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Abstract

Adenovirus (Ad) serotype 5 (Ad5) fiber competitively binds to the coxsackievirus and Ad receptor (CAR) to attach Ad5 to
target cells and also disrupts cell junctions and facilitates virus escape at a late stage in Ad5 infection. Here we demonstrate
that paracellular permeability in MCF7 and CAR overexpressing MCF7 (FLCARMCF7) cells is increased within minutes
following the addition of Ad5 to cells. This is brought about, at least in part, by altering the molecular dynamics of E-
cadherin, a key component of the cell-cell adhesion complex. We also demonstrate that the increase in E-cadherin mobility
is constitutively altered by the presence of CAR at FLCARMCF7 cell junctions. As increased paracellular permeability was
observed early after the addition of Ad5 to cells, we postulate that this may represent a mechanism by which Ad5 could
disrupt cell junctions to facilitate further access to its cell receptors.
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Introduction

Most Adenovirus (Ad) species attach to host cells through the

interaction of the fiber protein with the Coxsackievirus and

Adenovirus (Ad) receptor (CAR) [1,2,3,4]. CAR is a transmem-

brane protein that is predominantly localised to the baso-lateral

surface of polarised epithelium and at tight junctions where it

binds to multiple proteins including zonula occludens (ZO-1), b-

catenin [5,6,7,8], actin [9] and tubulin [10]. CAR is one of a

number of immunoglobulin-like molecules at cell junctions. These

include junctional adhesion molecules (JAM)-A, B & C

[11,12,13,14]; endothelial cell-selective adhesion molecule

(ESAM) [15]; and JAM4 [16]. As a component of cell junctions,

CAR may mediate cell adhesion by virtue of homophilic

interaction between CAR molecules on adjacent cells. Interest-

ingly, Ad serotype 5 (Ad5) fiber protein binds to CAR with higher

affinity than CAR does for itself [17] suggesting that Ad5 may

weaken cell junctions by disrupting CAR interaction between

adjacent cells. Ad5 exploits its ability to competitively bind to CAR

to disrupt junctions to escape infected cells and further propagate

infection [18]. This is brought about by excess fiber, produced at

the late stage of Ad5 infectious cycle. This disruption in cell

junctions was shown to coincide with re-localisation of -catenin,

which in fact co-immunoprecipitates with CAR not only in A549

[18] but also Sertoli cells [19]. This led to the suggestion that Ad5

disruption of cell junctions at the late stages of its infectious cycle is

independent of E-cadherin. E-cadherin is however a key

component of the cell adhesion complex [20,21] where it

promotes cell-cell contact through homophilic binding to E-

cadherin molecules on adjacent cell junctions supported by actin

filaments through b- and a-catenins [22,23,24,25]. It is generally

accepted that E-cadherin is highly mobile at immature and

developing cell contacts, but in mature junctions, the mobile pool

of E-cadherins is in the minority [22,23]. For example, in new

areas of cell contact, E-cadherin pool is mainly composed of a

highly mobile fraction (90%). Once E-cadherin clusters are formed

and E-cadherin begins to interact with the cytoskeleton, a much

smaller fraction (50%) remains mobile. At mature junctions, the

mobile fraction is even smaller (,10%) [22,23]. The mobile E-

cadherin population is monomeric; it diffuses on the membrane,

exchanges with the stable E-cadherin population at contact sites

and is not involved in cell adhesion [26]. Regulation of E-cadherin

levels in developing and mature junctions is a dynamic process

that is not fully understood. Recent evidence suggests that

recycling of E-cadherin at cell junctions involves exchange

between membrane and intracellular pools of E-cadherin, a

process linked to endocytosis [27].

As Ad5 binds to CAR with similar affinity as does soluble Ad5

fiber [4], we hypothesised that intact Ad5 virion may disrupt cell

junctions and alter paracellular permeability at an early stage in its

infectious cycle, not just at late stages, as it was previously shown.

We addressed this question in MCF7 cells that are a human breast

tumour-derived cell line and had been extensively used to

investigate the regulation of cell junctions and more specifically

E-cadherin dynamics during junction formation and disruption

[27,28,29,30]. Moreover, we have already shown that MCF7 cells
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have low endogenous CAR levels, express avb3 integrin that

mediates Ad5 internalisation and are infectable by Ad5 [31]. We

have also shown that CAR-RFP when expressed on the cell

surface of FLCARMCF7 cells localises at cell junctions and

efficiently facilitates Ad5 infection [31]. In the same study, we also

showed no difference in proliferation rate between MCF7 and

FLCARMCF7 cells and went on to demonstrate that signalling

downstream of CAR can have effects on integrins and CAR itself

to promote Ad5eGFP binding [31].

Our experiments demonstrate that high viral loads of Ad5GFP

(Ad5eGFP is an E1–E3-deleted Ad5 that expresses green

fluorescent protein (GFP) as a transgene under the control of the

cytomegalovirus promoter) increased paracellular permeability in

MCF7 and CAR over-expressing MCF7 cell junctions. We also

demonstrate enhanced E-cadherin molecular dynamics in the

presence of Ad5GFP, a process that appeared to be modulated by

CAR.

