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Abstract
Radiation therapy is an important treatment modality for multiple thoracic
malignancies. However, radiation-induced lung injury (RILI), which is the term
generally used to describe damage to the lungs caused by exposure to ionizing
radiation, remains a critical issue affecting both tumor control and patient quality
of life. Despite tremendous effort, there is no current consensus regarding the
optimal treatment approach for RILI. Because of a number of functional advan-
tages, including self-proliferation, multi-differentiation, injury foci chemotaxis,
anti-inflammation, and immunomodulation, mesenchymal stem cells (MSCs)
have been a focus of research for many years. Accumulating evidence indicates
the therapeutic potential of transplantation of MSCs derived from adipose tissue,
umbilical cord blood, and bone marrow for inflammatory diseases, including
RILI. However, reports have also shown that MSCs, including fibrocytes, lung
hematopoietic progenitor cells, and ABCG2+ MSCs, actually enhance the progres-
sion of lung injuries. These contradictory results suggest that MSCs may have
dual effects and that caution should be taken when using MSCs to treat RILI. In
this review, we present and discuss recent evidence of the double-edged function
of MSCs and provide comments on the prospects of these findings.

Introduction

Radiotherapy is an essential tool for the management of
thoracic tumors. However, radiation-induced lung injury
(RILI), the term generally used to describe damage to the
lungs caused by exposure to ionizing radiation, is the main
obstacle limiting dosage. Manifestations of RILI include
early-stage radiation pneumonitis (RP) and subsequent
stage radiation pulmonary fibrosis (RPF).
Radiation pneumonitis typically occurs within three

months after radiation therapy, and is pathologically char-
acterized across diverse grades by numerous infiltrating
inflammatory cells in the edema interval of broken alveolar
and in the bronchus.1 RPF, considered a result of chronic
lung damage, occurs at 6–24 months post-radiotherapy,
and includes irreversible corruption of the alveoli, activa-
tion of myofibroblasts, abnormal deposition of extracellular
collagen matrix, and deregulated remodeling of lung tis-
sue.1 Clinical data have demonstrated that the incidence of
RILI ranges from 20.3% to 36.9%.2 However, only a few

successful therapeutic strategies have been proposed,
despite extensive research.
Mesenchymal stem cells (MSCs) have been well charac-

terized and can be isolated from various tissues, such as
bone marrow,3 adipose,4 umbilical cord,5 placenta,6 and cir-
culatory vessel walls.7 Because of a number of functional
advantages, including self-proliferation, multi-differentia-
tion, injury foci chemotaxis, anti-inflammation, and immu-
nomodulation, this cell population has become a focus of
research.8 MSC-based therapies have been successfully used
to repair tissue and several organs, including the lungs.9

Based on accumulating evidence, MSC transplantation
has been proposed as a potential therapeutic approach to
address inflammatory diseases, such as RILI. Controver-
sially, reports have also shown that MSCs actually enhance
the progression of lung injuries characterized by inflamma-
tion and fibrosis. These contradictory results suggest that
MSCs may have dual effects and that caution should be
taken when using MSCs to treat RILI.
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In this review, we present and discuss recent evidence of
the double-edged function of MSCs and provide comments
on the prospects of these findings.

Evidence supporting the application
of mesenchymal stem cells (MSCs)
for the treatment of radiation-
induced lung injury (RILI)

The use of MSCs in RILI models

Reports of the therapeutic application of MSCs in RILI
animal models have recently been published. Dong et al.
confirmed that systemic infusion of human adipose tissue-
derived MSCs (AMSCs) ameliorated lung fibrosis in rats
that received semi-thoracic irradiation (15 Gy) by upregu-
lating HGF and PGE2, while downregulating TNF-α and
TGF-β1.10 Furthermore, several similar reports have dem-
onstrated upregulation of IL-10 and downregulation of IL-
1, IL-6, and TNF-α in murine serum, and downregulation
of TGF-β1, α-smooth muscle actin (SMA), and type I col-
lagen in irradiated murine lung tissues.3,11–13 AMSCs have
been shown to protect lung cells from apoptosis by regulat-
ing the expression of pro-apoptotic and anti-apoptotic
mediators, including Bcl-2, Bax, and caspase-3.3,11–13

