2, GFI1B, PU1, SCL

GATA2, SCL

ERG, FLI1, GFI1B, LMO2, MEIS1, PU1, RUNX1, SCL

CEBPA, CEBPB, P65, PPARG, STAT1

CMYB, CHD2, MXI1, NELFE, SCL

CBFB, GATA2, RING1B, RUNX1

EBF1, SMAD1

FLI1, GATA3, STAT3, STAT4, STAT5A, STAT5B

CBFB, RAG2, RING1B, RUNX1

B cells

EML

Erythroid

HPC

HPC7

Macrophages

MEL

MK progenitors

Pro B cells

T cells

Thymocytes

823 Early Mye þ T/B cell þ GRAN MXI1, NELFE

FLI1

RAG2

MEL

T cells

Thymocytes

835 Early Mye þ T/B – cell þ GRAN GFI1B

ERG

CMYC, CHD2, MAX, NELFE, TBP

ETS1, RUNX1

FLI1, STAT3, STAT6

RAG2

Erythroid

HPC7

MEL

MK progenitors

T cells

Thymocytes

841 Early Mye þ T/B cell þ GRAN TCF7

SCL

NOTCH1

CMYC, MAX, MXI1, NELFE, TBP

ETS1

FLI1

RAG2

EML

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes

859 T cell þ NK RING1B Thymocytes

871 HSC þ Early MYE MXI1, NELFE

FLI1

RAG2

MEL

T cells

Thymocytes

883 Late Ery þ T/B cell þ GRAN PU1

TCF7

GATA1

GATA1, GFI1B

ERG, SCL

CEBPB

CMYC, CHD2, MXI1, NELFE, TBP

CBFB, RING1B, RUNX1

FLI1, STAT3, STAT4, STAT5, STAT6, TBET

RAG2, RING1B, RUNX1

B cells

EML

Erythroid progenitors

Erythroid

HPC7

Macrophages

MEL

MK progenitors

T cells

Thymocytes

889 Late Ery GATA1, GATA2, SMAD1

ETO2, GATA1, LDB1, MTGR1, SCL

GATA2, LDB1, SCL

LMO2, RUNX1

CEBPA, CEBPB

CMYB, GATA1, MAFK, MAX, SCL, USF2

GATA1

GATA1, GATA2, RING1B, RUNX1

Erythroid progenitors

Erythroid

HPC

HPC7

Macrophages

MEL

MK cells

MK progenitors

901 Early Mye þ T/B cell þ GRAN TCF7

GFI1B

NOTCH1

CMYC, MXI1, NELFE, TBP

ETS1

FLI1, STAT5B

RAG2, RUNX1

EML

Erythroid

Leukemia

MEL

MK progenitors

T cells

Thymocytes

(continued)
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Supplementary Table 2. (continued )

