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Abstract

Anemia is a common complication of chronic kidney disease (CKD) that develops early and its
severity increases as renal function declines. It is mainly due to a reduced production of eryth-
ropoietin (EPO) by the kidneys; however, there are evidences that iron metabolism distur-
bances increase as CKD progresses. Our aim was to study the mechanisms underlying the
development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of
CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal
dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia devel-
oped 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney
was still able to produce EPO and the liver showed an increased EPO gene expression. In
spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron
and transferrin levels, while serum interleukin (IL)-6 and high sensitivity C-reactive protein (hs-
CRP) levels showed the absence of systemic inflammation. The increased expression of duo-
denal ferroportin favours iron absorption; however, serum iron is reduced which might be due
to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our
data suggest that the persistence of anemia may result from disturbances in iron metabolism
and by an altered activity/function of EPO as a result of kidney cell damage and a local inflam-
matory milieu, as showed by the increased gene expression of different inflammatory proteins
in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the
development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO
stimuli and reduced iron availability. These findings might contribute to open new windows to
identify putative therapeutic targets for this condition, as well as for recombinant human EPO
(rHUEPOQ) resistance, which occurs in a considerable percentage of CKD patients.
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Introduction

Chronic kidney disease (CKD) is a pathological condition that results from a gradual and per-
manent loss of kidney function over time, usually, months to years. CKD can result from pri-
mary diseases of the kidneys, however, diabetic nephropathy and hypertension are the main
causes of CKD [1]. Anemia is a common complication of CKD that develops early in the course
of the disease, increasing its frequency and severity with the decline of renal function. The inci-
dence of anemia is less than 2% in CKD stages 1 and 2, about 5% in CKD stage 3, 44% in CKD
stage 4 and more than 70% in end-stage renal disease (ESRD) [2]. This condition is associated
with a decreased quality of life [3], increased hospitalizations [4,5], cardiovascular complica-
tions—angina, left ventricular hypertrophy (LVH) and chronic heart failure—and mortality
[6-9].

Anemia is mainly associated with a reduced production of erythropoietin (EPO) by the kid-
neys. However, there are also evidences that iron metabolism disturbances increase as the CKD
progresses. The reasons for this high proportion of CKD patients with iron disturbances are
not well clarified; however, inflammation has been proposed to play an important role. In fact,
previous works reported that ESRD patients under hemodialysis present higher hepcidin
serum levels, increased markers of inflammation [such as C-reactive protein (CRP) and inter-
leukin (IL)-6] and reduced iron absorption and mobilization, thus presenting lower levels of
iron and transferrin [10-12].

Hepcidin plays pivotal role in the development of the anemia associated with CKD [10]. He-
patocytes play a dual role in iron metabolism, acting as the major site of iron storage and of se-
cretion of the iron regulatory hormone hepcidin (codified by the gene Hamp) [13]. Hepcidin
orchestrates systemic iron fluxes by controlling iron absorption through enterocytes and iron
mobilization from macrophages. Hepcidin binds to the iron exporter ferroportin (SLC40A1,
solute carrier family 40, member 1) on the surface of iron-releasing cells, triggering its degrada-
tion and, therefore, reducing the iron absorption and mobilization through the linkage of iron
to transferrin [13]. The expression of Hamyp is regulated by different hepatocyte cell-surface
proteins, namely hemochromatosis (Hfe), transferrin receptor protein 2 (TfR2), hemojuvelin
(HJV), serine protease matriptase-2 (TMPRSS6) and IL-6, and increases in inflammatory con-
ditions (through IL-6 dependent pathway), in increased erythropoiesis and iron overload, and
is down-regulated during hypoxia or iron deprivation [14].

During the last few years the mechanisms underlying hepcidin and iron regulation have
been largely studied. In addition, the impact of renal hypoxia, through hypoxia-inducible fac-
tors (HIFs), on iron metabolism, on kidney lesion or regeneration, as well as on hepcidin ex-
pression, have been extensively debated [15-17]. In response to low oxygen supply, HIFs are
produced, triggering the expression of the hypoxia response genes, leading to an increased pro-
duction of EPO, vascular endothelial growth factor (VEGF) and glycolytic enzymes [18].

Experimental models using transgenic mice, knockout for some of the key mediators, have
been crucial to reveal some of these new findings [19,20]. Uremic rat models have been charac-
terized and used for long time by our group, as well as by other authors, as tools to study the
pathophysiological events underlying kidney disease development; renal failure was induced in
these uremic rat models by nephrectomy and infarction [21-23]. However, the information is
still scarce concerning the characterization of iron dysfunction associated with hypoxic anemia
of chronic kidney disease, namely in the 5/6 nephrectomized rat, which is one of the most used
rat model of CKD. In this sense, we intended to elucidate the mechanisms underlying the de-
velopment of anemia and evolution of renal damage in the remnant kidney rat model of CKD
induced by 5/6 nephrectomy, focusing on iron impairment and kidney hypoxia, inflammation
and fibrosis.
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Material and Methods
Animals and experimental protocol

Male Wistar rats (Charles River Lab., Inc., Barcelona, Spain) weighing 300g were maintained
in an air conditioned room, subjected to 12 h dark/light cycles and given standard rat diet
(IPM-R20, Letica, Barcelona, Spain) ad libitum and free access to tap water. Animal experi-
ments were conducted according to the European Communities Council Directives on Animal
Care. The experiments received the approval by the Portuguese Foundation for Science and
Technology and the Local Ethics Committee of the Faculty of Medicine from the University of
Coimbra.

The rats were divided into two groups (7 rat each): Sham group—subjected to chirurgical
process but without kidney mass reduction and chronic renal failure (CRF) group—induced by
a two-stage (5/6) nephrectomy, with subtraction firstly of about 2/3 of the left kidney by left
flank incision and, one week later, complete removal of the right kidney through identical inci-
sion/procedure. All the animals have completed 12 weeks of protocol. Body weight (BW) was
monitored throughout the study and blood pressure (BP) and heart rate (HR) measures were
obtained using a tail-cuff sphygmomanometer LE 5001 (Letica, Barcelona, Spain).

Sample collection and preparation

At the beginning of the experiments (T0) and at 3 (T1), 6 (T2) 9 (T3) and 12 (T4) weeks after
the surgical 5/6 nephrectomy, the rats were subjected to intraperitoneal anesthesia with a

2 mg/kg BW of a 2:1 (v:v) 50 mg/mL ketamine (Ketalar, Parke-Davis, Lab. Pfeizer Lda, Seixal,
Portugal) solution in 2.5% chlorpromazine (Largactil, Rhéne-Poulenc Rorer, Lab. Vitoria,
Amadora, Portugal), to collect blood by venipuncuture, from the jugular vein, into vacutainer
tubes without anticoagulant (to obtain serum) or with K3EDTA for hematological and bio-
chemical studies; at TO, T1, T2 and T3 a small blood was collected to monitor anemia and
renal function; at the end of protocol (T4) 10 mL of blood were collected, to perform all the
biochemical and hematological assays.

At the end of the protocol, after collection of blood, the rats were sacrificed by cervical dislo-
cation; kidneys, duodenum, liver and heart were immediately removed, placed in ice-cold
Krebs-Henseleit buffer and carefully cleaned. A bone marrow aspirate from the femur was
also performed.

