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Spatial contextual effects in primary visual cortex
limit feature representation under crowding
Christopher A. Henry 1✉ & Adam Kohn1,2,3

Crowding is a profound loss of discriminability of visual features, when a target stimulus is

surrounded by distractors. Numerous studies of human perception have characterized how

crowding depends on the properties of a visual display. Yet, there is limited understanding of

how and where stimulus information is lost in the visual system under crowding. Here, we

show that macaque monkeys exhibit perceptual crowding for target orientation that is similar

to humans. We then record from neuronal populations in monkey primary visual cortex (V1).

These populations show an appreciable loss of information about target orientation in the

presence of distractors, due both to divisive and additive modulation of responses to targets

by distractors. Our results show that spatial contextual effects in V1 limit the discriminability

of visual features and can contribute substantively to crowding.
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V isual objects rarely appear in isolation. They are usually
surrounded by other visual stimuli. The presence of these
other stimuli—distractors—can severely impair our ability

to identify a target object or distinguish its features, a phenom-
enon known as crowding. Crowding is a fundamental bottleneck
in vision, and offers a powerful paradigm for understanding the
factors that limit perceptual performance. Further, understanding
crowding is important because of its central contribution to visual
disorders such as dyslexia1 and amblyopia2.

Psychophysical studies have provided a rich description of how
the parameters of a visual display influence the strength of
crowding3–6. For instance, crowding requires distractors to be
near the target, with the critical distance for crowding scaling
with target eccentricity7. Importantly, the display properties that
produce strongest crowding can be different from those that
produce the most potent lateral masking, in which target
detectability is impaired8–10. Under crowding, targets do not
disappear; rather, their features become difficult to discern.

Why does crowding occur? Extensive perceptual work has led
to several proposals. Some have suggested that crowding arises
from interactions between the representation of targets and dis-
tractors in primary visual cortex (V1)11,12. Others have attributed
crowding to fluctuations in attention13. Still others have argued
that crowding is an unavoidable consequence of spatial integra-
tion, an integral component of hierarchical visual processing,
which builds a representation of visual objects by combining
features across space. Spatial integration has been suggested to
involve pooling or compulsory averaging of targets and
distractors14,15, erroneous substitution of distractors for targets16,
the representation of the visual scene by a set of summary
statistics17,18, or some combination of these11,16. These forms of
spatial integration have, alternatively, been attributed to the larger
spatial receptive fields of individual V218 or V4 neurons3.

Understanding crowding requires knowing where it arises in
the visual system, how it is manifest in neuronal responses, and
which neural computations and mechanisms are responsible. To
date, most attempts to address the neural basis of crowding have
relied on coarse measures of brain activity—fMRI or EEG
recordings—which have provided equivocal answers. Crowding
has been linked to modulation of V1 activity19,20, activity dis-
tributed across the visual hierarchy21,22 (or inter-areal interac-
tions23), or activity in higher visual cortex24,25. Almost invariably
the neural correlate of crowding is assumed to be a reduced
response to a target stimulus when it is paired with distractors.
However, weaker responses need not result in worse discrimin-
ability. For instance, if distractors sharpened neuronal tuning (as
when a stimulus is enlarged26,27), summed neural responses to
targets would be weaker, but encoding of their features might be
more accurate.

Although sensory information is encoded and transmitted by
neuronal population spiking responses, we do not know how
these responses are affected by crowded displays. Previous work
has shown that the responses of individual neurons to a target
stimulus can be suppressed or facilitated by spatial context28. But
it is difficult to stitch this knowledge together to gain under-
standing of population information. First, single neuron studies
optimize stimuli for each cell separately, including centering sti-
muli within the receptive field. In crowded displays, most active
neurons will be driven suboptimally, with varying receptive field
alignment to targets and distractors. Second, population infor-
mation is influenced not only by responsivity, but also by neu-
ronal selectivity and response variability and covariability (or
‘noise’ correlations29,30). How spatial context affects these aspects
of neuronal response is not well understood.

To understand how displays that induce crowding affect cor-
tical encoding, we recorded the activity of neuronal populations

in anesthetized macaque V1 to visual targets in isolation, as well
as with distractors that induce perceptual crowding. We targeted
V1 because of the rich neurophysiological characterization of
contextual modulation there, because of its disputed role in
crowding in human studies, and because V1 effects would
influence and constrain the rest of the visual processing stream.
To understand how changes in V1 neuronal population infor-
mation compare to perceptual crowding, we complemented our
recordings with psychophysical measurements in humans and
monkeys. We focused on the encoding of grating orientation, a
well-studied aspect of V1 function31,32 and of perceptual
crowding11,14,24,33.

Results
Perceptual crowding. Crowding depends on the parameters of a
visual display, including target and distractor eccentricity and
spacing3–6. To provide a rigorous comparison between the per-
ceptual and neuronal effects of presenting distractors, we first
measured perceptual crowding with the same display used for
physiological experiments (see Methods section).

Human subjects were instructed to judge whether the
orientation of a brief (0.4 s) drifting target grating, shown in
the lower right visual field, was more vertical or horizontal than
an internal, learned 45° reference. On two-thirds of trials, targets
were surrounded by eight distractor gratings (Fig. 1a), shown in
two configurations of different orientations. Distractors were
identical in size to targets, had the same spatial and temporal
frequencies, and were oriented ±10° from the 45° discrimination
boundary.