Wang et al. applied human umbilical cord blood-derived
MSCs (hUMSCs) to an acute RP animal model.12 The
results indicated that hUMSCs have definite therapeutic
effects on acute RP in rats.
Zhen et al. administered bone marrow-derived mesen-

chymal stem cells (BMSCs) from male donor rats into
female recipients in a model of pulmonary emphysema
induced by irradiation and papain instillation.14 Emphyse-
matous changes were ameliorated in rats that received
BMSC infusions compared to rats that did not, revealing a
protective mechanism of BMSC engraftment in the lungs,
their differentiation into type II alveolar epithelial cells,
and suppression of alveolar cell apoptosis. Similarly, Klein
et al. treated whole thorax irradiated mice with allogeneic
BMSCs or aorta-derived MSCs.15 Irradiation induced endo-
thelial cell damage, senescence of lung epithelial cells, and
upregulation of invasion and inflammation-promoting fac-
tors, while the MSCs antagonized this damage to resident
cells as well as the resulting secretome changes and abro-
gated the metastasis-promoting effects of thorax
irradiation.

MSCs for acute lung injury (ALI)

Chemical agents, such as bleomycin, hydrochloric acid,
and amiodarone, have been employed to establish acute
lung injury (ALI) in animal models.16,17 Using these animal
models, allogeneic BMSCs have been shown to elicit anti-

inflammatory and pro-healing properties. In fact, BMSCs
were found to reduce circulating and in situ inflammatory
cytokines, such as TGF-β, PDGF-A, PDGF-B, and IGF-1,18

and to protect against myelosuppression induced by bleo-
mycin.3,13 MSCs are also capable of inhibiting the prolifera-
tion of effector T lymphocytes and effectively induce
T-lymphocyte anergy by changing the secretome of
T-lymphocyte subsets.19,20 Furthermore, BMSCs were
observed to home to sites of tissue injury, where they dif-
ferentiated into specific lung cell phenotypes.13 Recently,
the beneficial effect of infused multi-potent adult stem/pro-
genitor cells has been explained by expression of the
inflammatory modulating protein TNF-α-stimulated gene/
protein-6, which predominantly modulates the early
inflammatory phase.21

Lipopolysaccharide (LPS) extracted from pathogenic
microorganisms, including Escherichia coli and Pseudomo-
nas aeruginosa (P. aeruginosa), is often used as an endo-
toxin to induce ALI in animal models. BMSCs have been
shown to home to and repair both intratracheal LPS-
induced intrapulmonary ALI and intravenous LPS/zymo-
san-induced extra-pulmonary ALI,22 while AMSCs have
been found to exert therapeutic effects against
P. aeruginosa pneumonia.4 It can be speculated that the
protective mechanism involves inhibition of PGE2 produc-
tion and improvements in phagocytosis and the bacteri-
cidal properties of macrophages.4 BMSCs have also been
used successfully in an ovine model of severe acute respira-
tory distress syndrome (ARDS) caused by P. aeruginosa
pneumonia. These cells not only improved oxygenation,
but also decreased pulmonary edema.13

Cobolt gamma-ray radiation has been reported to inhibit
the differentiation potential of BMSCs without significantly
affecting their paracrine activity, cell proliferation, viability,
or homing potential.23 Zhu et al. treated rats with smoke
inhalation lung injuries using BMSCs and found that lung
vascular endothelial injury and increased permeability were
alleviated, predominantly as a result of enhanced angiogen-
esis, regulated by the notch signaling pathway.23

To assess the safety of allogeneic BMSC administration
in ARDS patients, a phase I clinical trial (NCT01775774)
was performed using nine cases. No pre-specified infusion-
associated events or treatment-related adverse events were
reported, demonstrating good tolerability of allogeneic
BMSCs in moderate-to-severe ARDS patients.24 Similar
results were obtained in a second clinical trial
(NCT01902082) in which ARDS patients were treated with
allogeneic AMSCs or a placebo. However, in this study,
AMSCs failed to exhibit any significantly beneficial clinical
effects other than a reduction in the serum levels of surfac-
tant protein-D.25 In contrast, Chang et al. reported the suc-
cessful clinical application of hUMSCs to treat ARDS in a
single patient.26
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Gene-modified MSCs for the treatment
of ALI

Because MSCs are capable of homing to sites of injury,
they are often employed as cellular vehicles for gene deliv-
ery and have been developed to treat various diseases,
including ALI.27

Angiotensin II, which can be degraded by ACE2, plays
an important role in the process of endothelial dysfunction
in ALI, and ACE2 deficiency enhances lung injuries in
mice.28 When infused into ACE2−/y mice, BMSCsACE2+