Biochemical and hematological assays

Serum creatinine and blood urea nitrogen (BUN) were used as renal function markers; glicose,
total cholesterol (Total-c), triglycerides (TGs), creatine kinase (CK), aspartate transaminase
(AST) and alanine transaminase (ALT) were analysed through automatic validated methods
and equipments (Hitachi 717 analyser, Roche Diagnostics Inc., Massachuasetts, USA).

Red blood cells (RBC) count, hematocrit (Hct), hemoglobin (HDb), reticulocyte count (Ret)
mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), mean cell vol-
ume (MCV), platelet count (PLT), platelet distribution width (PDW), RBC distribution width
(RDW) and white blood cells (WBC) were assessed in whole blood KsEDTA (Coulter Counter,
Beckman Coulter, Inc., Fullerton, California, USA).

Serum iron concentration was determined using a colorimetric method (Iron, Randox Lab-
oratories Ltd., North Ireland, UK), whereas serum ferritin and transferrin were measured by
immunoturbidimetry (Laboratories Ltd., North Ireland, UK).

Serum levels of interleukin-6 (IL-6), interferon y (IFN-y), transforming growth factor
(TGE-B1) and vascular endothelial growth factor (VEGF) were all measured by rat-specific
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Quantikine ELISA kits from R&D Systems (Minneapolis, USA). High-sensitive C-reactive pro-
tein (hs-CRP) was determined by using a rat-specific Elisa kit from Alpha Diagonostic Interna-
tional (San Antonio, USA). Serum levels of erythropoietin (EPO) were evaluated by rat specific
ELISA kit (MyBioSource, USA).

Quantification of total bilirubin was performed by a colorimetric test of diazotized sulfanilic
acid reaction (Roche Diagnostics Inc., Massachusetts, USA) circulating levels of glucose and
uric acid were determined by routine automated technology (ABX Diagnostics, CA, USA).

Flow cytometry

To study leukocyte activation, the mononuclear cells were then isolated from the other blood
cells by density gradient centrifugation (700g, 20 min. at room temperature) (Histopaque-1077
and -1119, from Sigma-Aldrich, Sintra, Portugal) followed by 3 washing steps with phosphate
buffered saline solution (PBS, pH = 7.4), supplemented with 3% (v/v) fetal bovine serum (FBS).
We used antibodies against CD3, CD4, CD8 and CD25 (all from BD Biosciences, San Diego,
CA, USA), conjugated either to FITC, PE or PerCP. Fluorochrome-conjugated isotype-
matched antibodies were used as negative controls. For surface staining, mononuclear cells

(=1 x 10° cells in 100 ul PBS containing 3% (v/v) fetal bovine serum and 0.1% NaN3) were in-
cubated with 1 pg antibody in the dark, at room temperature, for 30 min and then washed
three times with PBS supplemented with FBS 3% (v/v); 400 pl of PBS supplemented with 3%
(v/v) FBS was finally added to each tube. The treated samples and controls were analyzed by
flow cytometry within a 1 h period. Flow cytometric analysis was carried out in a FACS Calibur
(San Jose, CA, USA) based on the acquisition of 20000 events. Detectors for forward (FSC) and
side (SSC) light scatter were set on a linear scale, whereas logarithmic detectors were used for
all three fluorescence channels (FL-1, FL-2 and FL-3). Compensation for spectral overlap be-
tween FL channels was performed for each experiment using single-color-stained cell popula-
tions. For the experimental samples, a corresponding isotype control was used to set gates, or
positive/negative cell populations. All data were analyzed using Flow]Jo software (TreeStar Inc,
Ashland, OR, USA).

Gene expression analysis

In order to isolate total RNA, 0.2 g samples of liver, duodenum and kidney, from each rat, were
immersed in RNA laterTM (Ambion, Austin, USA) upon collection and stored at 4°C for 24h;
afterwards, samples were frozen at -80°C. Subsequently, tissue samples weighing 50+10 mg
were homogenized in a total volume of 1 ml TRI Reagent (Sigma, Sintra, Portugal) using a ho-
mogenizer, and total RNA was isolated as described in the TRI Reagent Kit. To ensure inactiva-
tion of contaminating RN Ases, metal objects and glassware were cleaned with detergent,
immersed in RN Ase-free water (0.2% diethyl pyrocarbonate) for 2 h and finally heated at
120°C for 1 h. RNA integrity (RIN, RNA Integrity Number) was analyzed using 6000 Nano
ChipW Kkit, in Agilent 2100 bioanalyzer (Agilent Technologies, Walbronn, Germany) and 2100
expert software, following manufacturer instructions. The yield from isolation was from 0.5 to
1.5 ug; RIN values were 7.0-9.0 and purity (A260/A280) was 1.8-2.0. The concentration of the
RNA preparations were confirmed with NanoDrop1000 (ThermoScientific, Wilmington, DE,
USA). Possible contaminating remnants of genomic DNA were eliminated by treating these
preparations with deoxyribonuclease I (amplification grade) prior to RT-qPCR amplification.
Reverse transcription and relative quantification of gene expression were performed as previ-
ously described [24]. Real-time qPCR reactions were performed for the following genes: EPO,
EPOR, Transferrin receptor 2 (TfR2), Hepcidin (Hamp), Ferroportin (SLC40A1), Hemojuvelin
(HJV), Transferrin (TF), Hemochromatosis (Hfe), +IRE-Divalent Metal Transporter 1
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(DMT1), Transferrin recptor 1 (TfR1), Matriptase-2 (TMPRSS6), Interleukin-6 (IL-6) and
Bone Morphogenic Protein 6 (BMP6); vascular endothelial growth factor (VEGEF), interleukin-
1 beta (IL-1p), nuclear transcription factor kappa B (NF-kB), connective tissue growth factor
(CTGF) and tumor necrosis factor alpha (TNF-a) which were normalized in relation to the ex-
pression of beta-actin (Actb), and 18S ribosomal subunit (18S). Primer sequences are listed on
Table 1. Results were analyzed with SDS 2.1 software (Applied Biosystems, Foster City, CA,

Table 1. List of primer sequences (F: forward; R: reverse).

Gene Primer sequences
EPO F: 5-AGGGTCACGAAGCCATGAAG-3

R: 5-GAT TTC GGC TGT TGC CAG TG-3’
EPOR F: 5-GCG ACT TGG ACC CTC TCA TC-3’

R: 5-AGT TAC CCT TGT GGG TGG TG-3’
Hamp F: 5-GAA GGC AAG ATG GCA CTA AGC-3

R: 5-CAG AGC CGT AGT CTG TCT CG-3’
TfR2 F: 5-CAA GCT TCG CCC AGA AGG TA-3

R: 5-CGT GTA AGG GTC CCC AGT TC-3’
SLC40A1 F: 5-CAG GCT TAG GGT CTA CTG CG-3’

R: 5-CCG AAA GAC CCC AAA GGA CA-3
HJV F: 5-GCC TAC TTC CAA TCC TGC GT-&

R: 5-GGT CAA GAA GAC TCG GGC AT-3
TF F: 5-GGC ATC AGA CTC CAG CAT CA-3

R: 5-GCA GGC CCA TAG GGA TGT T-3
Hfe F: 5-CTG GAT CAG CCT CTC ACT GC-3’

R: 5-GTC ACC CAT GGT TCC TCC TG-3
DMT1 F: 5-CAA CTC TAC CCT GGC TGT GG-3

R: 5-GTC ATG GTG GAG CTC TGT CC-3’
TfR1 F: 5-GCT CGT GGA GAC TAC TTC CG-3’