Subjects had low discrimination thresholds when targets were
presented alone (Fig. 1b, c; black), but these were clearly elevated
in the presence of distractors (red). Average thresholds increased
from 2.42 ± 0.07° to 4.36 ± 0.77°; the threshold elevation across
subjects was 1.68-fold (Fig. 1d).

To test whether macaque monkeys exhibit perceptual crowding
that is similar to that of humans, we trained three monkeys to
perform the same orientation discrimination task. Monkeys had
small discrimination thresholds for targets alone (Fig. 1c, middle;
2.82 ± 0.60°), and these were significantly elevated with distrac-
tors (Fig. 1d; to 5.04 ± 1.50°, a 1.59-fold increase).

Because of other experimental goals, the stimulus configuration
in monkey perceptual experiments differed slightly from those
used in the neuronal recordings reported below (and human
experiments above). Primarily, we used four distractors in these
experiments and a briefer stimulus presentation. To allow a direct
comparison of human and monkey perceptual effects of
crowding, we therefore ran two human subjects on stimulus
configurations matched to those used for monkey psychophysics.
These displays also produced a clear threshold elevation under
crowding (Fig. 1c, d, right; 1.27-fold increase).

We conclude that both humans and macaque monkeys exhibit
crowding for our displays (see ref. 34, for a similar comparison for
displays of letters). Crowding was manifest as an elevation of
discrimination threshold, which varied from roughly 25% to 70%
depending on the subject and precise details of the visual display.

Distractors affect information about target orientation. We
next assessed how distractors affect the encoding of target
orientation in V1. We carried out extracellular recordings from
neuronal populations of six anesthetized macaque monkeys
(distinct from those trained on the perceptual task). Arrays of 1
mm electrodes were implanted to a nominal depth of ~600
microns, targeting layers 2/3 and 4B. Signals were sorted offline
into single-unit and multi-unit activity. Effects were similar for
the two types of recordings, so the data were pooled.
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For each array implant, we first mapped the spatial receptive
field of each sampled neuron, and then centered all subsequent
stimuli over the aggregate receptive field of the population
(Fig. 2a). Receptive fields were located in the lower visual field, at
an eccentricity of 3–5°.

On a third of trials, we presented target gratings (0.8° diameter)
alone. Target orientation was varied over a 20° range (spacing of
2–4°) across trials, spanning a small part of the orientation tuning
of each cell (Fig. 2b, shaded gray region). On remaining trials, we
presented targets with distractors, in two configurations (as in
perceptual experiments). Distractors suppressed responses to
target gratings in some cells (Fig. 2c top, black vs. red), but led to
response facilitation in others (Fig. 2c, bottom right).

We quantified how distractors affected neuronal population
information about target orientation using linear discriminant
analysis. Specifically, we determined how well two target stimuli
could be distinguished using the measured V1 neuronal
population responses. Linear discriminant analysis involves
finding the linear classification boundary that best separates
two response distributions, shown for a sample two-neuron
population in Fig. 3a (black for targets alone; red for displays with
distractors). Note that the classification boundary may be
different for the two types of displays (slope and intercept of
the line), so we optimized this boundary separately for responses

to targets alone or with distractors. We focused on linear
decoding, as is common practice32,35, because it is biologically
plausible, simply requiring appropriate choices of synaptic
weights in the inputs provided to downstream ‘read out’
neurons30,36,37.

We applied linear discriminant analysis to all pairwise
comparisons of target orientation, using all neurons responsive
to the target stimuli in each recording session (see Methods
section). We compiled discrimination performance (evaluated on
held out data) as a function of the orientation difference between
the two target stimuli, yielding a population neurometric
function. As shown for an example population (Fig. 3b),
performance was better for targets presented alone (black) than
for targets with distractors (red). For this population, the
discrimination threshold (defined as the orientation difference
resulting in 75% correct) for targets presented with distractors
was 1.33-fold higher than for targets presented alone (10.9° vs.
8.2°). Across 18 populations, there was a 1.08-fold elevation of
threshold under crowding (Fig. 3c, open red circles; p= 0.01,
one-sided t-test).

The effect of distractors on neurometric thresholds varied
substantially across populations. We found that the degree of
threshold elevation was strongly related to the discrimination
performance of the sampled population for the particular set of
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Fig. 1 Psychophysical measures of crowding. a Example task displays, for targets alone (top) and with distractors (bottom). b Example psychometric
functions for one human (left) and one monkey observer (right), for targets alone (black) and with distractors (red). Curves are cumulative normal fits to
the data. c Subjects’ discrimination thresholds for targets alone (black) and with distractors (red; all points represent mean ± s.e.m. across sessions). Left:
human performance for stimuli matched to physiological experiments. Center: monkey performance on similar stimuli (see Methods section). Right: human
performance on stimulus parameters matched to those used for monkeys. d Threshold elevations under crowding (ratio of thresholds with distractors
compared to targets alone; points represent geometric mean ± s.e.m. across sessions). Source data are provided as a source data file.
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target orientations presented (Fig. 3d; Pearson correlation, r=
−0.68, p= 0.002). When the sampled population was informative
—yielding thresholds similar to the perceptual thresholds of
humans and monkeys (Fig. 1)—distractors caused a nearly 1.5-
fold threshold elevation. When the population was less
informative (i.e. had a high threshold), distractors caused little
change in threshold. For these less informative populations, the
neurometric function was not well constrained by the limited
range of orientations shown, impairing our ability to estimate
thresholds. We thus directly compared our ability to discriminate
pairs of target stimuli separated by 8–12° of orientation, with and
without distractors. In populations with thresholds >18° (mean
threshold elevation: 0.97; n= 5), discrimination performance was
significantly worse with distractors (proportion correct 0.592 ±
0.007 vs. 0.578 ± 0.005, p= 0.02, one-sided paired t-test).
Together, these results suggest that distractors consistently reduce
the discriminability of target orientation, and that our estimates
of average threshold elevation are conservative.