Results

High CAR expression leads to reduced E-cadherin at cell-
cell junction

Junctional membrane proteins and E-cadherin in particular

play a key role in cell-cell junction formation and stability. As

CAR is a transmembrane cell-cell junction, protein we assessed the

effect of its over expression on other junctional membrane

proteins. We therefore compared endogenous levels of E-cadherin,

b-catenin, a-catenin and ZO-1 between MCF7 cells and MCF7

cells stably expressing functional full-length human CAR C-

terminally tagged with monomeric red fluorescent protein

(FLCARRFP; FLCARMCF7 cells) [31] to determine if endoge-

nous levels of these proteins were affected by the over-expressed

CAR. We had previously reported that FLCARRFP is efficiently

recruited to junctions in MCF7 cells [31] (Supplementary Figure

S1). Figure 1 shows that expression levels of b-catenin, a-catenin

and ZO-1 were equal between MCF7 and FLCARMCF7 cells

(Figure 1A). To then assess if the localisation of these proteins was

altered by the over-expression of CAR, confocal images were also

taken of a 1:1 mixed population of MCF7 and FLCARMCF7

cells. Images in Figure 1B demonstrate that a-catenin, b-catenin

and ZO-1 localise similarly to FLCARMCF7 and MCF7 cell

junctions. In contrast, the level of E-cadherin present at CAR

positive FLCARMCF7 cell junctions appeared to be consistently

lower compared to MCF7 cell junctions (Figure 1B). To evaluate

this further, intensity line scans were taken across individual

junctions highlighted in Figure 1B and the relative levels of CAR

and E-cadherin assessed using ImageJ and intensity profiles plotted

over distance. Intensity levels of E-cadherin at junctions between

multiple FLCARRFP positive cells, or those without FLCARRFP

was then quantified and shown to be significantly greater in MCF7

compared to FLCARMCF7 cell junctions (Figure 1C). This data

indicates that E-cadherin localisation to cell junctions is reduced in

the presence of overexpressed CAR.

In order to obtain independent confirmation that CAR over

expression was associated with reduced E-cadherin in

FLCARMCF7 cells, a cell-binding assay was then conducted to

assess the level of binding of FLCARMCF7 cells to immobilised

purified extracellular domain of E-cadherin. Figure 2A shows

significantly higher binding of MCF7 cells to the E-cadherin

extracellular domain compared to FLCARMCF7 cells. To further

confirm these findings, we used FACS to analyse cell surface levels

of E-cadherin in both cell lines. Figure 2B demonstrates a

significant reduction in cell surface levels of E-cadherin in

FLCARMCF7 compared to parental cells. Taken together, data

based on microscopy experiments, cell binding assays and FACS

analysis, suggest that high levels of CAR can alter E-cadherin cell

surface levels on FLCARMCF7 cells and at FLACRMCF7 cell-

cell junctions.

Paracellular permeability is increased in the presence of
Ad5

Since CAR expression reduced E-cadherin cell surface levels

and also E-cadherin levels at FLCARMCF7 cell junctions, we

asked whether this had an effect on paracellular permeability. We

found no difference in basal permeability between MCF7 and

FLCARMCF7 cells (Figure 3). This suggests that the reduced E-

cadherin level at FLCARMCF7 cell junctions had no functional

consequence on the integrity of cell-cell contacts. One possible

explanation for this observations is that CAR-CAR interactions

contributes to the maintenance of cell-cell junctions in

FLCARMCF7 cells and thus compensates for the reduced E-

cadherin levels in these cells. We also found that the addition of

Ad5eGFP increased paracellular permeability in MCF7 and

FLCARMCF7 cells (Figure 3) and that this increase was more

pronounced in FLCARMCF7 cells than the parental cells. As

Ad5eGFP is replication deficient, disruption of cell junctions is

likely to be a function of the intact Ad5eGFP virion and not a

consequence of excess soluble fiber produced after virus

replication, at a late stage in the virus life cycle.

E-cadherin de-stabilises at cell-cell junctions in the
presence of Ad5eGFP

We then analysed the effect of Ad5eGFP on E-cadherin

mobility by determining the GFP tagged E-cadherin (E-

cadherin-GFP) fluorescence recovery after photobleaching (FRAP)

MCF7 and FLCARMCF7 cell junctions. Increased ability of E-

cadherin to move at junctions would be reflected by an increase in

FRAP [22]. MCF7 and FLCARMCF7 cells were transiently

transfected with E-cadherin-GFP and the rate of recovery of this

protein was examined every 15 seconds post bleach for 5 minutes

(Figure 4A). Under steady state conditions, the half-life (t1/2) of

recovery, which measures the rate of E-cadherin recovery

(Figure 4B), and the mobile and immobile E-cadherin fractions,

which measures the amount of fluorescent E-cadherin present in

the bleach region at the end of the experiment (Figure 4C), were

similar in MCF7 and FLCARMCF7 cells. The immobile E-

cadherin fraction was in the majority in both cell types (Figure 4C).

E-cadherin maximal percentage recovery was essentially the same

as the percentage recovery of the E-cadherin mobile fraction

(Figure 4C). In MCF7 cells the presence of Ad5eGFP increased

the half-life of E-cadherin recovery indicating that Ad5eGFP leads

to a reduction in the speed of recruitment of E-cadherin molecules

to MCF7 cell junctions. Ad5eGFP also increased the proportion of

E-cadherin in the mobile fraction, indicating an increase in the

mobility of E-cadherin. This demonstrates that Ad5eGFP leads to

both increased translocation of E-cadherin away from, and

decreased rate of E-cadherin recruitment to MCF7 cell junctions.