R: 5-GCC CCA GAA GAT GTG TCG G-3
TMPRSS6 F: 5-CCG AAT ATG AGG TGG ACC CG-3

R: 5-GGT TCA CGT AGC TGT AGC GG-3’
BMP6 F: 5-GCT GCC AAC TAT TGT GAC GG-3

R: 5-GGT TTG GGG ACG TAC TCG G-3
11-6 F:5-ATG TTG TTG ACA GCC ACT GC-3’

R: 5- TTT TCT GAC AGT GCA TCA TCG-3&
-1 F: 5-CTC TGT GAC TCG TGG GAT GAT G-3’

R: 5-CAC TTG TTG GCT TAT GTT CTG TCC-3
CTGF F: 5-CGT AGA CGG TAA AGC AAT GG-3

R: 5-AGT CAA AGA AGC AGC AAA CAC-3
NF-kB F: 5-ACC TGA GTC TTC TGG ACC GCT G-3

R: 5-CCA GCC TTC TCC CAA GAG TCG T-3’
VEGF-a F: 5- GAA GTT CAT GGA CGT CTACCA G -3

R: 5- CAT CTG CTA TGC TGC AGG AAG CT -3
TNF-a F: 5- CCC AGA CCC TCA CAC TCA GAT CAT -3

R: 5—GCA GCC TTG TCC CTT GAA GAG AA-3
18S F: 5-CCA CTA AAG GGC ATC CTG GG-3

R: 5-CAT TGA GAG CAA TGC CAG CC-3
Actb F: 5-GAG ATT ACT GCC CTG GCT CC-3

R: 5-CGG ACT CAT CGT ACT CCT GC-3

doi:10.1371/journal.pone.0124048.t001

PLOS ONE | DOI:10.1371/journal.pone.0124048 April 13,2015 5/24



@’PLOS | ONE

Iron-Hepcidin Dysmetabolism and Renal Hypoxia in Anemia of CKD

USA) and relative quantification calculated using the 2724C method [25]. In liver tissue we

studied the EPO, EPOR, TfR1, TfR2, Hamp, II-6, SLC40A1, HJV, TF, Hfe, BMP6 and TMPRSS6
gene expression; in duodenum tissue the gene expression of DMT1 and SLC40A1 were studied,
and in the kidney we evaluated the expression of EPO, EPOR, II-6, IL-153, TNF-a, NF-kB, CTGF
and VEGF genes.

Western blot assay

The duodenum proteins were extracted using RIPA buffer. After centrifugation, protein con-
centration in supernatant was assayed using the bicinchoninic acid (BCA) method (Thermo
Scientific Pierce, IL, USA). Aliquots of the extract containing 200 ug of protein were separated
by reducing SDS-PAGE (10%) and electroblotted onto nitrocellulose membranes. The blots
were blocked by using 7% non-fat milk in a solution of Tris-buffered salt with Tween-20. The
blots were incubated with rabbit anti-SLC40A1 antibody (1:100, abcam, Cambridge, UK) over-
night at 4°C, then they were incubated in goat-anti-rabbit secondary antibody-conjugated
horseradish peroxide (1:1000, SantaCruz Biotechnoloy, TX, USA). Immunoreactive proteins
were detected by using the enhanced chemiluminescence method (ECL; WesternBright,
Advansta, CA, USA). The blots analysis was performed by densotometry (BiolD++ version99,
Vilber Lourmat). To ensure even loading of the samples, the same membrane was probed with
rabbit anti-B-tubulin antibody (SantaCruz Biotechnology, TX, USA) at 1:200 dilution. The pro-
tein concentration in each sample was normalized for Sham group.

Histopathological analysis

Tissue samples were fixed in neutral formalin 10% and embedded in paraftin wax; afterwards,
4pm thick sections for routine histopathological studies were stained with hematoxylin and
eosin (H&E). Periodic acid of Shiff (PAS) was used to evaluate and confirm the levels of mesan-
gial expansion, thickening of basement membranes and sclerotic parameters. For PAS staining,
the tissue samples were fixed in neutral formalin 10%, embedded in paraffin wax, and 4um thick
sections were immersed in water and subsequently treated with 1% aqueous solution of periodic
acid, then washed to remove any traces of the periodic acid, and finally treated with Schiff’s re-
agent. All samples were examined by light microscopy using a Microscope Zeiss Mod. Axioplan
2. The degree of injury visible by light microscopy was scored in a double-blinded fashion by two
pathologists. Lesions were evaluated on the total tissue on the slide. Glomerular and tubulointer-
stitial lesions were divided in mild and advanced. Mild glomerular damage was assessed by eval-
uating thickening of Bowman’s capsule, hyalinosis of the vascular pole, glomerular atrophy,
hypercellularity and dilatation of Bowman s space. Advanced glomerular damage was assessed
by grading sequentially four main lesions, from the less to the worse one: 1—thickening of glo-
merular basement membrane (GBM), 2—mesangial expansion, 3—nodular sclerosis and 4—
global glomerulosclerosis. When advanced lesions were presented at a given glomeruli, the anal-
ysis of mild lesions become unavailable. Mild tubulointerstitial lesions included tubular hyaline
droplets, tubular basement membrane (TBM) irregularity, tubular dilatation, interstitial inflam-
matory infiltration and vacuolar tubular degeneration. Advanced tubulointerstitial lesions were
assessed evaluating the presence of hyaline cylinders, tubular calcification, necrosis and the asso-
ciation of interstitial fibrosis and tubular atrophy (IFT'A). The evaluation of vascular lesions was
focused on arteriolar hyalinosis, arteriolosclerosis and arteriosclerosis.

A semiquantitative rating for each slide ranging from normal (or minimal) to severe (exten-
sive damage) was assigned to each component. Severity of lesions was graded according to the
extension occupied by the lesion (% area): 0—absent/normal: 0%; 1 -<25%; 2-25-50%; 3 —>
50%. The final score for each sample was obtained by the average of scores observed in
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individual glomeruli in the analysed microscopic fields. Tubulointerstitial damage was evaluat-
ed and graded by the same semiquantitative method. When using PAS, the rating was set for
intensity and extension of staining, ranging from 0 (no staining) to 3 (intense and extensive
staining), referring tissue specificity scoring when adequate.

Perl’s Prussian blue staining assay was performed on kidney slides to search for iron accu-
mulation within rat renal tubules.