Novershtern et al. clusters Candidate upstream regulators

# Induction pattern Transcription factor Cell type

907 Late Ery þ T/B cell þ GRAN TCF7

GATA1, GATA2

ETO2, GATA1, GFI1B, MTGR1

LDB1, SCL

NOTCH1

CMYC, GATA1, MAX, MXI1, NELFE, SCL, TBP

CBFB, ETS1, GATA1, RING1B

FLI1, STAT3, STAT5B, STAT6, TBET

RAG2

EML

Erythroid progenitors

Erythroid

HPC

Leukemia

MEL

MK progenitors

T cells

Thymocytes

925 Early Mye þ T/B cell þ GRAN TCF7

CMYC, MXI1, NELFE, TBP

FLI1, STAT6

RAG2

EML

MEL

T cells

Thymocytes

943 T/B cell TCF7

NELFE

ETS1

FLI1

RAG2

EML

MEL

MK progenitors

T cells

Thymocytes

961 B cell E2A, EBF1, OCT2 B cells

973 HSE þ Early Mye NELFE MEL

979 Late MYE CEBPA, CEBPB, P65, PPARG, STAT1

MYB

Macrophages

Myeloid progenitors

985 Early Mye þ T/B – cell þ GRAN CHD2 MEL

991 T/B cell E2A, OCT2, PAX5, PU1

RUNX1, TCF7

GATA1, GATA2

GATA1, GFI1B, PU1

ERG, FLI1, GFI1B, MEIS1, PU1

CEBPA, CEBPB, P65, PPARG, STAT1

CMYC, CHD2, MAX, MXI1, NELFE, TBP

CBFB, ETS1, RING1B, RUNX1

MYB

EBF1

FLI1, PU1, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

B cells

EML

Erythroid progenitors

Erythroid

HPC7

Macrophages

MEL

MK progenitors

Myeloid progenitors

Pro B cells

T cells

Thymocytes

1003 Late Ery þ T/B – cell þ GRAN NELFE

RAG2

MEL

Thymocytes

1021 Early Mye þ T/B cell þ GRAN TCF7

GFI1B

NELFE

ETS1

FLI1

RAG2, RING1B, RUNX1

EML

Erythroid

MEL

MK progenitors

T cells

Thymocytes
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Supplementary Table 3. Sixty-five gene sets of 80 with respective induction patterns from Novershtern et al. [14] enriched for transcription factor binding

regions across multiple blood tissues using GSCA: 63 of 65 show cell type and induction pattern matching

Novershtern et al. clusters Combinatorial control signature

No. Induction pattern Transcription factor Cell type

399 None STAT4, STAT5 T cells

559 NK þ T cell (2) STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET T cells

571 Late MYE CEBPA, CEBPB, P65, PU1, STAT1 Macrophages

583 Late ERY þ T/B cell þ Gran GATA1, GATA2, SMAD1

SCL

SCL

MAX, MXI1, TBP

RAG2

Erythroid progenitors

Erythroid

HPC

MEL

Thymocytes

607 Early MYE þ T/B cell þ Gran PU1

ERG, FLI1, GFI1B, MEIS1, PU1, SCL

CEBPA, CEBPB, P65, PPARG, PU1, STAT1

MYB

GATA3, PU1, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

B cells

HPC7

Macrophages

Myeloid progenitors

T cells

613 T/B – cell PU1 B cells

619 Late MYE CEBPA, CEBPB, PU1, STAT1 Macrophages

637 Late Ery GATA1, GATA2, SMAD1

GATA1, LDB1, MTGR1, SCL

ERG, LDB1

ERG

GATA1, SCL

GATA1, RING1B, RUNX1

Erythroid progenitors

Erythroid

HPC

HPC7

MEL

MK progenitors

643 HSE þ Early Mye GATA2 HPC7

649 B cells E2A, PAX5, PU1

CEBPA, CEBPB, P65, PU1, STAT1

B cells

Macrophages

655 Mye GATA1, GATA2, SMAD1

GATA1, LDB1, MTGR1, SCL

LDB1, SCL

CEBPB, P65, PU1, STAT1

CMYB, CMYC, GATA1, MAFK, MXI1, SCL, TBP

CBFB, GATA1, RING1B

Erythroid progenitors

Erythroid

HPC

Macrophages

MEL

MK progenitors

661 Late Ery þ T/B cell þ GRAN PU1

GATA1, GATA2

CMYB, CHD2, GATA1, MXI1, NELFE, TBP

ETS1

FLI1

RAG2

B cells

Erythroid progenitors

MEL

MK progenitors

T cells

Thymocytes

667 T cell þ NK GATA3, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

CBFB, RAG2, RING1B, RUNX1

T cells

Thymocytes

673 T/B cell E2A, OCT2, PU1

CEBPB, P65, PU1, STAT1

GATA3, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

B cells

Macrophages

T cells

679 HSE þ Early Mye GATA2 Erythroid progenitors

685 Late MYE þ T/B cell þ GRAN RUNX1, TCF7

GFI1B, PU1

ERG, PU1, SCL

CEBPA, CEBPB, P65, PU1, STAT1

CMYC, GATA1, MXI1, NELFE, TBP

CBFB, ETS1

FLI1, PU1

RAG2, RUNX1

EML

Erythroid

HPC7

Macrophages

MEL

MK progenitors

T cells

Thymocytes

703 T/B cell TCF7

GFI1B

ERG, PU1

NOTCH1

CMYC, MAX, MXI1, NELFE, TBP

CBFB, ETS1

FLI1, STAT3, STAT4, STAT5B, STAT6, TBET

CBFB, RAG2

EML

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes

(continued)
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Supplementary Table 3. (continued )