This could result in a net reduction in E-cadherin at MCF7 cell

junctions. In support of this, FACS analysis showed that Ad5eGFP

significantly reduced E-cadherin cell surface levels in MCF7 cells

(Figure 4D). The presence of FLCARRFP in FLCARMCF7 cell

junctions did not alter the E-cadherin mobility in the absence of

Ad5eGFP. However, the addition of Ad5eGFP to FLCARMCF7

cells led to more immobile E-cadherin being maintained at

FLCARRFP containing cell junctions compared to MCF7 cell

junctions (Figure 4C). This suggests that the Ad5eGFP-driven

increase in E-cadherin mobility is reduced in the presence of

Adenovirus Disrupts E-Cadherin Interactions
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overexpressed CAR. Interestingly, in FLCARMCF7 cell junctions

we observed slower rates of E-cadherin recovery in the presence of

Ad5eGFP, although this rate of recovery was faster in these

compared to MCF7 cells (Figure 4C). This would indicate that in

cell junctions where CAR is overexpressed, the addition of

Ad5eGFP results in faster turnover of E-cadherin to these

junctions, where it is more likely that it will be retained as

immobile fraction. This is further supported by data demonstrat-

ing that Ad5eGFP did not induce changes in surface levels of E-

cadherin in FLCARMCF7 cells (Figure 4D). Taken together these

data suggest that Ad5eGFP reduced E-cadherin localisation to cell

junctions by modulating the dynamics of E-cadherin recruitment

to junctions, and that overexpression of CAR disrupts this.

We next applied similar approaches to determine whether

Ad5eGFP altered CAR levels and localisation. FACS and imaging

data demonstrated no difference in CAR levels at FLCARMCF7

cell junctions in the presence of Ad5eGFP (performed in separate

experiment; data not shown). Similarly, FRAP analysis to define

the molecular dynamics of CAR at FLCARMCF7 cell junctions

demonstrated no significant change in the rate of CAR recovery in

the presence or absence of Ad5eGFP (data not shown). This would

suggest that Ad5eGFP has little or no influence in the localisation

and mobility of CAR at FLCARMCF7 cell junctions.

E-cadherin/b-catenin complex is unaffected by over-
expression of CAR or Ad5eGFP in MCF7 cells

Maintenance of E-cadherin at cell junctions is partly controlled

by interaction of its cytoplasmic domain with b-catenin [24,25].

Therefore we investigated whether the localisation of the E-

cadherin/b-catenin complex was affected by the over-expression

of CAR or addition of Ad5eGFP. First, a mixed population of

MCF7 and FLCARMCF7 cells were incubated with Ad5eGFP for

3 and 10 minutes at 37uC. These time points coincide with Ad5

cell attachment and internalisation [32]. Images in Figure 5A show

expression and co-localisation of both E-cadherin and b-catenin at

the cell junctions of MCF7 and FLCARMCF7 cells. E-cadherin

and b-catenin localisation appeared unaffected by incubation with

Ad5eGFP at 3 minutes or 10 minutes (Figure 5). The intensity of

E-cadherin (Figure 5A) and b-catenin (data not shown) at MCF7

and FLCARMCF7 cell junctions was also unaffected by

incubation with Ad5eGFP. In order to confirm that Ad5eGFP

bound to MCF7 and FLCARMCF7 cells, Ad5eGFP-Cy5

(Ad5eGFP labelled with fluorescent dye Cy5) was added for three

minutes to coverslips that had been seeded with mixed population

of MCF7 and FLCARMCF7 cells (1:1 ratio) followed by fixation

with 4% PFA. Figure 5B shows Ad5eGFP-Cy5 bound to MCF7

(identified by their lack of RFP expression) and FLCARMCF7

cells. Binding was more clearly visible in FLCARMCF7 cells, in

keeping with their high CAR expression.

We then assessed the level of the E-cadherin/b-catenin complex

in MCF7 and FLCARMCF7 cells to determine whether over-

expression of CAR affected the formation of the complex.

Figure 5C shows that E-cadherin is complexed with b-catenin

and level of the complex is unchanged between the two cell types.

This indicates that the over-expression of CAR does not affect the

basal level of the E-cadherin/b-catenin complex. Moreover,

addition of Ad5eGFP or bacterial expressed recombinant Ad5

fiber knob domain (FK) did not significantly alter the level of E-

cadherin or b-catenin within the complex.

CAR associates with the b-catenin complex
Previous studies demonstrated co-immunoprecipitation of b-

catenin and CAR in A549 [18] and Sertoli cells [19]. Therefore,

we sought to examine whether CAR also associates with b-catenin

in FLCARMCF7 cells and whether such an association was

affected by incubation with Ad5eGFP. Figure 5D shows that CAR

co-immunoprecipitated with b-catenin, providing further evidence

of direct or indirect interaction between CAR and b-catenin.