Immunohistochemistry analysis

The liver and renal cortex/medulla paraffin sections (4 um) from each sample were dewaxed in
xylene, rehydrated in a series of ethanol washes, and placed in distilled water before staining
procedures. The samples were processed for indirect immune detection using a mousse and
rabbit specific horseradish peroxidase (HRP)/ diaminobenzidine (DAB) detection IHC kit
(ab80436, Abcam Inc, Cambridge, UK), according to the manufactor’s protocol. Negative con-
trols were included in each staining series, by omission of the primary antibodies. Antigen re-
trieval was performed for 20 min for paraffin-embedded tissue in the preheated Citrate Buffer
(10mM Citric Acid, pH 6.0) using a pressure cooker. Between incubations with the antibodies,
the specimens were washed two to four times in buffer PBS (pH 7.4). All incubations were per-
formed overnight at 4°C in a humidified chamber. In this study, we employed primary antibod-
ies for detection of hepcidin (dilution; 1:150; ab81010, Abcam Inc., Cambridge, UK), CTGF
(dilution 1:250, ab6992; Abcam Inc, Cambridge, UK), NF-kB p50 (dilution 1:500, sc-114;
Santa Cruz Biotechnology, Inc.), HIF-1a, (dilution:1:200, sc-53546, Santa Cruz Biotechnology,
Inc.), EPAS-1 (H-310) (dilution:1:250, sc-28706, Santa Cruz Biotechnology, Inc.), ARNT1 (di-
lution:1:100, sc-5580, Santa Cruz Biotechnology, Inc.), ARNT?2 (dilution:1:100, sc-5581, Santa
Cruz Biotechnology, Inc.). For immunohistochemical quantification, ten 400x microscopic
views of liver and renal cortex and medulla per slide were selected randomly and photographed
using a Leica DFC480 microscope (Leica Microsystems). Intensity and area of positive staining,
detected by brown staining, were used as criteria: intensity was evaluated as weak (1), moderate
(2) or strong (3); the percentage of area was quantified. A staining score (Quick Score) was
then calculated according to previously described [26], using the formula: Quick
Score = intensity (1, 2 or 3) multiplied by area (percentage). The final score (out of maximum
of 300) for each group was obtained averaging the individual scores of each animal.
Immunohistochemical studies were evaluated independently by two pathologists blinded to
the data. Slight differences in interpretation were resolved by simultaneous viewing.

Statistical analysis

For statistical analysis, we used the IBM Statistical Package for Social Sciences (SPSS), version
20 (2011). Significance level was accepted at p less than 0.05. Results are presented as

means * standard error of means (SEM). Comparisons between groups were performed using
non-parametric tests (Mann-Whitney test).

Results

Body and tissue weights and blood pressure

At the end of experimental protocol (12 weeks), a significant decrease (p<0.001) of BW was
observed in CRF rats, when compared to Sham. In addition, KW and KW/BW (p<0.001 for
both) presented higher values in the CRF animals. While HW was unchanged, HW/BW ratio
was higher (p<0.01) in CRF rats. Despite the lower value (p<0.01) of LW in the CRF group,
LW/BW was higher (p<0.05) when compared with the Sham group (Table 2). CRF rats
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Table 2. Body and tissue weights, blood pressure, biochemical and hematological data at the final

time (12 weeks).
Parameters

BW (Kg)

KW (g)

KW/BW (g/Kg)
HW (9)

HW/BW (g/Kg)
LW (g/Kg)
LW/BW (g/Kg)
SBP (mmHg)
DBP (mmHg)
MBP (mmHg)
HR (beats/min)
Glicose (mmol/L)
TGs (mmol/L)
Total-c (mmol/L))
CK (U/L)

ALT (U/L)

AST (U/L)
Bilirubin (pmol/L)
hsCRP (ug/mL)
INF-y (pg/mL)
TGF-B1 (ng/mL)
RBC (x 10'2/L)
Ret (x10%/L)
MCV (fL)

MCH (p9)
MCHC (g/dL)
RDW (%)

PLT (x 10°/L)
PDW (%)

WBC (x 10°/L)

T Lymphocytes (%)
CD3*CD4" T cells (%)
CD3*CD4* CD25" T cells (%)
CD3*CD8" T cells (%)
CD3*CD8* CD25" T cells (%)

Results are presented as mean + SEM

*-p < 0.05
**-p <0.01, and

***. p < 0.001 versus Sham group.

Sham group

0.45+0.02
1.22+0.03
2.72+0.05
1.16+0.03
2.58+0.08
13.3340.48
29.61+0.65
117.7 £1.15
112.0 £ 0.58
114.3+1.45
360.7+ 1.20
9.46+0.31
1.05+0.14
1.25+0.06
540.57+58.94
35.17+2.21
80.57+7.84
8.04e-5+1.03e-5
262.25+12.43
23.30+3.10
75.74+5.62
7.94+0.08
181.22+6.82
52.52+0.53
18.08+0.18
34.60+0.08
11.48+2.53
713.75+15.19
16.34+0.18
1.78+0.30
57.20+1.36
72.18+0.60
5.97+0.62
24.16+1.34
0.40+0.04

CRF group

0.36+0.01 ***
1.65+0.04 ***
4.61£0.22 ***
1.24 £ 0.07
3.48+0.25 **
11.32+0.34 **
31.43x0.71 *
134.1 £ 4.6 **
111.5+45
121.3+45
373.0+9.2
8.66+0.60
1.568+0.32
2.44+0.54 *
473.00+85.57
42.00+18.53*
139.43+£70.70
1.03e-4+1.71e-5
225.31+7.95 *
25.51+2.26
84.13+3.85
6.53+0.43 **
168.14+£17.32
51.93+0.69
18.36+0.24
35.37+0.19 **
18.34+3.23
769.00+73.17
16.44+0.20
5.01+1.76
54.67+2.91
72.48+1.16
5.85+0.70
28.17+2.17
0.63+0.01**

ALT—alanine transaminase, AST—aspartate transaminase; BW—body weight; CK—creatine kinase; DBP
—diastolic blood pressure; Hb—hemoglobin; Hct—hematocrit; HR—heart rate; hsCRP—high-sensitive C
reactive protein; HW—heart weight; IFN-y - interferon y; KW, kidney weight; LW, liver weight; MBP, mean
blood pressure; MCH—mean cell hemoglobin; MCHC—mean cell hemoglobin concentration; MCV—mean
cell volume; PDW—platelet distribution width; PLT—platelets; RBC—red blood cells; RDW—RBC
distribution width; Ret—reticulocytes; SBP, systolic blood pressure; TGs—triglycerides; TGF-f1—
transforming growth factor beta1; Total-c—total cholesterol; VEGF—vascular endothelial growth factor;

WBC—white blood cells.

doi:10.1371/journal.pone.0124048.t002
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presented a significantly higher (p<0.01) systolic blood pressure at the final time, when com-
pared with the Sham animals, but similar values were found for DBP, MBP and HR (Table 2).

Biochemical and hematological data

The biochemical and hematological data for the Sham and CRF groups are presented in
Table 2 and Fig 1. The CREF rats presented significantly (p<0.001) increased serum BUN and
creatinine concentrations three weeks after the partial 5/6 nephrectomy. The values remained
elevated until the 9™ week, after which a further increase was observed at the final time
(p<0.001 and p<0.05, respectively), when compared with the Sham group (Fig 1A and 1B).
Concerning the other biochemical parameters, we observed similar values, except for Total-c,
ALT, hs-CPR and VEGF, which were significantly higher in CRF rats (p<0.05) at the final
time (Table 2).

Three weeks after the 5/6 nephrectomy, the CRF rats developed anemia, as showed by the
significant decline of Hb and HTC (p<0.001); the anemia persisted along the protocol. Analys-
ing the results at the end of the protocol, we found that CRF animals showed significantly

Sham
A B —+ CRF
— 200
154 d
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S - £
E Fekek *kk ch 100- FEE wen KR
— ] IE
:Z> s B 50-
= S
o T T T T o 0 1 1 1 1 1
0 3 9 12 0 3 6 9 12
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o 151 =
o
-_g 14+ E 40-
O (@]
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o * e 35- *
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3 9 12 0 3 6 9 12

Time (weeks)

Time (weeks)

Fig 1. Renal and hematological data throughout the follow-up period of 12 weeks. Evolution of BUN (A), creatinine (B), hemoglobin (C) and hematocrit
(D) values throughout the experimental protocol. Results are presented as mean + SEM: *- p <0.05, **-p <0.01, and ***- p < 0.001 versus Sham group.