The threshold elevation described above reflects an absolute
loss of the information that can be extracted using a linear
decoder, since the read out was optimized separately for
responses to targets alone and with distractors. However, it is
not clear whether signals from V1 can be read out differently for
these two displays, on a moment-by-moment basis. Using instead
a single decoder for displays with targets alone and with
distractors is a form of suboptimal decoding, which can produce
additional information loss38.

We considered a straightforward scenario in which the shared
decoder is optimized for responses to targets presented alone, and
then applied to responses measured in the presence of distractors.
This is one of many possible suboptimal decoders. We chose it
because it represents a sensible strategy for extracting information
about target orientation, except it fails to account for any
response modulation evoked by distractors. When applied to our
example population, the discrimination threshold for this decoder
was 11.7° when distractors were present, a 1.43-fold elevation
compared to the threshold for targets alone. Across populations,
discrimination thresholds increased on average 1.21-fold (Fig. 3c,
filled red circles; p < 0.001, one-sided t-test). Thresholds using this
suboptimal decoder were significantly higher than those achieved

using a decoder optimized separately to responses to targets with
distractors (p < 0.001, paired one-sided t-test).

In summary, the presentation of distractors causes an absolute
loss of V1 population information about target orientation. In
informative populations, thresholds can be elevated nearly 50%,
accounting for a large portion of the perceptual loss of
performance. Discriminability is even more strongly impaired
when responses to targets with distractors are read out using the
optimal decoder for targets alone. Thus, the information loss
caused by distractors could be amplified by a suboptimal read out
of V1 population signals by downstream circuits.

The influence of target–distractor spacing. Perceptual crowding
is strongest when distractors are nearby, and decays as they are
placed further away. Bouma’s rule states that the largest separa-
tion at which crowding can be observed (referred to as the critical
spacing) is roughly 0.4–0.6 times the target eccentricity5,7,39. We
therefore asked how the population encoding of target orientation
depended on target–distractor spacing, and whether there was a
critical spacing for the loss of neuronal population information
that was consistent with Bouma’s rule.

We varied the distance between distractors and the target from
1.06° to 3.28° (center-to-center spacing; Fig. 4a), in 12 V1
populations. For each spacing, we quantified neuronal population
discrimination thresholds using decoders separately optimized for
responses to targets alone and with distractors. Thresholds were
most elevated when distractors were nearby, and decayed
gradually as spacing increased (Fig. 4b). When distractors were
presented at distances >2.3°, there was no significant change in
discrimination threshold (p > 0.1 for 3.28° offset, one-sided t-
test). Given that the receptive fields of the sampled populations
were at an eccentricity of 3–5°, this critical spacing is consistent
with that predicted from Bouma’s rule.

How distractors affect neuronal responses. We next asked what
changes in neuronal responses were responsible for the neuronal
population information loss with distractors. Altered neuronal
responsivity, selectivity, variability, and covariability—and their
interactions—can all affect population information29,30.
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We first evaluated how distractors affected neuronal respon-
sivity. For each neuron, we calculated a modulation index,
defined as the ratio of the responses to targets with distractors
relative to responses to targets presented alone. The modulation
index was combined across target orientations by taking the
geometric mean of the indices computed for each target. On
average, distractors suppressed neuronal responses, with a mean
modulation index of 0.78 ± 0.02 (Fig. 5a; p < 0.001). However,
there was a broad range of modulation index values, from strong
suppression in some neurons to robust facilitation in others
(Fig. 5a, black bars).

The information provided by individual neurons is inversely
proportional to their response variability40,41. To quantify how
distractors affected response variability, we measured the
response variance, normalized by its mean (Fano factor). There
was little change in the Fano factor for responses with distractors

present compared to targets alone (Fig. 5b; geometric means:
1.946 and 1.953, respectively; geometric mean ratio, 1.00, p=
0.72).