Interestingly, incubation with Ad5eGFP increased the level of

CAR associated with b-catenin up to 6 hours post infection

(Figure 5D). Additionally, incubation with FK also increased the

level of CAR associated with b-catenin (Figure 5D). For cells

treated with Ad5eGFP, a significant difference was observed as

early as three minutes post infection. One possible explanation for

this observation is that binding of Ad5eGFP or FK to CAR

induces CAR clustering and therefore increased association with

b-catenin. Alternatively, the presence of Ad5eGFP or FK may

increase CAR affinity for b-catenin or another as yet unidentified

component of the complex. No association between CAR and b-

catenin was seen in MCF7 cells, probably due to the very low

endogenous levels of CAR found in these cells.

Discussion

In the present study we demonstrate that Ad5eGFP increased

paracellular permeability of MCF7 cells and CAR overexpressing

MCF7 cells. This was independent of Ad5 replication as

Ad5eGFP used in these experiments is replication deficient.

Moreover, as these changes were observed early after the

addition of Ad5eGFP to cells, we postulate that Ad5eGFP may

disrupt cell junctions at an early stage of its infectious cycle,

during virus binding and internalisation. This is consistent with

previous studies showing Ad5 fibre-mediated increase in para-

cellular permeability of bronchial epithelium [18]. This could

potentially provide a mechanism by which Ad5 can aid access to

its own receptor (CAR) and therefore facilitate cell entry. As these

experiments were performed in the presence of large excess of

recombinant virus particles in non-polarised epithelial cells the

significance of our observations in naturally occurring Ad5

infection cannot be determined. Interestingly however, loss of

airway epithelial integrity by means of antibody-mediated

disruption of E-cadherin function was shown to facilitate Ad

infection, presumably by improved accessibility of CAR to

incoming virus [33].

Figure 1. CAR reduces E-cadherin expression at CAR-expressing MCF7 cell junctions. (A) MCF7 parental (2) or FLCARMCF7 (+) cell lysates
subjected to western blot analysis for total a-catenin, b-catenin, E-cadherin and ZO-1 protein levels. Actin serves as a loading control. There was no
difference in the level of expression of these proteins in the presence/absence of CAR. (B) Confocal images of MCF7 and FLCARMCF7 (red channel)
cells immunostained for a-catenin, b-catenin, E-cadherin and ZO-1 antibodies labelled with Oregon green. The levels and localisation of a-catenin,
b-catenin and ZO1 appeared the same in MCF7 and FLCARMCF7 cells but E-cadherin expression was reduced in CAR expressing junctions (denoted
by white arrows and highlighted in the inset). These are representative images from at least 3 experiments, with reduced E-cadherin being evident in
more than 80% of CAR expressing junctions. (C) Bar charts are quantitations of E-cadherin or b-catenin intensity at junctions between FLCARRFP
positive cells (FLCARMCF7), or those without CAR (MCF7) and calibrated on a per pixel basis to correct for any differences in junction size/area. MCF7
junction intensity values were normalised to 1 and all values for FLCARMCF7 junctions represented as a relative value to this. Values were pooled
from multiple cells and images (n = .25 junctions per condition) over three independent experiments and represented as relative mean intensity
* P,0.05. Significance was determined by a two-way anova.
doi:10.1371/journal.pone.0023056.g001
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Figure 2. CAR overexpression reduces E-cadherin cell adhesion and E-cadherin cell surface levels. (A) E-cadherin extracellular domain
was immobilised onto 24-well plates at 1.5 mg/ml or 5 mg/ml. BSA was used as a control. MCF7 (black bars) or FLCARMCF7 cells (white bars) were
seeded at 56104/well, left for 2 hours, and adherent cells counted. Error bars depict SEM (n = 4). ** p,0.01. (B) FACS analysis of E-cadherin cell-
surface expression on MCF7 (black bar) and FLCARMCF7 cells (white bar). MFI per cell pooled from 4 independent experiments is shown +/2SEM.
* P,0.05. Significance was determined by a two-way anova.
doi:10.1371/journal.pone.0023056.g002
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Here we also provide evidence that the addition of Ad5eGFP to

MCF7 and FLCARMCF7 cells altered the molecular dynamics of

E-cadherin. We assessed the dynamics of E-cadherin by measuring

the rate of recovery of E-cadherin and the amount of fluorescent

E-cadherin present after photobleaching MCF7 and

FLCARMCF7 cell junction in the presence or absence of

Ad5eGFP. It is important to note that these two measurements

are not directly coupled and do not necessarily correlate.

Regulation of E-cadherin levels at mature as well as immature

cell junctions is a dynamic process. In immature and developing

junctions mobile E-cadherin fraction is more abundant compared

to mature cell junctions where the immobile fraction is in the

majority [26,27]. The mobile E- cadherin diffuses on the

membrane and exchanges with the stable E-cadherin population

at contact sites [26]. In Drosophila, a dynamic actin population

controls E-cadherin movement across the membrane, whereas a

separate population of actin molecules anchors and stabilises E-

cadherin at points of cell contact [26]. Even in mature junctions

there is considerable E-cadherin recycling between membrane and

intracellular E-cadherin pools, a process dependent on vesicle

trafficking and endocytosis [27]. It is interesting to note that

changes in the half-life of E-cadherin recovery of the order

observed in our studies have been correlated with cell migration in

vitro [34].