BUN, blood urea nitrogen.

doi:10.1371/journal.pone.0124048.g001
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Fig 2. Serum EPO and kidney and liver gene expression of EPO and EPO receptor. Serum EPO (A), EPO and EPOR mRNA levels/18s expression (%
of Sham group) in kidney (B) and liver (C) tissues, at the end of the study (12 weeks). Results are presented as mean + SEM: *-p < 0.05, and **-p <0.01

versus Sham group. EPO, erythropoietin.

doi:10.1371/journal.pone.0124048.g002

(p<0.01) decreased RBC count, and a trend towards a reduced reticulocyte count, when com-
pared to the Sham rats. The MCV, MCH, RDW, PLT count and PDW values were similar and
MCHC was significantly higher. Moreover, we found that WBC count, as well lymphocytes
CD3", CD3"CD4", CD3"CD4"CD25" and CD3"CD8" percentages were similar for both
groups. However, the percentage of activated cytotoxic T cells (CD3"CD8"CD25") was signifi-
cantly increased in the CRF group (p<0.01) versus Sham (Table 2).

Serum EPO and liver and kidney EPO and EPOR mRNA expression

At the final time, serum EPO was significantly higher (p<0.05) in the CRF group when com-
pared with the Sham (Fig 2A). In addition, there was a significant (p<0.01) overexpression of
EPO mRNA in the kidney and liver tissues of the CRF rats, when compared with the Sham ani-
mals (Fig 2B and 2C, respectively). Concerning EPOR mRNA, a significant (p<0.01) overex-
pression was found in the kidney tissue of the CRF rats, accompanied by a reduced (p<0.01)
mRNA expression in the liver, when compared with the Sham group (Fig 2B and 2C,
respectively).

Iron metabolism

To study iron metabolism we evaluated several markers at blood, tissue and cell (liver and duo-
denum) levels. When compared to sham group, we found a significant decrease in serum iron
(p<0.001) and transferrin (p<0.001) in CRF rats (Fig 3A; and 3A;), and similar values for
serum ferritin (Fig 3A,).

No significant changes between groups were found for liver mRNA expression of IL-6,
sTfR2, TMPRSS6 and SLC40A1 (Fig 3B); however, there was a significantly lower liver mRNA
expression of Hamp, sTfR1, TF, Hfe, HJV (p<0.01 for all), BMP6 (p<0.05) and HIF-2a
(p<0.001) in the CRF rats when compared with the Sham ones (Fig 3B); in the duodenum, a
significant mRNA overexpression (p<0.05) of SLC40AI and a similar mRNA expression of
DMT1 (Fig 3C,), were observed in CREF rats. In addition, the CRF rats presented a significant
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Fig 3. Serum iron (A,), ferritin (A2) and transferrin (A3) levels; relative gene expression mRNA levels/18s (% of Sham group) in liver (B) and
duodenum (C) at final time (12 weeks). Inmunohistochemical studies of the expression of Hepcidin (D4-D3) and HIF-2a (E+-E3) in the liver (original
magnification, x400). Results are presented as mean = SEM: *- p <0.05, **-p <0.01 and ***- p < 0.001 versus Sham group. BMP6, Bone morphogenic
protein 6, DMT1, divalent metal transporter 1; Hamp, hepcidin antimicrobial peptide; HFE, Hemochromatosis; HIF-2a, Hypoxia inducible factor 2 alpha; HJV,
Hemojuvelin; IL-6, interleukin-6; SLC40A1, ferroportin; TMPRSS6, Matriptase-2; sTfR2, soluble transferrin receptor 2; Tf, transferrin and TfR1, transferrin

receptor 1.

doi:10.1371/journal.pone.0124048.9003

(p<0.05) duodenal overexpression of ferroportin (protein) when compared with the Sham ani-
mals (Fig 3C,). The immunohistochemical expression of liver hepcidin (Fig 3D,, 3D2 and
3D3) and of HIF-2a (Fig 3E;, 3E, and 3E;) presented similar values for CRF and Sham rats.

In the kidney tissue of CRF rats we found intense Perl’s staining, which is used as a marker
of iron accumulation, contrarily to the absence of staining in kidneys of Sham rats (Fig 4).

Kidney lesions

No significant histomorphological changes were found in the kidneys of Sham rats at the end
of the experimental period (Fig 5A; and 5B, Tables 3 and 4). However, the CRF rats presented
several glomerular (cortex) and tubulointerstitial (medulla) lesions. Concerning the mild glo-
merular lesions, most of the animals of the CRF group presented thickening of Bowman s cap-
sule (score: 1.57+0.43; p<0.01), hyalinosis of vascular pole (score: 0.86+0.14; p<0.01),
glomerular atrophy (score: 0.86+0.14; p<0.01) and hypercellularity (score: 1.00+0.00; p<0.01),
while in Sham rats the lesions were absent (Table 3 and Fig 5). In addition, all CRF rats pre-
sented at least one of the advanced glomerular lesions, namely, mesangial expansion that was
present in 5 out of 7 rats (Table 3 and Fig 5A3). The total score of both mild (0.91+0.12;
p<0.001) and advanced (2.00+0.22; p<0.01) glomerular lesions showed a significantly in-
creased value in CREF rats (Table 3 and Fig 5A,).

Kidney irondeposits

Fig 4. Perl’s staining in kidney of Sham (A) and CRF (B) rats. Original magnification, x400).

doi:10.1371/journal.pone.0124048.9004
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Fig 5. Glomerular and tubulointerstitial lesions. Representative glomerular (cortex) and tubulointerstitial (medulla) lesions observed in kidneys of CRF
and Sham groups, at the final time (PAS staining): A;—normal glomerulus histology in the Sham rats; A,—glomerular atrophy and thickening of glomerular
basement membrane; A;—glomerulus presenting mesangial expansion; A;,—total score of mild and advanced glomerular lesions in both rat groups; B1—
normal tubulointerstitial histology in the Sham rats; Bo—hyaline cylinders; Bs—interstitial fibrosis and tubular atrophy (IFTA); B,—Total score of mild and
advanced tubulointerstitial lesions in both rat groups. Results are presented as mean + SEM: **-p < 0.01 and ***- p < 0.001 versus Sham group.

doi:10.1371/journal.pone.0124048.9005

Concerning the mild tubulointerstitial lesions, most of the animals of the CRF group pre-
sented tubular hyaline droplets (score: 1.00+0.00; p<0.01), TBM irregularity (score: 1.86+0.34;
p<0.01), tubular dilatation (score: 1.57+0.48; p<0.05) and interstitial inflammatory infiltration
(score: 2.00+0.00; p<0.01) (Table 4 and Fig 5). Considering advanced tubulointerstitial lesions,
the formation of hyaline cylinders (score: 1.86+0.14; p<0.01) and IFTA (score: 1.57+0.20;
p<0.01) were the most relevant lesions observed in CRF rats, when compared with Sham rats
(Table 4 and Fig 5B, and 5B;). Once again, total score of both mild (1.43+0.15; p<0.001) and
advanced (1.04+0.16; p<0.001) tubulointerstitial lesions showed a significantly increased value
in the CRF rats (Fig 5B,).