To understand how changes in responsivity (including any
changes in selectivity) affect single-neuron discriminability, we
used receiver operating characteristic (ROC) analysis to distin-
guish between responses to target orientations spaced 20° apart.
Values of 0 or 1 for the area under the ROC curve indicate perfect
discriminability (for opposing signs of tuning), and 0.5 indicates
chance performance. Single-neuron discriminability was worse
with distractors, with area values closer to chance (Fig. 5c). This is
evident in the slope of the linear regression, which was
significantly <1 (0.78, with 95% confidence interval of [0.74
0.82]). Similarly, the deviation of area values from chance was
significantly smaller with distractors (p < 0.001, one-sided paired
t-test).
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Moving beyond single neuron response metrics, we next
considered the influence of distractors on shared variability, or
pairwise noise correlations42 (rsc). Correlations can have a
profound influence on population information29,30,43. We found
correlations were slightly larger for responses to targets with

distractors (0.298 ± 0.003) than for responses to targets alone
(0.294 ± 0.003, Fig. 6a; mean pairwise difference 0.005 ± 0.001,
p < 0.001).

Although the modulation of correlations was on average small,
even slight changes can strongly influence population informa-
tion, if they are structured appropriately. To assess whether
changes in correlations contribute to the information loss with
distractors, we measured the neuronal population discriminability
after trial shuffling the measured responses to strongly reduce
correlations. For shuffled responses, distractors still led to higher
thresholds compared to targets alone, as they did in the raw data
(Fig. 6b, open red circles; 1.07-fold increase, p= 0.03, one-sided t-
test). Thresholds for shuffled data were elevated further when we
applied the optimal decoder for shuffled responses to targets
alone to shuffled responses to targets with distractors (Fig. 6b,
filled red circles; 1.33-fold increase, p < 0.001, one-sided t-test). If
altered correlations contributed meaningfully to information loss
with distractors, performance should not have worsened with
distractors in the shuffled data. Because the threshold elevation
with distractors was similar for raw and shuffled responses,
population information loss was not caused by altered
correlations.

In summary, we found that the presentation of distractors
altered responsivity, reduced single neuron discriminability, and
affected pairwise correlations. Analysis of shuffled responses
suggests that the loss of population information with distractors is
due primarily to changes in single neuron encoding.

Modulation, spatial integration, and information loss. Why are
single neurons less informative about target orientation in the
presence of distractors? We wondered whether the loss of
information with distractors followed simply from the loss of
responsivity. If so, information loss might occur for neurons
whose receptive fields were aligned with the target grating posi-
tion—and thus suppressed by distractors falling in their receptive
field surround—but not for neurons with offset receptive fields.
Indeed, we found that the modulation of neuronal responsivity by
distractors was clearly related to the alignment of the receptive
fields with the target, with aligned neurons usually suppressed
(Fig. 7a, modulation index < 1) and offset neurons often facili-
tated (Spearman correlation: 0.28, p < 0.001). If information loss
were driven solely by a loss of responsivity, it might be partially,
or fully, offset by reading out responses from neurons with
slightly offset receptive fields.
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To address the relationship between response suppression
and information loss, we considered separately neurons that
were strongly suppressed (modulation index values ≤ 0.5, 8.4%
of neurons) or moderately facilitated (values ≥ 1, 10.4% of
neurons) by distractors (Fig. 5a, black bars). From these

neurons, we constructed small subpopulations. Because these
subpopulations contained fewer units, performance was closer
to chance, precluding an estimation of the population
neurometric threshold. We therefore directly compared per-
formance for each pairing of target stimuli, between responses
to targets alone and with distractors. We excluded cases in
which the population performance was not different from
chance, for either condition (defined as 60% correct, which is
the 95% confidence interval for chance performance given a
binomial distribution and the sampled number of trials). For
subpopulations of strongly suppressed cells, performance in
remaining cases was worse in the presence of distractors
(Fig. 7b, black points). The geometric mean performance ratio
(with distractors/targets alone) was 0.92 (p < 0.001). For
subpopulations of neurons whose responses were weakly
facilitated by distractors, performance was also worse with
distractors (Fig. 7c; ratio of 0.90, p < 0.001).

To clarify how both response suppression and facilitation
reduce discriminability, we first determined whether the modula-
tion by distractors was better described as additive or multi-
plicative. The two scenarios were assessed by comparing the
ability of two single-parameter models to account for the
measured responses (see Methods section). We found that
suppressed neurons were better explained by a multiplicative
model, indicating a divisive scaling of tuning by distractors
(Fig. 7d; 95.9% of cases, p < 0.001). In contrast, facilitated neurons
were better explained by an additive model (100% of cases, p <
0.001), indicating that their tuning underwent a rigid upward
translation.

Both additive facilitation and divisive suppression would be
expected to lead to information loss. This can be easily intuited by
considering the Fisher information provided by each neuron44,
under the assumption of Poisson variability. Fisher information
provides an upper bound on the performance of an optimal linear
decoder. For individual neurons, Fisher information is propor-
tional to the square of the tuning derivative (the signal, in the
numerator), divided by the response variance (the noise, in the
denominator). For divisively suppressed neurons, the divisive
scaling factor is squared in the numerator, but not in
denominator, resulting in lower Fisher information, or worse
performance (Fig. 7e, left column). For neurons whose responses
are facilitated by an additive constant, tuning slope (the
numerator) is unaffected but response variance (the denomi-
nator) increases, thus also leading to lower Fisher information
(Fig. 7e, right column). Note that if response modulation had
instead involved subtractive suppression and multiplicative
facilitation, we would not expect a loss of information about
target orientation.