Our observation that Ad5eGFP increased the mobile E-

cadherin fraction and reduced cell surface E-cadherin levels in

MCF7 cells indicates that in the absence of high CAR levels, less

E-cadherin is stably associated with the cytoskeleton than in CAR

overexpressing FLCARMCF7 cells junctions. Ad5eGFP also

reduced the rate of E-cadherin recovery in MCF7 compared to

FLCARMCF7 cells junctions, which suggests that E-cadherin

recycling and movement occurs over a slower time period in the

presence of CAR. The fact that Ad5eGFP increased paracellular

permeability at MCF7 cell junctions may have been a conse-

quence of the altered E-cadherin molecular dynamics in the

presence of Ad5eGFP. Alternatively, the increased mobile E-

cadherin fraction in the presence of Ad5eGFP could be secondary

to disruption of cell junctions brought about by other means.

Further studies are required to resolve these questions.

In FLCARMCF7 cell junctions we observed slower rates of E-

cadherin recovery in the presence of Ad5eGFP, although this rate

of recovery was faster in these compared to MCF7 cells.

Interestingly, we also found that in the presence of Ad5eGFP,

the mobile E-cadherin fraction was smaller and the immobile

fraction larger in FLCARMCF7 than MCF7 cells. This would

indicate that in the presence of high CAR levels (as in

FLCARMCF7 cells) and Ad5eGFP, there is a shift towards more

rapid turnover of E-cadherin to junctions, perhaps from a free

cytoplasmic pool, with more E-cadherin being retained at

FLCARMCF7 junctions as immobile fraction than in MCF7

cells, where CAR is expressed at low levels. These observations

may help us understand why Ad5eGFP increased paracellular

permeability to a greater extent in FLCAR than the parental

MCF7 cells. It has already been shown that recombinant Ad fiber

knob applied directly to the basolateral surface of well-differen-

tiated airway epithelial cells can disrupt junctional complexes and

increase paracellular permeability, probably by disrupting CAR-

CAR homotypic interactions [18]. We therefore postulate that

competitive inhibition of the CAR-CAR homophilic interaction in

FLCARMCF7 cells by Ad5eGFP and its consequent disruption of

CAR junctional complexes might account for this increased

permeability and that changes in E-cadherin dynamics are in

response to this. We speculate that CAR, when over expressed,

may partially replace E-cadherin at junctions and in doing so alter

the kinetics of E-cadherin recovery when cell junctions are

disrupted. It is interesting therefore that we also observed that in

Figure 3. Ad5eGFP increases paracellular permeability. Paracellular permeability was assessed across MCF7 and FLCARMCF7 either basally
and in response to Ad5eGFP (9000 VP/cell) added either simultaneously or 2 hours prior to incubation with FITC-dextran (1 mg/ml). No difference in
basal permeability was seen between MCF7 and FLCARMCF7 cells. Incubation with Ad5eGFP led to increased permeability in MCF7 and FLCARMCF7
cells and this increase was more pronounced in FLCARMCF7 cells. *** = p,0.001, ** = p,0.01, * = p,0.05.
doi:10.1371/journal.pone.0023056.g003
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the presence of over-expressed CAR there was reduced E-

cadherin expression at FLCARMCF7 cell junctions. As reduced

E-cadherin levels occurred without any changes to either the level

or localisation of ZO-1, b-catenin or a-catenin it is unlikely that

this is due to non-specific consequence of CAR over-expression.

This conclusion is supported by recent studies that showed CAR

expression in lung cancer cells was associated with absence of E-

cadherin [35]. Such loss of E-cadherin at cell junctions did not

alter paracellular permeability suggesting that CAR can compen-

sate for E-cadherin in maintaining junctional integrity. Therefore,

high levels of CAR may alter cell junction protein composition but

not its integrity. This would be in keeping with previous studies

that showed that CAR is required for initiation and maintenance

of airway epithelial cell barrier and that CAR expression reduced

paracellular permeability [36].

Our immunoprecipitation experiments showed increased associ-

ation of CAR with b-catenin in the presence of Ad5eGFP. As

recombinant Ad5 fiber knob had the same effect on the complex as

Ad5eGFP, it is likely that the increased association with b-catenin is

brought about by CAR interacting with its Ad5 ligand. One possible

explanation for this observation is that binding of free FK or intact

Ad5eGFP to the CAR extracellular domain promotes clustering of

CAR and b-catenin so that they can interact. However, CAR

clustering is thought to be a consequence of Ad5 but not FK binding

to CAR. Indeed we have shown that Ad5 but not FK induces p44/

42 dependent CAR dimerisation in cis in MCF7 cells [31]. An

alternative explanation for our observations would be that

Ad5eGFP or FK binding to CAR increases affinity of CAR for b-

catenin. This raises the possibility that ligand-induced increased

association of CAR with b-catenin could displace E-cadherin from

the E-cadherin/b-catenin complex. It is interesting that it was

previously suggested that CAR and E-cadherin do not directly

interact and that CAR and E-cadherin may in fact compete for the

same binding site on b-catenin [18]. The fact that E-cadherin/b-

catenin complex level was the same in MCF7 and FLCARMCF7

cells basally and in response to Ad5eGFP would however suggest

that it is unlikely that CAR and E-cadherin compete for binding to

b-catenin in FLCARMCF7 cells. Our experiments do not exclude

the possibility that CAR and E-cadherin interact directly. However,

we have not consistently shown direct biochemical interaction

between CAR and E-cadherin (data not shown) which would

suggest that CAR and E-cadherin may not directly interact, or that

they do so transiently thus not allowing detection of such interaction

biochemically.