Renal expression of hypoxia inducible factors and other markers of
kidney lesion

The histochemicals studies showed a significant increase (p<0.01) in the expression of HIF-2o
and HIF-2f in the kidney of CREF rats, as compared to Sham rats (Fig 6A and 6B, respectively).
In addition, we found a significant overexpression of IL-6, IL-1 and TNF- mRNA in the rem-
nant kidney of CRF rats, when compared with Sham rats (p<0.001); contrarily, a significant
downexpression of NF-kB, CTGF and VEGF (p<0.01) was found in the remnant kidney of
CRE rats, when compared with Sham rats (p<0.001) (Fig 7A). Serum values for IL-6 were simi-
lar for both groups, while a significantly higher concentration for VEGF was observed in the
CRF rats (p<0.05) (Fig 7B).

Concerning protein expression of NF-kB in the kidney tissue, we found a significantly
higher immunoreactivity in the cortex and in the tubular epithelial cells (medulla) of the CRF
rats, when compared with Sham ones (p<0.01) (Fig 7C, and 7D,, respectively).

CTGF was weakly expressed in the glomerular (cortex) and interstitial cells (medulla) of
Sham rat’s kidneys (Fig 7E; and 7F, respectively), while a significantly increased (p<0.01)
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Table 3. Scoring and distribution (%) of mild and advanced glomerular lesions in the groups under study.

Mild Lesions

Thickening of Bowman's
Capsule

Hyalinosis of the
vascular pole

Glomerular atrophy

Hypercellularity

Dilatation of the
Bowman’s Space

Total Group Score

Advanced lesions

Sham, n (%)
CRF, n (%)

Sham, n (%)
CRF, n (%)

Sham, n (%)
CRF, n (%)

Sham, n (%)
CRF, n (%)

Sham, n (%)
CRF, n (%)

Sham, n (%)
CRF, n (%)
Sham

CRF

None of the
previous (0)
7 (100%)

0

0 Absent 1 <25% 2 25-50% 3 >50% Total
Score
7 (100%) 0 0 0 0.00+0.00
1 (14.3%) 3 (42.9%) 1 (14.3%) 2 (28.6%) 1.57
+0.43*%*
7 (100%) 0 0 (0%) 0 (0%) 0.00+0.00
1 (14.3%) 6 (85.7%) 0 0 0.86
+0.14%*
7 (100%) 0 0 0 0.00+0.00
1 (14,3%) 6 (85.7%) 0 0 0.86
+0.14%*
7 (100%) 0 0 0 0.00+0.00
0 7 (100%) 0 0 1.00
+0.00%*
7 (100%) 0 0 0 0.00+0.00
5 (71.4%) 2 (28.6%) 0 0 0.29+0.18
0.00%0.00
0.91
0.12***
Thickening of Mesangial Nodular Global Total
GBM(1) expansion(2) sclerosis(3) Glomerulosclerosis (4) Score
0 0 0 0 0.00%0.00
1 (14.3%) 5 (71.4%) 1 (14.3%) 0 2.010.22* *

Results are presented as mean + SEM: *- p < 0.05

**.p <0.01, and

**%*. p < 0.001 versus Sham group.

doi:10.1371/journal.pone.0124048.t003

expression of CTGF was noted in the glomeruli and interstitial cells (medulla) of the CRF rats
(Fig 7E, and 7F,, respectively).

Discussion

Chronic kidney disease (CKD) is a general term for heterogeneous disorders affecting the
structure and function of the kidney. The variation in the clinical pattern of the disease has
been associated, to its etiology, severity and rate of progression. Since the introduction of the
conceptual model, definition, staging of CKD and establishment of the clinical practice guide-
lines to treat kidney disease patients, the disease evolved from a life-threatening disorder affect-
ing few people who needed care by nephrologists, to a common disorder of varying severity
that deserves the attention of a multidisciplinary team and needs a concerted public health ap-
proach for prevention, early detection and management [27,28].

Early detection of renal failure and initiation of treatment contribute to prevent or delay
some of these associated adverse effects [29]. Anemia, one of the most common complications
of CKD, develops in the early phases of the disease, increasing its severity as the disease pro-
gresses, contributing to a poor quality of life of the patients [30]. Anemia is mainly associated
with a reduced production of EPO by the failing kidneys and with disturbances in iron metabo-
lism. However, the clear relationship between renal and extra-renal EPO production, iron defi-
ciency, hypoxia and evolution of kidney lesions remain to be elucidated.

Animal models of CKD have been used as a tool to study the pathophysiological mecha-
nisms underlying different stages of renal disease and of the associated anemia, as well as to
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Table 4. Scoring and distribuition (%) of mild and advanced tubulointerstitial lesions in the groups under study.

Mild Lesions
Tubular Hyaline Droplets

TBM Irregularity

Tubular Dilatation

Interstitial Inflammatory Infiltrate

Vacuolar Tubular Degeneration

Total Group Score

Advanced Lesions
Hyaline cylinders

Tubular Calcification

Necrosis

IFTA

Total Group Score

0 Absent 1 <25% 2 25-50% 3 >50% Total Score
Sham, n (%) 7 (100%) 0 0 0 0.00+0.00
CRF, n (%) 0 7 (100%) 0 0 1.00£0.00 **
Sham, n (%) 7 (100%) 0 0 0 0.00+0.00
CRF, n (%) 0 3 (42.9%) 2 (28.5%) 2 (28.5%) 1.86+0.34%*
Sham, n (%) 7 (100%) 0 0 0 0.00+0.00
CRF, n (%) 2 (28.5%) 1 (14.3%) 2 (28.5%) 2 (28.5%) 1.57+0.48*
Sham, n (%) 4 (57.2%) 3 (42.9%) 0 0 0.29+0.18
CRF, n (%) 0 0 7 (100%) 0 2.00+0.00**
Sham, n (%) 0 7 (100%) 0 0 1.00+£0.00
CRF, n (%) 3 (42.9%) 3 (42.9%) 1 (14.3%) 0 0.71+0.29
Sham 0.26+0.08
CRF 1.43+0.15% * *

0-Absent 1- <25% 2-25-50% 3->50% Score
Sham, n (%) 6 (85.7%) 1 (14.3%) 0 0.14+0.14
CRF, n (%) 0 1 (14.3%) 6 (85.7%) 0 1.8610.14**
Sham, n (%) 7 (100%) 0 0 0 0.00+0.00
CRF, n (%) 7 (100%) 0 0 0 0.00+0.00
Sham, n (%) 7 (100%) 0 0 0 0.00+0.00
CRF, n (%) 2 (28.6%) 5 (71.4%) 0 0 0.71+0.18*
Sham, n (%) 7 (100%) 0 0 0 0.00+0.00
CRF, n (%) 0 3 (42.9%) 4 (57.1%) 0 1.57+0.20%*
Sham 0.04+0.04
CRF 1.04+0.16* * *

Results are means + SEM
*.p<0.05
*¥*.p <0.01, and

*%*%*. p <0.001 versus the Sham group.

doi:10.1371/journal.pone.0124048.1004

test the efficacy of different therapies. The (5/6) nephrectomy model is the most used model of
CKD, although there are different ways to achieve (5/6) reduction of nephron mass [29,31].
This model involves substantial removal of nephrons, followed by compensatory renal hyper-
trophy of the remnant kidney. Increasing workload by the remaining nephrons leads to pro-
gression of renal injury, namely to CKD [32-35].