Novershtern et al. clusters Combinatorial control signature

No. Induction pattern Transcription factor Cell type

709 General mild induction ETO2

AF9

Erythroid

MLL leukemia

715 Early MYE þ T/B cell þ GRAN PU1

TCF7

GFI1B

CEBPA, CEBPB, PU1, STAT1

CMYC, GATA1, MXI1, NELFE, TBP

ETS1

FLI1

RAG2

B cells

EML

Erythroid

Macrophages

MEL

MK progenitors

T cells

Thymocytes

721 Late MYE þ DCs CEBPA, CEBPB, P65, PU1, STAT1

MYB

Macrophages

Myeloid progenitors

727 Late Ery GATA1, GATA2, SMAD1

ETO2, GATA1, GFI1B, LDB1, MTGR1, SCL

LDB1, SCL

CMYC, GATA1, MAFK, MAX, MXI1, SCL, TBP

CBFB, GATA1, GATA2, RING1B, RUNX1

Erythroid progenitors

Erythroid

HPC

MEL

MK progenitors

733 HSC þ Early MYE CEBPA, CEBPB, P65, PU1, STAT1

MYB

Macrophages

Myeloid progenitors

739 Late ERY þ T/B cell þ Gran PU1

TCF7

GATA1, GATA2

GFI1B, PU1

ERG, PU1

NOTCH1

CMYC, CHD2, GATA1, MAX, MXI1, NELFE, TBP

CBFB, ETS1, RUNX1

FLI1

RAG2, RUNX1

B cells

EML

Erythroid progenitors

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes

745 General mild induction MYB

STAT3, STAT4, STAT5

Myeloid progenitors

T cells

757 T cell þ NK TCF7

CMYC, MAX, MXI1, NELFE, TBP

FLI1, STAT3, STAT5, TBET

RAG2

EML

MEL

T cells

Thymocytes

763 Late MYE ERG, FLI1

CEBPA, CEBPB, P65, PPARG, PU1, STAT1

PU1, STAT3, STAT4, STAT5, TBET

HPC7

Macrophages

T cells

769 T/B cell PU1

CEBPA, CEBPB

GATA3, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

B cells

Macrophages

T cells

775 Mye GATA1 MK cells

781 General mild induction NOTCH1 TALL

787 MYE SMAD1

CEBPA, CEBPB, STAT1

GATA1, MAFK

Erythroid progenitors

Macrophages

MEL

793 Late ERY þ T/B cell þ Gran PAX5, PU1

TCF7

GATA1, GATA2, SMAD1

GATA1, PU1, SCL

PU1, SCL

PU1

CEBPA, CEBPB, PU1, STAT1

CMYB, CMYC, GATA1, MAX, MXI1, NELFE, SCL, TBP

GATA1

CBFB, ETS1, RING1B, RUNX1

FLI1, GATA3, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

CBFB, RAG2, RUNX1

B cells

EML

Erythroid progenitors

Erythroid

HPC

HPC7

Macrophages

MEL

MK cells

MK progenitors

T cells

Thymocytes

(continued)
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Supplementary Table 3. (continued )