The mechanism by which CAR modulates E-cadherin basally

and in response to Ad5 was not addressed in this study. Further

studies are necessary to investigate this question. It is interesting in

this context that JAM-A, a junctional molecule with which CAR

shares homology, appears to negatively regulate E-cadherin levels

in hepatocytes [37].

Our observation that CAR can modulate E-cadherin has

broader implications beyond its potential role in Ad5 infection.

This and the fact that CAR is a component of tight junctions raise

the possibility that CAR contributes to the maintenance of

epithelial cell junctions. Cell junctions are dynamic structures that

assemble, break down and reassemble in response to a wide range

of triggers such as cell division, cell migration, infection or

inflammation. Understanding how CAR and E-cadherin interact

at tight junctions will provide further insight on the pathways

involved in the dynamics of cell junction formation and disruption.

Methods

Cells and materials
MCF7 (human breast cancer cells) were obtained from ATCC

(ATCC number HTB-22TM) and were maintained in Dulbecco’s

modified Eagle’s medium (Gibco) supplemented with 10% fetal

bovine serum (FCS, Sigma). MCF7 cells were transfected with

plasmids containing FLCAR and cell clones (FLCARMCF7) were

selected in the presence of geneticin (Gibco), as previously

described [31]. Ad5eGFP was obtained from Vector Development

Laboratory, Baylor College of Medicine, USA. 9000 virus particles

(VP)/cell were used in all experiments. Ad5eGFP-Cy5 was

Ad5eGFP labelled with Cy-5, a fluorescent dye producing a

signal in the far-red region of the spectrum (670 nm). Ad5eGFP

was mixed with 1 M NaHCO3 was added to one vial of Cy-5 and

incubated for 30 minutes in the dark. The reaction was then

terminated by the addition of 0.5 ml of 0.5 M Tris (pH 8). Excess

dye was removed by dialysis using small dialysis cassettes (Pierce,

02203 ml) cassettes. Recombinant FK was produced and purified

as previously described [3,4,38]. MCF7 and FLCARMCF7 cells

were transiently transfected with E-cadherin GFP (gift of Dr Mark

May University of Michigan).

Generation of CAR constructs
FLCAR was amplified by PCR using the GCGCAAGCT-

TATGGCGCTCCTGCTGTGCTTCG (forward) and CATC-

GGCAAGCTGAATTCTACTATAGACCCATCCTTGC (re-

verse) primers to generate a 59 HindIII and a 39 EcoRI restriction

site. The PCR product was then cloned into the pcDNA-RFP-C

vector (a gift of Roger Tsien, UCSD, USA) to generate a C-

terminal monomeric red fluorescent protein tag. All constructs

were verified by sequencing prior to use.

Western blotting and Immunoprecipitation
MCF7 and FLCARMCF7 cells were seeded on 10-cm plates in