Because there is less information provided about target
orientation both from neurons that are suppressed or facilitated
by distractors (typically, those with aligned or offset RFs,
respectively), we expected V1 population information loss to be
largely independent of the spatial pool of neurons considered. To
test this expectation, we conducted simple simulations, using
populations of independent neurons with diverse tuning
preferences and RF locations. Population information was
quantified as the Fisher information provided by the population,
for targets with distractors compared to targets alone. We
explored how information would be affected by considering
progressively larger neuronal pools, beginning with those units
whose RFs were aligned with target stimuli and adding offset
neurons by increasing the amount of spatial pooling.

Populations consisting of neurons with no surround suppres-
sion (Fig. 8, red) had a slight information loss with distractors.
This effect was stronger with larger spatial pooling, owing to the
integration of target and distractor signals in neurons whose
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Fig. 6 Changes in correlations do not drive population information loss. a
Changes in spike count correlation (rSC) with the presentation of distractors
(rSC with distractors—rSC for targets alone). Open arrowhead indicates
mean. b The discrimination thresholds for each population, normalized by
the thresholds for targets alone. Thresholds were measured using
responses that were trial shuffled to reduce correlations. Left: thresholds for
targets with distractors, determined using an optimal decoder for each
display, in open red circles. Right: thresholds estimated using a decoder
optimized for shuffled responses to targets alone and applied to shuffled
responses to targets with distractors. Source data are provided as a source
data file.
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receptive field straddled both stimuli. When a divisive spatial
surround was included (blue traces), there was greater informa-
tion loss. This effect grew in proportion to the gain of the
surround (blue shading), but was similar across spatial scale of
pooling. Thus, the information loss in V1 responses is unlikely to
be offset by considering pools of neurons with more diverse
spatial receptive fields.

Discussion
We have a rudimentary understanding of the neural mechanisms
underlying crowding, a fundamental aspect of vision. Here we
show that macaque monkeys experience crowding in a manner
similar to humans. Further, we show that distractors reduce the
information provided by V1 neuronal populations about target
orientation. This information loss accounts for a significant
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Fig. 7 Suppressed and facilitated populations both show information loss with distractors. a The modulation index as a function of neuronal RF offset
from the target location. Black line indicates running mean, in 0.15° windows. b Left: discrimination performance in neuronal subpopulations with strong
response suppression with distractors (modulation index ≤0.5), for targets with distractors compared to targets alone. Each point represents performance
of one population to one pair of gratings. Black dots indicate cases in which performance exceeded the 95% confidence interval for chance performance for
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population performance exceeded chance are considered. Open arrowhead indicates mean. c Discrimination performance for neurons showing response
facilitation with distractors (modulation index ≥1). 133 cases of significant performance (black dots). Conventions as in b. d Fit quality of multiplicative
compared to additive models, in accounting for altered responses with distractors, as a function of the modulation index. e Top: tuning of model neurons,
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Source data are provided as a source data file.
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proportion of the perceptual deficit, and follows Bouma’s rule, a
‘hallmark’ of crowding. V1 information loss is due to a divisive,
suppressive modulation of neuronal responses by distractors, as
well as additive summation of responses to targets and distractors
in neurons whose receptive fields encompass both stimuli. Our
results show that spatial contextual effects at the first stage of
cortical processing place fundamental limits on perceptual dis-
criminability of visual features.

The factors that limit neuronal population information have
been studied extensively29,30, but no previous work, to our
knowledge, has assessed how spatial context influences popula-
tion information. Although spatial context can affect single
neuron variability27 and its correlation across neurons45—both of
which might alter population information—the information loss
with our distractors is due primarily to a divisive reduction in
single neuron responsivity and consequent loss of discrimin-
ability. An important caveat is that our populations consisted of
tens of neurons. Information loss might be different in larger
populations, for which information is strongly influenced by
‘differential correlations’43. If these correlations are affected by
distractors, information might be altered differently from the
effects we report30.

Neuronal response suppression by spatial context is a well-
documented component of V1 processing28, and several studies
have suggested this suppression is divisive46–48. Neuronal sur-
round suppression has often been linked to lateral masking, a
distinct form of perceptual impairment in which target detect-
ability is reduced by spatial context10,49. V1 suppression can
indeed eliminate responses to low contrast targets within the
receptive field46, but it also modulates responses to high contrast
stimuli. Our work shows this modulation reduces feature dis-
criminability in suprathreshold (detectable) stimuli.

Our experiments explored a limited arrangement of targets and
distractors. The distractor configurations we used produced
similar loss of information and perceptual crowding (not shown),
so we averaged over the effects induced by different configura-
tions. However, crowding strength is known to depend on the
properties of targets and distractors and on their spatial
arrangement, and thus the effects we report might be different for
more distinct distractor arrangements. Many of these depen-
dencies of crowding on distractor configuration might seem to
elude a simple mechanism like V1 surround suppression, but in
fact the properties of this suppression often parallel those of
crowding. For instance, V1 suppression weakens when stimuli in
the receptive field and surround differ in orientation28,50,51.
Similarly, crowding is alleviated when distractors and targets have
different orientations (see ref. 3 for review). V1 suppression
weakens when a stimulus in the surround exceeds a critical
size52,53. Similarly, crowding is weaker for large distractors than
small ones11. Finally, V1 suppression depends on the statistical
dependencies between image components in the receptive field
and surround, and can be ‘gated’ when these differ47. Similarly,
crowding depends on larger spatial context, and is alleviated
when distractors can be perceptually segmented from targets54,55.