(transfected with the ACE2 gene) improved lung histopa-
thology but had additional anti-inflammatory effects,
reduced pulmonary vascular permeability, improved endo-
thelial barrier integrity, and normalized lung endothelial
nitric oxide synthase expression.5,28–34 Furthermore,
BMSCACE2+ downregulated pulmonary expression of
ICAM-1, VCAM-1, TNF-α, and IL-6, and was more effec-
tive in treating bleomycin-induced ALI in a murine model
than ACE2 or hUMSC alone.5,28,30–34 Interestingly, some
factors were decreased in BMSCACE2+-injected mice,
including malondialdehyde, oxidized glutathione, TNF-α,
IFN-γ, TGF-β, IL-1, IL-2, IL-6, collagen type 1, MMPs,
TIMPs, and hydroxyproline, while other factors were
increased, including superoxide dismutase, glutathione,
ACE2, and IL-10.30–34

TGF-β, which is recognized as both a fibrogenic and
inflammatory cytokine, plays critical roles in various path-
ophysiological processes and is an independent predictor
of RILI.35 Following transfection with the TGF-β type II
receptor gene, BMSCTGFBR+ migrated into injured lungs
and obviously alleviated lung injuries in mice challenged
with thoracic irradiation.31–34 These results were further
confirmed by concentration of factor assays, such as mal-
ondialdehyde, hydroxyproline, CTGF, and α-SMA.31 Fur-
thermore, BMSCTGFBR+ adopted the characteristics of
alveolar type II cells at the injury site.31–34

FGF-2 is a multifunctional growth factor found in differ-
ent tissues and cell types.36 BMSCFGF2+ expressing exoge-
nous FGF2 following lentivirus-mediated transduction was
used in an LPS-induced murine ALI model. Compared to
groups treated with BMSCs alone, LPS-induced lung injury
was alleviated in the group treated with BMSCsFGF2+. Fur-
thermore, the histopathological index of lung injury was
improved and levels of inflammatory cytokines were
reduced.32–34

HGF plays mitogenic, morphogenic, and anti-apoptotic
roles in a variety of cells, including most epithelial and
endothelial cells.27 HGF enhances lung regeneration and
inhibits lung fibrosis.27,33 Wang et al. reported the signifi-
cant therapeutic effect of BMSCHGF+ in an RILI murine
model mediated by reducing the secretion of pro-
inflammatory cytokines, including TNF-α, IFN-γ, IL-6,

and ICAM-1, and pro-fibrosis factors, including TGF-β,
Col-1α1, and Col-3α1, while increasing the expression of
anti-inflammatory cytokines, including IL-10. BMSCHGF+

was found to promote the proliferation of lung epithelial
cells, thus protecting against apoptosis and stimulating a
significant increase in the expression of endogenous HGF
and its receptor, c-Met.33,34

CXCR4, also known as fusin or CD184, is involved in
MSC mobilization, but is only expressed on the surface of
a small proportion of MSCs. The lack of CXCR4 expres-
sion on MSCs may underlie their low homing efficiency
toward injured tissues.37,38 Using a LPS-induced ALI
murine model, Yang et al. showed that BMSCCXCR4+

increased the efficiency of BMSC mobilization to injury
sites. Therefore, BMSCsCXCR4+ modified to overexpress
CXCR4 improved the therapeutic potential of these cells
for the treatment of ALI by increasing self-renewal, hom-
ing, and epithelial differentiation.37,39

Del-1 is another critical factor involved in cell migration
and infiltration. This molecule inhibits the function of the
major leukocyte adhesion receptor LFA-1, which prevents
leukocyte adhesion to the endothelium.34 Zhao et al.
showed that treatment of LPS-induced ALI mice with
BMSCsDel1+ (allogeneic Del-1-overexpressing BMSCs) sig-
nificantly decreased the severity of endotoxin-induced lung
injury and inflammatory cytokine levels.34

“Cell-free” treatments for ALI

In addition to MSCs themselves, MSC-derived extracellular
vesicles have also been extensively investigated for their
paracrine effect.40 Numerous biological functions of MSCs
have been demonstrated as a result of the paracrine effects
of extracellular vesicles.40–42 According to their size, the
vesicles are classified as exosomes (40–120 nm) and micro-
vesicles (MVs; 200–1000 nm).
Microvesicles are circular fragments of membrane

released from the endosomal compartment as exosomes or
shed from the surface membrane.43 Because the central
mechanism of cell-to-cell communication involves the
packaging of bioactive factors in MVs, it was thought that
the therapeutic potential of MSCs was largely mediated by
MVs released from intracellular endosomes.43,44 When
administered intratracheally in endotoxin-induced ALI
mice, MVs improved pulmonary edema and lung protein
permeability, reduced neutrophil influx, and decreased
MIP-2 levels in bronchoalveolar lavage fluid, demonstrat-
ing a reduction in inflammation. However, the therapeutic
effects were partially eliminated if MVs were released from
low expression KGF BMSCs, suggesting that KGF plays an
important role in the underlying mechanism.42 As
highlighted by Sdrimas et al., despite accumulating
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evidence of the use of MSC MVs in lung disease, very little
is known about the underlying mechanism.43