DMEM with 10% FBS and left for 4 hours. They were then

washed twice with ice-cold phosphate-buffered saline (PBS) and

lysed with 50 ml of RIPA buffer (10 mM Tris (pH 7.4), 150 mM

Figure 4. E-cadherin is more dynamic within junctions in the presence of Ad5eGFP. (A) Example images from a FRAP experiment on MCF7
cells expressing E-cadherin-GFP. MCF7 were transiently transfected with E-cadherin-GFP for 24 hours before being plated on glass bottomed imaging
chambers. Images were captured, analysed and exported using NIS Elements AR software. An image was taken immediately after the bleach and one
5 seconds after that, and then images were taken every 15 seconds for 5 minutes. Images shown for pre-bleach, bleach (bleached region shown in
white box) and the recovery of E-cadherin-GFP monitored at 15 s, 30 s and 45 s post-bleach. (B) The half-life (t1/2) of E-cadherin recovery after
photobleaching MCF7 and FLCARMCF7 cells in the absence or presence of Ad5eGFP (MCF7+Ad5 and FLCARMCF7+Ad5 respectively). E-cadherin
recovery was defined from corrected intensity data fitted to a single exponential equation and calculated using the equation t1/2 = ln 0.5/2t. Data
was pooled from .12 cells per condition over 4 independent experiments +/2 SEM. Significance was determined by two-way anova. ** = p,0.001
compared to MCF7 cells no Ad5eGFP; * = p,0.05 compared to FLCARMCF7 no Ad5eGFP; * = p,0.05 compared to FLCARMCF7 with Ad5eGFP. (C)
Mobile and immobile E-cadherin fractions in MCF7 and FLCARMCF7 cells in the absence or presence of Ad5eGFP (MCF7+Ad5 and FLCARMACF7+Ad5
respectively). Mobile and immobile fractions were defined as the percentage recovery at plateau (mobile) and remaining non-recovered fraction at
this time (immobile fraction). Significance was determined by two-way anova. * * = P,0.001 * = P,0.05. (D) FACS analysis of cell surface E-cadherin
levels on MCF7 and FLCARMCF7 cells without (black bars) or with Ad5eGFP (9000 VP/cell; white bars). MFI is shown pooled from 3 independent
experiments +2/SEM. Significance was determined by a two-way anova. * = p,0.05 compared to MCF7 no Ad5eGFP levels.
doi:10.1371/journal.pone.0023056.g004
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Figure 5. Ad5eGFP modulates CAR association with b-catenin. (A) (i) A mixed population of MCF7 and FLCARMCF7 cells were plated onto
vitronectin-coated coverslips and incubated with Ad5eGFP at 9000 VP/cell for 3 minutes and 10 minutes before fixation. Cells were then
immunostained for the .expression and localisation of E-cadherin (AB green) and b-catenin (AC; blue). Merged images are also shown (AD). Scale bars
are 20 mm. Representative images are shown from 3 independent experiments with similar results. (ii) Bar charts are quantitations of E-cadherin
intensity at junctions between FLCARRFP positive cells (FLCARMCF7), or those without CAR (MCF7) and calibrated on a per pixel basis to correct for
any differences in junction size/area. MCF7 junction intensity values were normalised to 1 and all values for FLCARMCF7 junctions represented as a
relative value to this. Values were pooled from multiple cells and images (n = .25 junctions per condition) over three independent experiments and
represented as relative mean intensity. p.0.05 for E-cadherin in FLCARMCF7 vs MCF7 at all time points. (B) Fluorescence images demonstrating
Ad5eGFP attachment to MCF7 and FLCARMCF7 cells. A mixed population of MCF7 and FLCARMCF7 cells were seeded onto vitronectin-coated
coverslips. Cells were incubated with Ad5eGFP-Cy5 (9000 VP/cell) for 3 minutes at 37uC before fixation with 4% PFA and imaged by confocal
microscopy. First two panels from left show FLCARMCF7 cells fixed and stained for CAR using RmcB (CAR-specific antibody) [1] followed by an Alexa
fluor 488-conjugated secondary antibody (first panel) and RFP. Third panel shows Ad5eGFP-Cy5 attachment to cells and fourth panel from left shows
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NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate,

10 mM sodium fluoride, 1 mM okadaic acid with protease

inhibitor complex). The cell lysates were then scraped into

Eppendorf tubes and left on ice for 20 mins. Twenty micrograms

of lysate protein was loaded onto 10% polyacrylamide gels and

transferred to polyvinylidene difluoride membranes. Membranes

were blocked for 30 mins at room temperature in TBS-T (Sigma)

and 5% non-fat dry milk. Membranes were incubated with

primary antibodies at an appropriate dilution in TBS-T, overnight

at 4uC. The immunoblots were washed in TBS-T and incubated

for 2 hours with horseradish peroxidase-conjugated anti-mouse or

anti-rabbit immunoglobulin (Santa-Cruz Biotechnologies) at a

1:5000 dilution. Immunoblots were then washed with TBS-T and

visualized with ECL substrate reagent (Amersham Pharmacia).

Membranes were then stripped and re-probed for total protein.

Developed immunoblots were scanned in as tiff files and the

protein bands quantified by densitometry with ImageQuant

software. Bands of interest were normalised to the respective

loading controls and the average percentage change over control

(parental cells) levels quantified and plotted +/2 SEM.

Immunoprecipitation (IP) was performed by combining 16106

cell equivalents in total volume of 200 ml of RIPA buffer with

5 mg of b-catenin antibody (Santa Cruz). The sample was then

mixed at 4uC. After mixing, 50 ml of A/G beads (Santa Cruz)

previously washed in 100 ml of PBS or lysis buffer 36were added

to the mixture and mixed at 4uC for 1 hour. The agarose beads

were pelleted, washed in PBS and then resuspended in

electrophoresis buffer. 25 ml of each sample was then run on a

10% PAGE gel. Gels were then subjected to Western Blotting and

ECL detection.

Cell adhesion assays
Reconstituted E-cadherin extra-cellular domain (R&D systems)

was diluted using DPBS (PBS containing Ca2+) to a final

concentration of 1.5 mg/ml or 5 mg/ml. The E-cadherin protein

was then added to 4 wells of a 24-well plate at a volume of 400 ml/

well and incubated for 60 minutes at room temperature. To control

for non-specific adhesion control 300 ml of 1% BSA/PBS per well

was used and as a positive control for adhesion, vitronectin at

10 mg/ml per well was used. Plates were then incubated for

60 minutes at room temperature. After incubation, excess unbound

E-cadherin was removed and wells blocked with 300 ml/well 1%

BAS/PBS for 30 minutes at room temperature to prevent any non-

specific binding. MCF7 and FLCARMCF7 cells were disassociated

from their flasks using 1 mM EDTA and resuspended in serum free

media. Cells were then counted and 16105 cells added to each well

followed by incubation for 2 hours at 37uC. After incubation,

unbound cells were removed by washing with PBS. Adherent cells

were then trypsinised until all the bound cells had detached; they

were then counted using a haemocytometer.

Confocal microscopy
MCF7 and FLCARMCF7 cells were plated out on coverslips

and left to adhere. The cells were then washed with PBS and fixed.