Though we emphasize information loss in V1, our results do
not exclude the possibility that mechanisms in extrastriate cortex
also contribute to crowding, particularly for complex visual fea-
tures. For instance, crowding could involve interactions between
targets and distractors within the larger spatial receptive field of
extrastriate neurons. Such interactions have been documented in
V256, V457, and IT58. However, this previous work did not relate
these interactions to a perceptual loss of stimulus information,
nor have they considered population information (except ref. 58,
which considered ‘pseudo-populations’). Interactions between
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Fig. 8 Information loss as a function of spatial scale of integration. Fisher information (with distractors compared to targets alone) in a model population
of independent neurons, as a function of increasing radius of spatial integration. Populations with excitatory receptive fields (red, s.d.= 0.25°) show a slight
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targets and distractors in extrastriate cortex could also involve
surround suppression, which is robust in higher visual areas (e.g.,
V259,60; V461). Importantly, any degradation of extrastriate
encoding can only compound the loss we observe in V1. Higher
cortex is almost entirely dependent on V1 input62. Information
loss in V1 thus limits the information provided to extrastriate
cortex, which cannot encode information it does not receive.

Our results also do not exclude the possibility that crowding
involves fluctuations in attentional signals13 or that the shape of
the crowding zone is influenced by saccades63. However, our
results show that attentional mechanisms are not required to
produce crowding, as our recordings were performed in anes-
thetized animals. Similarly, the crowding effects we measured are
not influenced by eye movements, since we administered
paralytics to suppress these. Importantly, V1 spatial contextual
effects are robust in awake animals, and have similar properties to
the modulation observed under anesthesia64,65.

The effects of distractors on target discriminability will be
strongly influenced by the strategy used to read out those signals.
We found that decoders optimized separately to responses to
targets alone or with distractors resulted in up to 50% informa-
tion loss (in the most informative populations). Applying the
optimal decoder for targets alone to responses to targets with
distractors roughly doubled the effect size. There are many
additional scenarios which could produce further information
loss. For instance, one could decode V1 neurons whose receptive
fields overlapped the distractors but not the targets. These neu-
rons, by definition, carry no information about target orientation;
decoding their responses when distractors are present could
further degrade information. One could also decode different
pools of neurons on different trials, leading to the erroneous
decoding of task-irrelevant neurons on some trials (e.g. as in
substitution16).

Crowding has been referred to as ‘an enigma wrapped in a
paradox and shrouded in a conundrum’3. We posit that this is
due in part to a focus on establishing litmus tests for crowding. It
may be more helpful to accept that there are multiple mechan-
isms in V1 that underlie spatial contextual modulation of sti-
mulus detectability and identifiability. Our results show that
mechanisms evident in V1, previously invoked to explain mod-
ulation of detectability, can explain much of the perceptual
crowding that occurs for simple visual features like orientation.
Further, our approach of assessing neuronal population infor-
mation for different visual displays provides a framework for
assaying the contribution of other areas and neural computations
to perceptual crowding.

Methods
Perceptual experiments. Stimuli were generated either with custom software
based on OpenGL libraries (EXPO) or using Matlab and the Psychtoolbox
extensions66 and displayed on calibrated CRT monitors with linearized output
luminance (human experiments —1280 × 1024 pixels; 85 Hz refresh rate; 57 cm
viewing distance; 40 cd m−2 mean luminance; monkey experiments—1024 × 768
pixels; 100 Hz refresh rate; 64 cm viewing distance; 40 cd m−2 mean luminance).

Human subjects reported the orientation of a target grating presented briefly in
the lower right visual field (4.24° eccentricity), either alone or with distractors. All
participants provided written informed consent prior to testing, in accordance with
the Declaration of Helsinki. The protocol was approved by the Institutional Review
Board of the Albert Einstein College of Medicine. Stimulus parameters were
identical to those used in the physiological experiments (0.8° diameter; spatial
frequency, 1.5 cyc deg−1; temporal frequency, 4 Hz; duration, 0.4 s). Distractors
consisted of eight gratings spatially alternating in orientation (45 ± 10°); distractor
arrays were counterbalanced across trials. The center-to-center spacing of target
and distractor stimuli was 1.04°. Starting spatial phase was randomized across
trials. Phase was not randomized in the physiology experiments but since we
averaged neuronal responses over multiple cycles of drift, we effectively removed
phase information from our decoder. Subjects were given feedback on each trial in
the form of a brief sound presented following incorrect responses. We did not
monitor fixation behavior in the experiments presented here. To be sure our results
were not affected by poor fixation, we ran control sessions in two subjects with eye

tracking (1° window). These sessions yielded results that were indistinguishable
from those reported here.