In recent years, evidence of the therapeutic effect of
MSC conditioned medium (CM) on lung injuries has been
reported.31,45 BMSC CM has been shown to attenuate lung
fibrosis of bleomycin-challenged rats in terms of lung
inflammation, fibrotic scores, collagen deposition, and cell
apoptosis.45 Thus, the paracrine capability of MSCs and
their anti-inflammatory and anti-fibrotic mechanisms are
now recognized.27,46

Evidence supporting the
detrimental effects of MSCs in RILI

Pro-fibrotic cells derived from MSCs

Fibrocytes
Fibrocytes are circulating BMSCs with unique growth char-
acteristics and surface phenotype. This cell type can differ-
entiate into fibroblasts and myofibroblasts following entry
into the tissues.47 Myofibroblasts in the tumor stroma,
known as cancer-associated fibroblasts, participate in the
support of tumor growth, angiogenesis, metastasis, and
therapy resistance.48 Clinical biopsies have shown that
fibrocytes exist in the lungs of most idiopathic pulmonary
fibrosis (IPF) patients (8/9). Furthermore, the risk of pul-
monary fibrosis (PF) increases with the number of fibro-
cytes in the lungs, although the underlying mechanism is
unclear.49–53 Fibrocytes are believed to be involved in the
pathogenesis of several fibrotic disorders affecting the
lungs, liver, kidney, and other organs. Furthermore, they
have been implicated as potential biomarkers that are eas-
ily detected and quantified from peripheral blood
samples.54

Pulmonary fibrosis was originally thought to be medi-
ated solely by resident lung fibroblasts.1 However, increas-
ing data indicates that intrapulmonary recruitment of
fibrocytes is directly correlated with increased collagen
deposition in the lungs. Phillips et al. identified a popula-
tion of human CD45+/Col I+/CXCR4+ circulating fibro-
cytes that migrated to sites of lung injury in response to
CXCL12 signaling in models of bleomycin-induced
PF.49–53,55 Mehrad et al. reported that fibrocyte recruitment
is mediated by the CXCL12/CXCR4 axis in vitro, and
revealed high CXCL12 levels in the plasma and injured
lungs of patients with fibrotic interstitial lung disease.56

There were significantly more circulating peripheral blood
fibrocytes in patients with fibrotic interstitial lung disease
than in healthy controls. Furthermore, CXCR4, the pre-
dominant chemokine receptor, has been identified on
human fibrocytes, and has been found to mediate the
influx of these cells into the lung during PF. Regulation of
CXCR4 is reported to be mediated by hypoxia and growth

factors, such as PDGF, via the PI3-kinase and mTOR sig-
naling pathways.50,57

Lung hematopoietic progenitor cells
Green fluorescent protein (GFP) bone marrow-chimera
mice were employed in studies by Nakashima et al. to elu-
cidate the roles of bone marrow-derived cells in
bleomycin-induced PF.51 The results showed an increase in
high-GFP expressing cells (GFPhi) in the fibrotic lungs,
with phenotypic characteristics of CD11c+ dendritic cells
and macrophages. CM from these cells was chemotactic
for fibroblasts from fibrotic lungs in vitro, and adoptive
transfer of GFPhi exacerbated disease in a bleomycin-
induced mouse model of PF. It was also observed that
GFPhi differentiated from lung hematopoietic progenitor
cells (LHPCs) (c-Kit+/Sca1−/Lin− and GFP+), with numbers
increasing rapidly in response to bleomycin treatment.
These findings indicated that LHPCs represent a novel
therapeutic approach for chronic fibrotic lung diseases.

ABCG2+ MSCs
Adult lung tissue contains a population of perivascular
ABCG2+ MSCs, which are proven precursors of myofibro-
blasts distinct from NG2 pericytes. Marriott et al. found
that resident lung MSCs were increased in human PF sam-
ples.52 ABCG2+ MSCs were found to increase in number
and localize to the interstitial areas during fibrotic micro-
vessel remodeling in bleomycin-challenged mice. Further-
more, these cells responded to bleomycin treatment by
expressing pro-fibrotic genes. Thus, ABCG2+ lung MSCs
are implicated as a novel cell population that contributes
to detrimental myofibroblast-mediated remodeling
during PF.