Novershtern et al. clusters Combinatorial control signature

No. Induction pattern Transcription factor Cell type

799 NK þ T cell (2) E2A

CEBPA, CEBPB, P65, PU1, STAT1

GATA3, PU1, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

B cells

Macrophages

T cells

805 HSE þ Early Mye ETO2 Erythroid

811 Late MYE þ T/B cell þ GRAN TCF7

GFI1B

ERG, SCL

CEBPA, CEBPB, PU1

CMYC, CHD2, MAX, MXI1, NELFE, TBP, USF2

CBFB, ETS1, RUNX1

FLI1, STAT4, STAT5B, STAT5, STAT6, TBET

CBFB, RAG2, RING1B, RUNX1

EML

Erythroid

HPC7

Macrophages

MEL

MK progenitors

T cells

Thymocytes

817 T/B cell E2A, EBF1, PAX5, PU1

ERG, MEIS1, PU1

CEBPA, CEBPB, P65, PPARG, PU1, STAT1

RING1B

EBF1, SMAD1

FLI1, PU1, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

CBFB, RAG2, RUNX1

B cells

HPC7

Macrophages

MK progenitors

Pro B cells

T cells

Thymocytes

823 Early MYE þ T/B cell þ GRAN TCF7

GATA2

GFI1B

SCL

NOTCH1

CMYC, CHD2, MAX, MXI1, NELFE, TBP

CBFB, ETS1

RBPJ

FLI1, STAT3, STAT6

RAG2

EML

Erythroid progenitors

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cell leukemia

T cells

Thymocytes

829 T cell þ NK E2A

GATA3, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET

CBFB, RUNX1

B cells

T cells

Thymocytes

835 Early MYE þ T/B cell þ GRAN PAX5

TCF7

GFI1B

ERG

NOTCH1

CMYC, CHD2, MAX, MXI1, NELFE, TBP

CBFB, ETS1, RUNX1

RBPJ

FLI1

RAG2

B cells

EML

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cell leukemia

T cells

Thymocytes

841 Early MYE þ T/B cell þ GRAN PU1

TCF7

GFI1B, PU1

ERG, GFI1B, PU1, SCL

NOTCH1

PU1

CMYC, CHD2, MAX, MXI1, NELFE, TBP

ETS1, RUNX1

AF9

RBPJ

FLI1, PU1, STAT3, STAT4, STAT5B, STAT6, TBET

RAG2

B cells

EML

Erythroid

HPC7

Leukemia

Macrophages

MEL

MK progenitors

MLL leukemia

T cell leukemia

T cells

Thymocytes

(continued)
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Supplementary Table 3. (continued )

Novershtern et al. clusters Combinatorial control signature

No. Induction pattern Transcription factor Cell type

847 Late Ery þ T/B cell þ GRAN PAX5

TCF7

GATA1, GFI1B

GFI1B

NOTCH1

CMYC, CHD2, MAX, MXI1, NELFE, TBP

CBFB, ETS1, RUNX1

RBPJ

FLI1, STAT3, STAT4, STAT5B, STAT6, TBET

RAG2

B cells

EML

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cell leukemia

T cells

Thymocytes

853 Late MYE PU1

ERG, PU1

CEBPA, CEBPB, P65, PU1, STAT1

PU1, STAT3, STAT4, STAT5A, STAT5, STAT6

B cells

HPC7

Macrophages

T cells

859 T cell þ NK GATA3, STAT3, STAT5, TBET T cells

865 HSE þ early Mye GATA2, SMAD1

GATA1

Erythroid progenitors

MEL

871 HSE þ Early MYE TCF7

GFI1B

ERG, MEIS1, PU1

NOTCH1

CEBPA, CEBPB, PU1, STAT1

CMYC, MAX, MXI1, NELFE, TBP

CBFB

FLI1, STAT3, STAT6, TBET

RAG2

EML

Erythroid

HPC7

Leukemia

Macrophages

MEL

MK progenitors

T cells

Thymocytes

883 Late MYE þ T/B cell þ Gran TCF7

GATA1, GFI1B

SCL, SCL

SCL

CMYC, CHD2, MXI1, NELFE, TBP

RING1B, RUNX1

FLI1, STAT4, STAT6, TBET

RAG2, RUNX1

EML

Erythroid

HPC

HPC7

MEL

MK progenitors

T cells

Thymocytes

889 Late ERY GATA1, GATA2, SMAD1

ETO2, GATA1, LDB1, MTGR1, SCL

LDB1, SCL

GATA1, SCL

GATA1, GATA2, RING1B

STAT4

Erythroid progenitors

Erythroid

HPC

MEL

MK progenitors

T cells

895 Late ERY GATA2

GATA1, LDB1

CEBPA, CEBPB, PU1, STAT1

MXI1

Erythroid progenitors

Erythroid

Macrophages

MEL

901 Late MYE þ T/B cell þ Gran TCF7

GATA1, GATA2, SMAD1

GFI1B, PU1

GFI1B

NOTCH1

CMYC, GATA1, MAX, MXI1, NELFE, TBP

CBFB, ETS1

FLI1, STAT3, STAT5B, STAT5

CBFB, RAG2, RING1B, RUNX1

EML

Erythroid progenitors

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes

(continued)
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Supplementary Table 3. (continued )