Behavioral experiments were also carried out in three cynomolgus monkeys
(Macaca fascicularis). Eye position was monitored using a video-based eye-tracking
system (SR Research), with a 1 kHz sampling rate. Animals had to maintain
fixation on a central fixation point within a 1° window; after a 1 s delay, stimuli
were shown for 0.25 s, at an eccentricity of 4.24°. The eccentricity was chosen to
facilitate neurophysiological recordings from these animals in later sessions (not
reported here); stimulus duration was chosen to facilitate neuron-choice analyses
(not reported here). After stimulus offset and a further delay of 0.2 s, two choice
targets appeared (above and below fixation point); animals had to saccade to the
upwards target to indicate a vertical choice, downwards for horizontal, and were
rewarded for correct choices with a small liquid reward. Incorrect trials were
followed by a sound and brief time out.

Stimuli in monkey perceptual experiments differed slightly from those in the
physiology experiments reported here, as sessions were tailored towards separate
aims: gratings were 1.1° diameter, 1.0 cyc deg−1, and 4 Hz drift rate. Distractors
consisted of four gratings spaced around the target (to allow for closer spacing of
distractors, without physical overlap, if this was needed to strengthen crowding).
Center-to-center spacing of target and distractors was 1.43°. Distractor orientations
were fixed within each behavioral session, and were offset from the 45° reference by
2–30° (median: 5°). Each distractor array consisted of two gratings of each sign of
tilt; thus six distractor arrays were sampled within each session. Spatial phase was
fixed to allow for neuron-choice analyses in subsequent recordings. For
comparison, two human subjects performed perceptual experiments with
parameters matched in every way to those used for the monkey behavior, except
starting spatial phases were randomized for humans.

Perceptual performance was quantified by fitting a cumulative normal
distribution (with one additional parameter for lapse rates) to the choices in each
condition, via maximum likelihood. Psychometric functions were fit separately for
each subject, session and experimental condition (i.e. each distractor array
condition). Fitted parameter values were then averaged across conditions and
sessions for each subject. Thresholds were defined using 75% correct performance
as criterion. Human subjects performed 4–6 sessions, or 1920–3456 trials per
subject. Monkeys performed 21–43 sessions, or 17,101–47,680 trials per animal.
Lapse rates—the estimated error rate for the easiest discriminations—were low for
targets presented alone (0–2% across subjects) and only slightly elevated with
distractors (range 0–5%). Our quantification of thresholds accounted for these
errors so that our estimates of threshold elevations were not influenced by
variations in lapse rate.

Animal surgical procedures. Recordings were performed in six anesthetized male
monkeys (Macaca fascicularis). Prior to surgery, animals were administered 0.01
mg kg−1 glycopyrrolate and 1.5 mg kg−1 diazepam. Anesthesia was induced with
10 mg kg−1 ketamine; after intubation, anesthesia was maintained with 1.0–2.5%
isofluorane (98% O2/2% CO2 mixture). Intravenous catheters were inserted into
the saphenous vein of each leg. Animals were positioned into a stereotactic device
(Kopf) and a craniotomy and a durotomy were performed over V1. A 10 × 10
microelectrode array (400 µm spacing, 1 mm length; Blackrock Microsystems) was
implanted, and agar was placed over the brain to prevent dessication. During
recordings, anesthesia was maintained through a venous infusion of sufentanil
citrate (6–24 μg kg−1 h−1) in Normosol solution with dextrose. The animal was
paralyzed with vecuronium bromide (0.15 mg kg−1 h−1) to minimize eye move-
ments. Anesthetic depth and well being were ensured by continuous monitoring of
vital signs: electrocardiogram, EEG, blood oxygen saturation, end-tidal CO2 partial
pressure, airway pressure, blood pressure, and temperature. Ophthalmic atropine
was used for pupil dilation. Gas-permeable contact lenses protected the corneas,
and external lenses were used to bring the retinal image into focus. Broad spectrum
antibiotics (either 2.5 mg kg−1 Baytril or 2.2 mg kg−1 Ceftiofur) and an anti-
inflammatory steroid (1 mg kg−1 dexamethasone) were administered daily.

All procedures were approved by the Institutional Animal Care and Use
Committee of the Albert Einstein College of Medicine and were in compliance with
the guidelines set forth in the National Institutes of Health Guide for the Care and
Use of Laboratory Animals.

Visual neurophysiology. Stimuli were generated and displayed as in the percep-
tual experiments, but with a viewing distance of 110 cm. Spatial receptive fields of
each neuron were mapped using small drifting gratings (0.5° diameter; four
orientations; 0.25 s duration) across a spatial grid spanning 3° × 3°.

Small drifting target stimuli (0.8° diameter; spatial frequency, 1.5–2 cyc deg−1;
temporal frequency, 4–6.25 Hz) were centered over the aggregate receptive field,
and viewed monocularly. A reference orientation was chosen, with target stimuli
spanning −10° to +10° around this value, in 2–4° steps. On two-thirds of the trials,
targets were surrounded by an array of drifting distractor gratings. Distractors were
presented at eight locations on a ring concentric to the target. The center-to-center
spacing between target and distractors was 1.04°. Distractor orientations were set to
±10° from the reference orientation and spatially alternated in orientation to
introduce heterogeneity across the distractor array. Two counterbalanced distractor
arrays were used, each comprising one-third of the total trials. Target and
distractor stimuli were presented for 0.4 s, with no difference in onset or offset.
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Conditions were randomly interleaved across trials, with 1 s blank stimuli between
trials.