Summary and prospects

Despite the considerable number of studies that have been
performed, the clinical management of RILI using a stem
cell approach requires further investigation. Based on the
reports of studies focusing on the effects of MSCs in RILI,
ALI, ARDS, and chronic obstructive pulmonary disease
models (as shown in Table 1), we can conclude that:
1 There have been no serious adverse events reported in
any pre-clinical or clinical study of MSC reported
to date.

2 MSCs shown to elicit a therapeutic potential in RILI
were predominantly from allogeneic donor tissues, such
as AMSCs, BMSCs, and UMSCs.

3 The majority of MSCs had a deleterious effect by pro-
moting RILI and other endogenous forms of the lung,
such as fibrocytes, LHPCs, and BMSCsABCG2+. These cell
populations produce detrimental pro-inflammatory and
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pro-fibrotic effects under the regulation of CXCL12/
CXCR4 and Wnt/β-catenin signaling.

4 The data described in this report is preliminary,
obtained from non-RILI animal models, such as
bleomycin-induced, LPS-induced, and HCl-induced lung
injuries.
However, several points remain unresolved, and these

are discussed as follows (Table 1).

Issues of cell selection

Dong et al. proposed that AMSCs are beneficial for RILI,
while Sun et al. demonstrated that BMSCs are not; how-
ever, whether AMSCs are more effective for this purpose
than BMSCs remains to be confirmed.10,62 Wang et al.
demonstrated that infusion of hUMSCs improved RILI.12

Shu et al. reported that administration of BMSCs pro-
moted lung fibrosis by increasing the number of myofibro-
blasts.53 These conflicting findings may be explained by
differences between the studies. Regarding MSC prepara-
tion methods, Dong et al. used CD73, CD90, and CD105
as cell-specific markers, while Wang et al. used CD29 and
CD44 in addition to CD73, CD90, and CD105.10,12 Sun
et al. used CD29, CD44, CD73, and CD90 and Marriott
et al. used ABCG2.52,62 In contrast, Shu et al. used GFP-
positive expression as the only marker of BMSCs.53 These
different MSC selection methods would result in distinct
effects on lung injuries; thus, we hypothesize that a more
beneficial MSC population exists within the mixed popula-
tion of MSCs infused, and that the different proportions of
this beneficial MSC population in the total population of
MSCs may lead to diverse effects on RILI and other lung
injuries. However, the identification and characterization
of the beneficial MSC population remains a challenge.

Issues of phase selection

The pathophysiological process of RILI is composed of sev-
eral stages/phases. Foskett et al. described the toxic effects
exerted by bleomycin as “damage/necrosis of the alveolar
epithelium, tissue edema, inflammatory cell infiltration,
and pulmonary fibrosis.”21 Royce et al. concluded that
inflammatory cell infiltration, cytokine release, epithelial
damage, airway/lung remodeling, and fibrosis are all cen-
tral features of inflammatory lung disorders.63 However,
Graves et al. considered that the process of RILI has three
phases: injury, inflammation, and repair.1 Based on the
findings of this review, we believe that MSCs exhibit thera-
peutic effects primarily in the inflammation phase.3,10–13

While some MSCs seem to exert detrimental effects during
the repair phase in RILI,49–53,55 we conclude that adminis-
tration of MSCs in different phases is likely to result inTa
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distinct therapeutic outcomes; however, more research is
necessary.

Issues of gene modification in MSCs

Some reports claim that modifying certain genes in the
administered MSCs can improve outcomes in patients with
RILI or other lung injuries,5,28–34 while others have shown
contradictory data.37,39 However, all conclude that modifi-
cation of some genes significantly alters the activity and
bio-behavior of the administered MSCs. Identification of
the genes that should be changed in MSCs to achieve opti-
mal results is essential. The potential effects of multiple
gene modifications and the optimal method of gene modi-
fication are also critical issues that warrant further
investigation.
Overall, investigation into the effect of MSC transplanta-

tion on RILI and other lung injuries has made good pro-
gress in recent years. Some of the mechanisms involved
have become clearer and MSCs are already being evaluated
in clinical trials. However, more questions are likely to
arise as advances are made. The role of MSCs as a sword
or an accomplice in RILI remains unresolved and more
consistent and comparable research is necessary for further
clarification that may lead to the development of successful
treatment strategies.
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