The results of the present study confirmed that the surgical (5/6) nephrectomy model of
CKD produced a sustained stage of renal insufficiency, as shown by the significantly increased
BUN and creatinine concentrations, after three weeks of the surgical procedure (Fig 1); these
values persisted for more 6 weeks, after which a further increment was observed, at the 12
week, the end of protocol. In addition, a significant increase in kidney weight (KW) and in
KW/BW ratio were found in CRF rats (Table 2), showing a compensatory renal proliferation/
hypertrophy of the remnant kidney, as previously described for this model [36]. A trend to-
wards an increase in heart weight (HW) and a significant increase of HW/BW ratio was also
found, suggesting the development of left ventricle hypertrophy, which is a cardiac complica-
tion found in the CKD patients. In fact, besides the anemia secondary to renal insufficiency,
CKD patients usually develop cardiac failure that further aggravates renal disease. This triad of
dysfunctions, known as cardio-renal anemia syndrome, is responsible for the serious complica-
tions observed in these patients [37,38]. The progression of kidney disease and its associated
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Fig 6. HIF-2a and HIF-2B immunohistochemical expression in the kidney. Kidney immunohistochemical expression of HIF-2a (A) and HIF-28 (B) in the
renal cortex of sham (1) and CRF (2) rats and corresponding Quick scores (3). Results are presented as mean + SEM: ***-p < 0.001 versus Sham group.
HIF-2a, hypoxia inducible factor 2 alpha, and HIF-23, hypoxia inducible factor 2 beta.

doi:10.1371/journal.pone.0124048.g006

cardiac/cardiovascular complications are the major causes of morbidity and mortality in these
patients. One of the most prevalent co-morbidities is hypertension, which is present at all
stages of CKD [39]. Our results confirmed the development of systolic hypertension, which is a
typical feature in CKD rat model (Table 2). Usually, hypertension is inversely proportional to
the residual functional renal mass, as occurs in human pathology [40,41].

As widely occurs in human CKD, we also observed the development of anemia, secondary
to renal mass reduction, as shown by the reduced Hb and HTC values in the CRF rats, three
weeks after nephrectomy that persisted along the following 9 weeks (Table 2). Moreover, the
reticulocyte count showed a trend towards reduced values, suggesting a reduced erythropoietic
response to overcome the anemia. However, we found that serum EPO concentration was in-
creased in CRF rats at the final time (T4), as compared to sham animals (Fig 2), suggesting that
EPO production is not reduced in this model of CKD-associated anemia, and that the remnant
kidney or even extra-renal tissues were able to compensate EPO production. When peritubular
fibroblasts in the kidney sense reduced oxygen tension, the production of hypoxia inducible
factor (HIF) is induced, via oxygen sensitive prolyl hydroxylases (PHDs), triggering the activa-
tion of hypoxia response genes, leading to an increase in the production of EPO [42]. In the
present work, we found a notable overexpression of EPO mRNA and EPOR mRNA in the kid-
ney tissue of the CRF rats, as compared to Sham rats, as well as, an increased expression of
HIF-2 (o and B) in the kidney tissue (Fig 6), which have been suggested as the main regulators
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Fig 7. Relative gene expression mRNA levels/18s (% of Sham group) of markers of kidney lesions (A).
Serum IL-6 and VEGF-a levels (B). Immunohistochemical expression of NF-kB and CTGF in renal cortex (C+-
Cs and E4-Eg, respectively) and medulla (D+1-D3 and F-F3, respectively) (original magnification, x400).
Results are presented as mean + SEM: *- p < 0.05 and **- p < 0.01 versus Sham group. CTGF, connective
tissue growth factor; IL-1p, interleukin- 1 beta; IL-6, interleukin-6; NF-kB; nuclear transcription factor kappa B;
TNF-a, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.

doi:10.1371/journal.pone.0124048.9007

of EPO synthesis in the adulthood, as recently reviewed by Haase [42]. These results suggest
that the reduction of Hb levels in CRF rats, by leading to a reduced oxygen kidney perfusion,
induced renal EPO production in response to low oxygen tension. The kidney is not the only
organ able to adapt to EPO production, in response to low oxygen tension [43,44]. Apparently,
chronic hypoxia is also sensed by a HIF-dependent mechanism in which a nitric oxide (NO)-
mediated redistribution of blood flow from inner organs to the skin is able to cause a secondary
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increase in renal EPO production [45]. Extra-renal EPO production has been also described in
the liver, although its contribution to the circulating EPO concentration in adults is highly de-
batable, even in kidney disease states [44]. Actually, we found a significantly increased liver
EPO mRNA expression in CRF rats (Fig 2), accompanied by a reduced expression of EPOR
mRNA. In spite of the increased serum EPO levels found in CRF rats, anemia persisted in these
animals throughout the protocol, as well as the reticulocyte production, suggesting a blockade
and/or a reduction in the activity of EPO. This hypothesis is supported by the fact that, when
we administered rHuEPO (200 IU/Kg/week) to these CRF rats, a rise in hemoglobin level was
observed, reaching similar or even higher values than those found in the sham group (data not
shown). Actually, this response to the erythropoietic stimuli by exogenous recombinant
human erythropoietin (thEPO) further strengthens the hypothesis that the endogenous EPO,
in spite of its higher plasmatic concentration, is not able to overcome anemia. The persistence
of the anemia, might be explained by iron disturbances (Fig 3) and/or by a reduced (altered)
EPO activity, and both changes may result from the glomerular kidney lesions (Fig 5) and from
the developed local inflammatory milieu, as showed by the increased gene expression of differ-
ent protein mediators of inflammation, hypoxia and fibrosis in the remnant kidney (Figs 6 and
7). Further studies should clarify the impact of kidney lesion on EPO structure and biological
activity, namely the possibility of changes on glycosylation; however, current knowledge from
the literature could support such hypothesis. In fact, following the translation of the EPO gene,
three N-linked and one O-linked carbohydrate chains are added to erythropoietin; these chains
normally exhibit heterogeneity in the type of carbohydrate moieties incorporated, chain length
and branching configuration [46,47]; healthy individuals may present up to four residues on
each N-linked carbohydrate chain, or up to two residues on the O-linked chain. Indeed, a vari-
ability in sialic acid composition may [48] affect the circulating half-life of erythropoietin and
the interactions with its receptor; in general, increasing sialic acid content correlates with lon-
ger and greater potency of EPO [49]. Although the current understanding is, probably, incom-
plete, it is known that erythropoietin gene (EPO) expression is tightly regulated by several
stimulators, namely, hypoxia-inducible transcription factors (HIF) and hepatocyte nuclear fac-
tor 40, and by several inhibitors, including nuclear factor kappa B and GATA2 [50].

Iron is essential for the production of mature red blood cells and a normal iron metabolism
is crucial to maintain body iron levels [10,51,52]. A disturbance in iron homeostasis is a hall-
mark of the anemia of CKD patients, which, usually, presents as a functional iron deficient ane-
mia, with low serum iron and transferrin alongside with normal or even high ferritin [53]. In
accordance, we found that CRF rats, as compared to Sham rats, showed a significant decrease
in serum iron and transferrin levels and similar values for ferritin (Fig 3). In CKD patients the
functional iron deficient anemia is explained by the underlying inflammatory process, with in-
creased hepcidin levels. [13]. In this animal model, a systemic inflammatory state cannot be
recognized, as showed by CRP and IL-6 serum values that are similar for the two groups
(Table 2). However, a local renal inflammation, as suggested by the increased expression of IL-
6, IL-1p and TNF-o. mRNA in the kidney tissue (Fig 7), might contribute to alter EPO renal
production/function and, therefore, erythropoiesis.