We recorded in total from eight arrays implanted in eight hemispheres. In each
implant, we presented two sets of target stimuli (i.e. two sets of gratings spanning a
20° range of orientation, with each set centered at a different orientation spaced 45°
or 90° apart). In a few cases, we collected additional data after rotating the
orientation of the entire ensemble. We considered the populations responding to
each set of orientations as independent, since V1 orientation tuning meant that
largely distinct sets of units would be visually driven in each case. In all analyses, we
considered responses to the two sets of distractors separately, and then averaged
the results.

Neural signals exceeding a user-defined threshold were digitized at 30 kHz and
sorted offline into single- and multi-unit activity (Plexon Offline Sorter). Neuronal
responses were measured as the total spike counts during the entire stimulus
presentation (from 0 to 0.4 s after stimulus onset). Neurons with a maximal
response to isolated targets that was >0.5 spikes s−1 and 2 s.d. above the mean
spontaneous response were selected for further analysis. The size of the responsive
population ranged from 7 to 35 neurons (mean size: 17 neurons).

Data analysis. Neuronal population information about target orientation was
quantified using linear discriminant analysis. For each population, the activity
evoked by a target stimulus was summarized by a T ×N dimensional response
matrix R, where T represented the population activity on each trial and N was the
number of neurons. Linear discriminant analysis finds the N × 1 population
weighting vector w, such that the projection of the population responses onto that
vector (R*w+ c) is maximally separable for responses to two target stimuli. The
constant c represents the criterion that optimally separates the two target response
distributions within the projected subspace. Linear classifiers were trained on 48
repetitions of each target orientation and performance was measured on a separate
held out test set of two trials for each target. The reported performance is the
average over different folds of the data. We obtained nearly identical results when
we decoded population responses using logistic regression, with Lasso
regularization.

To quantify population discrimination performance, we fit an observer model
to classifier performance across all pairwise combinations of target orientations.
Specifically, each population performance was summarized by a cumulative normal
distribution, adjusted for a two alternative forced-choice task, with parameters fit to
the data via maximum likelihood. Discrimination thresholds for each population
were defined as the orientation offset that produced 75% correct.

The nature of response modulation with distractors was assessed by
determining whether the average response to targets with distractors, Rwith

distractors(θ), was better characterized as an additive or multiplicative scaling of
responses to targets alone, Rtargets alone(θ). Both models consisted of a single scaling
parameter c, with the additive model as Rwith distractors(θ)= Rtargets alone(θ)+ c, and
the multiplicative model as Rwith distractors(θ)= Rtargets alone(θ) ∗ c. Models were
rectified at 0 to prevent negative firing rates. The log-likelihood of each model
given the data was calculated as

log L ¼
X

θ

log
RRm
p e�Rp

Rm!

" #

which is the log-likelihood of each model under the assumption of Poisson
variability, given the measured and predicted responses, Rm and Rp, respectively67.

Spike count correlations were measured as the Pearson correlation of the spike
counts of two neurons to repeated presentations of a given stimulus. We first
removed trials in which the response of either neuron was >3 s.d. from its mean
response, to avoid contamination by outlier responses. For both Fano factors and
correlations, we calculated values separately for each target orientation and
distractor configuration. The reported distributions show, for each neuron or pair,
the average over the different stimuli.

Spatial integration simulations. Model populations consisted of independent
neurons with homogenous tuning curves defined by a Von Mises distribution
(spontaneous rate 3 sp/s; tuning curve amplitude 20 sp/s; bandwidth, defined as
half-width at half-height, 15°). At each spatial offset from the target location (0–1°,
in steps of 0.025°), the population consisted of 36 neurons with uniformly dis-
tributed orientation preferences (10° spacing). Neuronal spatial receptive fields
consisted of a circular 2D Gaussian distribution (s.d.= 0.25°). Target gratings were
0.8° diameter. Neuronal responses to a given target were calculated by scaling each
neuron’s predicted mean response (i.e. tuning) for that orientation by the spatial
overlap of the target with the receptive field. Distractors were offset by 1.04° from
the target, with orientations tilted ±10° from the reference orientation. Responses
to distractors were computed similarly to those for targets. The response to targets
and distractors in the receptive field was the sum of the responses to each stimulus.

To incorporate surround modulation, we ran simulations in which the receptive
field included a divisive surround, defined as a circular 2D Gaussian distribution
with a larger spatial profile (s.d.= 1.0°). Surround activation was calculated by the
spatial overlap with the stimulus array, multiplied by a gain term to set the
maximal strength of the surround. Responses from the excitatory receptive field
were divided by this surround activation. The surround was thus spatially selective,

but non-selective for any specific stimulus features (e.g. orientation). Population
Fisher information for target orientation was calculated by summing the Fisher
information from individual neuron tuning curves, defined as the square of the
tuning derivative divided by the response variance.

All indications of error are standard error of the mean, unless noted otherwise.
Averages over ratios are calculated as the geometric mean; ratios were log-
transformed before statistical testing. All statistical tests are paired two-sided t-
tests, except where noted.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available upon request. Source data for Figs. 1 and 3–8 are provided as a source
data file.

Code availability
Code is available upon request.
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