Novershtern et al. clusters Combinatorial control signature

No. Induction pattern Transcription factor Cell type

907 Late ERY þ T/B cell þ Gran PAX5, PU1

TCF7

GATA1, GATA2, SMAD1

ETO2, GATA1, GFI1B, LDB1, MTGR1, SCL

ERG, LDB1, SCL

ERG

NOTCH1

CMYB, CMYC, CHD2, GATA1, MAX, MXI1, NELFE, SCL, TBP

CBFB, ETS1, GATA1, RING1B, RUNX1

FLI1

RAG2

B cells

EML

Erythroid progenitors

Erythroid

HPC

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes

919 HSE þ Early Mye FOX01

ERG

CMYC, MXI1, NELFE, TBP

B cells

HPC7

MEL

925 Early MYE þ T/B cell þ GRAN PAX5, PU1

TCF7

GATA1, GATA2, SMAD1

GATA1, GFI1B, PU1

ERG, SCL, SCL

ERG, SCL

CMYC, CHD2, GATA1, MAX, MXI1, NELFE, SCL, TBP

CBFB, ETS1, RING1B, RUNX1

FLI1, STAT3, STAT4, STAT5B, STAT5, STAT6, TBET

RAG2, RING1B

B cells

EML

Erythroid progenitors

Erythroid

HPC

HPC7

MEL

MK progenitors

T cells

Thymocytes

931 None GATA1

STAT4, STAT5B, STAT5

MEL

T cells

943 T/B cell TCF7

GATA2

PU1

CMYC, MXI1, NELFE, TBP

ETS1

FLI1, GATA3, STAT3, STAT4, STAT5B, STAT5, STAT6, TBET

CBFB, RAG2, RUNX1

EML

Erythroid progenitors

Erythroid

MEL

MK progenitors

T cells

Thymocytes

949 T/B cell GATA2

RAG2

Erythroid progenitors

Thymocytes

955 T cell þ NK GATA3, STAT3, STAT4, STAT5A, STAT5B, STAT5, STAT6, TBET T cells

961 B cell E2A, EBF1, OCT2, PAX5, PU1

CEBPA, CEBPB, P65, PU1, STAT1

B cells

Macrophages

967 Late ERY þ T/B cell þ Gran PAX5

TCF7

GATA1, GFI1B, LDB1

ERG, FLI1, MEIS1, PU1, SCL

NOTCH1

CMYC, CHD2, MAX, MXI1, NELFE, SMC3, TBP

CBFB, ETS1, RING1B, RUNX1

FLI1, STAT4, STAT6, TBET

RAG2

B cells

EML

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes

973 HSE þ Early Mye CMYC, GATA1, MAX, MXI1 MEL

979 Late MYE PU1

GFI1B

CEBPA, CEBPB, P65, PPARG, PU1, STAT1

EBF1

STAT3, STAT4, STAT5, STAT6

B cells

HPC7

Macrophages

Pro B cells

T cells

(continued)

366.e13A. Joshi et al./ Experimental Hematology 2013;41:354–366



Supplementary Table 3. (continued )

Novershtern et al. clusters Combinatorial control signature

No. Induction pattern Transcription factor Cell type

985 Early MYE þ T/B cell þ Gran TCF7

GFI1B

ERG, SCL

CMYC, CHD2, MAX, MXI1, NELFE, TBP

ETS1, RUNX1

FLI1, STAT3, STAT4, STAT6, TBET

CBFB, RAG2, RUNX1

EML

Erythroid

HPC7

MEL

MK progenitors

T cells

Thymocytes

991 T/B cell PU1

GATA2

PU1

ERG

CEBPA, CEBPB, PU1, STAT1

MXI1, TBP

FLI1, STAT3, STAT4, STAT5B, STAT5, STAT6, TBET

RAG2

B cells

Erythroid progenitors

Erythroid

HPC7

Macrophages

MEL

T cells

Thymocytes

997 NK þ T cell (2) STAT4 T cells

1003 Late ERY þ T/B cell þ Gran TCF7

GATA1, GFI1B, PU1, SCL

ERG, PU1, SCL

ERG, PU1

NOTCH1

CMYC, CHD2, MAX, MXI1, NELFE, TBP

CBFB, ETS1, RING1B, RUNX1

RBPJ

FLI1, GATA3, STAT3, STAT6

CBFB, RAG2, RING1B, RUNX1

EML

Erythroid

HPC

HPC7

Leukemia

MEL

MK progenitors

T cell leukemia

T cells

Thymocytes

1009 HSE þ Early Mye CEBPA, CEBPB, P65, PU1, STAT1 Macrophages

1021 Early MYE þ T/B cell þ GRAN PAX5

TCF7

GATA1

GFI1B, PU1

SCL

NOTCH1

CMYC, CHD2, MXI1, NELFE, TBP

ETS1, RUNX1

FLI1

RAG2, RING1B, RUNX1

B cells

EML

Erythroid progenitors

Erythroid

HPC7

Leukemia

MEL

MK progenitors

T cells

Thymocytes
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