The evidence for hypoxic regulation of Hamp remains controversial. Some studies show
that Hamp is suppressed by hypoxia through HIF-1- and (possibly) HIF-2-dependent path-
ways [15,54-56]. Indeed, Hamp contains some HREs in its promoter region and its expression
might be reduced directly by hypoxia [15]. The evidence for this, however, is conflicting, as a
recent study showed that HIF-1o and HIF-20 knockdown failed to reverse human Hamp re-
pression by hypoxia; in addition, inducers of HIF (CO, hypoxia, oxalylglycine) also showed
controversial results [57]. Furthermore, deletion of putative HREs in the human Hamp pro-
moter did not alter its response to hypoxia. Choi et al. [58] also showed that the hypoxic
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downregulation of Hamp was independent of HIF-1o overexpression or knockdown; however,
they suggested that the suppression of Hamp during hypoxia may involve HIF-2c.. Our results
are in accordance with this, as we observed a markedly increased kidney expression of HIF-2 in
renal medulla of CRF rats (Fig 6). It is known that the expression of Hamp is modulated
through several hepatocyte cell-surface proteins including Hfe, TfR2, HJV, TMPRSS6 and IL-
6R. Regardless of the underlying molecular mechanism of reduction of Hamp expression dur-
ing hypoxia, a decrease in hepcidin leads to an increased iron uptake and absorption at the du-
odenum, as well as to an increased iron release from the macrophages, favoring Hb synthesis
and erythropoiesis [16]. Actually, we found a significant downregulation in liver mRNA ex-
pression of Hamp, sTfR1, TF, Hfe, H[V and BMP6 in CRF rats, as compared with the Sham rats
(Fig 3), together with a significant duodenal overexpression of ferroportin gene (codified by
SLC40A1) and protein in CRF rats and similar values for the expression of DMT1 gene (Fig 3),
suggesting that iron absorption in the enterocytes was normal or even enhanced, as the increase
in duodenal ferroportin expression may occur to counteract the low iron levels observed in
CREF rats; in addition, hypoxia might contribute to the significantly decreased liver Hamp
mRNA expression in CRF rats. Likewise, the absence of inflammation in CRF rats, as showed
by normal values of serum and liver IL-6 expression, as well as of reduced serum hs-CRP, are
in agreement with lower liver Hamp mRNA expression in these animals.

This model of CKD has been associated to glomerulosclerosis and progressive tubulointer-
stitial damage. Although the mechanisms of tubular injury are poorly clarified in this and in
other models of renal disease, proteinuria has a crucial role [59]. It has been proposed that fil-
tered iron may have also a role in tubular injury, when associated with proteinuria. Actually, in
proteinuric states, as a result of the glomerular leak of transferrin, iron might be released from
transferrin in the acid milieu of the tubular lumen [59]. In fact, iron accumulation is observed
in the proximal tubule in human CKD [60], as well as in rat models with nephropathy
[59,61,62] and seems to be associated with the progression of CKD. By performing Perl’s stain-
ing of kidney slides, to search for iron accumulation within rat kidney tubules, we found that
iron deposits were almost undetectable in Sham rats and were increased in CRF rats (Fig 4),
suggesting that the leakage of iron through damaged glomerulus may explain the reduced
serum iron and transferrin observed in CREF rats. Actually, considering the anemia in the ab-
sence of systemic inflammation, a rise in serum iron would be expected to face the needs for
erythropoiesis. Naito et al. [63] studied the effect of dietary iron restriction on the renal damage
developed in a rat model of CKD, presenting nephron hyperfiltration, glomerulosclerosis and
tubulointerstitial injury, and found that iron restriction attenuated these changes in CKD rats.
This beneficial effect of iron restriction on renal damage is consistent with the results previous-
ly reported in the different models of renal disease [64,65].

It is widely accepted that, regardless of the initial cause of renal failure, tubulointerstitial fi-
brosis is the major cause of disease progression in CKD [66,67]. Typically, the functional im-
pairment in CKD correlates with tubulointerstitial fibrosis, and with glomerulosclerosis.
Tubulointestitial damage is closely correlated with reduced creatinine clearance and is current-
ly the best predictor of disease progression [67]. Hypoxia and altered O, perfusion are also po-
tential players in the development of renal injury [67]. As referred, in response to low oxygen
supply, hypoxia-inducible factors (HIFs) are produced triggering the expression of the hypoxia
response genes, increasing the production of EPO, VEGF and of glycolytic enzymes. It is un-
clear if the increase in HIF has a renoprotective role, or if it contributes to interstitial fibrosis
and/or tubular atrophy. This duality of effects has also been described for vascular endothelial
growth factor (VEGF), another target gene of HIFs [18]. We found significantly high serum
VEGEF levels (almost three fold the control value) (Fig 7), probably explaining the repression in
VEGEF gene expression in the remnant kidney of CRF. Under hypoxic conditions in renal
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injury, the HIF system is activated, even before any histological evidence of tubulointerstitial
damage [68,69], and the degree of HIF expression seems to correlate with the extent of tubular
injury. However, whether this increased activity is beneficial or harmful is unclear and may
well depend on the context, the cell type affected and/or the duration of HIF expression. An-
other major target gene for HIF is the pro-fibrotic connective tissue growth factor (CTGF)
[70]. In our study, CREF rats presented several glomerular and tubulointerstitial lesions (Fig 5).
Mild glomerular lesions were observed in most of the CRF rats, presenting thickening of Bow-
man capsule, hyalinosis of vascular pole, glomerular atrophy and hypercellularity (Table 3). All
CREF rats presented at least one advanced glomerular lesion; mesangial expansion was the more
frequent lesion. Regarding the mild tubulointerstitial lesions, most of the CRF rats presented
tubular hyaline droplets, TBM irregularity, tubular dilatation and interstitial inflammatory in-
filtration. Concerning advanced tubulointerstitial lesions, hyaline cylinders and IFTA were the
most relevant lesions observed in CRF rats. As referred, besides hypoxia, CRF rats showed local
inflammation in the remnant kidney, as suggested by overexpression of IL-6, IL-13 and TNF-
genes, as well as NF-kB, a key mediator of inflammation. In addition, we found an overexpres-
sion of CTGF in the glomeruli and in interstitial cells (medulla), in agreement with the exis-
tence of tubulointertitial lesions and fibrosis.

In summary (Fig 8), we found that this model of CKD induced by 5/6 nephrectomy pre-
sented a sustained degree of renal dysfunction with mild and advanced glomerular and tubu-
lointerstitial lesions. Anemia developed early after nephrectomy and persisted throughout the
study. However, the remnant kidney was still able to produce EPO and the liver seems to in-
crease EPO production. In spite of the increased EPO blood levels, circulating reticulocytes did
not increase and, therefore, the anemia did not improve. The persistence of anemia may result
from a dysfunctional EPO or from reduced iron availability, as suggested by the low serum
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iron and transferrin levels. Despite the increased expression of duodenal ferroportin in the
CRE rats, favouring iron absorption, iron levels were reduced, which might be due to iron leak-
age caused by advanced glomerular and tubular kidney damage. Our data also suggest that the
anemia of CKD and the associated kidney hypoxia favour the development of fibrosis, angio-
genesis and a local inflammatory milieu in the kidney that seem to underlie a “resistance” to
EPO stimuli and reduced iron availability. These findings might contribute to open new win-
dows to identify putative therapeutic targets for this condition, as well as for rHuEPO resis-
tance, which occurs in 5-10% of CKD patients.
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