Cells were permeabilised with 0.1% Triton X-100-TBS for

10 minutes at RT. Non-specific binding was blocked using 5%

BSA for 30 minutes at RT. 100 ml of each specified diluted

antibody was added to each of the coverslips and left at RT for

3 hours. Following this the coverslips were washed and then

incubated with goat anti-mouse Alexa Fluor 488 (Invitrogen). The

secondary antibody was left on the coverslips for 1 hour at room

temperature in the dark. The coverslips were washed once more

before being mounted onto microscope slides using FluorSaveTM

Reagent (calbiochem). Cells were viewed using the LSM 510

META confocal microscope (Carl Zeiss Ltd). Images shown are

single confocal slices unless otherwise stated.

Analysis of junctional protein intensity
Confocal images of mixed populations (1:1) of MCF7 and

FLCARMCF7 cells immunostained for different junctional

proteins were imported into Image J. Intensity levels of E-cadherin

or b-catenin were analysed in the same image at junctions between

FLCARRFP positive cells, or those without CAR and calibrated

on a per pixel basis to correct for any differences in junction size/

area. CAR-negative junction intensity values were normalised to 1

and all values for CAR positive junctions represented as a relative

value to this. Values were pooled from multiple cells and images

(n = .25 junctions per condition) over three independent

experiments and represented as relative mean intensity.

Cell permeability assay
MCF7 and FLCARMCF7 cells were grown to confluence on

polyester transwell-clear filters (0.4 mm pore size, 12 mm diame-

ter; Corning Costar Corporation). Ad5eGFP was added to the top

chamber two hours prior to FITC-dextran addition (1 mg/ml) or

simultaneously with fitc-dextran. 10 kD fitc-dextran (Sigma) was

added to the top well and allowed to equilibrate for 1 hour. The

fitc-dextran content of the lower chamber was then measured

using a fluorescence plate reader.

Fluorescence Recovery After Photobleaching (FRAP)
MCF7 and FLCARMCF7cells were transiently transfected in

24 well plates with E-cadherin-GFP or CAR-GFP for 24 hours

before being plated on glass bottomed imaging chambers and

maintained in growth media containing 25 mM Hepes. Confocal

microscopy FRAP experiments were performed on a Nikon A1R

microscope equipped with CFI Plan Fluor 406 oil objective.

Images were captured, analysed and exported using NIS Elements

AR software. Analysis of FRAP data was performed as described

by Worth et al [39]. At least 3 images were taken every 10 seconds

pre-bleach, and then a region of interest (ROI) was bleached

(464 mm ROI used for all experiments), for 20 iterations with the

bleach laser (488 nm) set at 100% and the pinhole at maximum.

An image was taken immediately after the bleach and one

5 seconds after that, and then images were taken every 15 seconds

for 5 minutes. Raw data was transferred to Excel and each cell

corrected for photo-fading (by correcting for the amount the whole

merged image indicating FLCARMCF7 cells to which Ad5eGFP–Cy5 was bound. Ad5eGFP-Cy5 faint binding to MCF7 cells is also shown in the third
and fourth panels. MCF7 cells in these panels are identified by lack of CAR or RFP expression. (C) (i) MCF7 and FLCARMCF7 cells were incubated with
Ad5eGFP (+Ad5) at 9000 VP/cell or FK (+FK) at 160 mg/ml for 3 min, 10 min or 6 hours. Cells were then lysed and immuno-precipitated with b-catenin
or control IgG followed by probing for E-cadherin. Blots were re-probed with b-catenin to control for loading and b-catenin re-probe of FK
experiment is shown as an example. (ii) Whole cell lysates used for the b-catenin IP, run on a separate gel and shown for presentation. (iii) Bar charts
showing mean densitometry quantification +/2 SEM from four independent experiments showing relative levels of the E-cadherin/b-catenin
complex for each Ad5 and FK treatments. (D) Blots as in experiments outlined in (B) re-probed for the presence of CAR. Bar chart is mean
densitometry quantification +/2 SEM from four independent experiments showing relative levels of CAR within the complex for Ad5 treatment.
Significance was determined by a one-way anova. * = P,0.05.
doi:10.1371/journal.pone.0023056.g005
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cell faded over the entire experiment) and resultant intensity values

were converted into percentage values of the intensity pre-bleach.

Corrected intensity values were plotted over time and the intensity

at which the recovery curve plateau was defined. Mobile and

immobile fractions were defined as the percentage recovery at

plateau (mobile) and remaining non-recovered fraction at this time

(immobile fraction). The half-life (t1/2) of recovery was defined

from corrected intensity data fitted to a single exponential

equation and calculated using the equation t1/2 = ln 0.5/2t. Data

was pooled from at least 12 cells over 4 independent experiments.

Statistical Analysis
All results were analysed for statistical significance using the

SigmaStat software. Significance was determined by conducting a

Two-Way or One-Way Anova where appropriate.

Supporting Information

Figure S1 Localisation of FLCARRFP in FLCARMCF7
cells. MCF7 cells were transfected with RFP-tagged full length

CAR (FLCARRFP). Confocal images taken in the red channel as

well as the phase contrast images are shown for FLCARMCF7 (A)

and parental MCF7 cells (B). FLCARRFP is shown at cell-cell

junctions as well as intracellular compartments.

(TIFF)
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