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ABSTRACT: Fouling formation in reactor vessels poses a serious
threat to the safe operation of the industrial low-density
polyethylene (LDPE) polymerization. Fouling also degrades the
polymer quality and causes productivity loss to some extent. In this
work, neural Wiener model predictive control (NWMPC) is
introduced to address the fouling concern. In addition, a soft
sensor model is used to activate the fouling−defouling (F−D)
mechanism when the fouling surpasses the thickness limit to
prevent vessel overheating. NWMPC is proven to be fast, stable,
and robust under various control scenarios. The use of a soft
sensor model in conjunction with NWMPC enables the online monitoring and controlling of the F−D processes. When comparison
is made with a state space (SSMPC) utilizing only the linear block, NWMPC is found to be able to control the LDPE grade with
quicker grade transition and lower resource consumption.

1. INTRODUCTION
Fouling problems arise as a result of the highly exothermic
nature of the low-density polyethylene (LDPE) polymer-
ization process and the heating−cooling utilities in tubular
reactors (TRs). The polyethylene/ethylene compound shapes
two phases inside the reactor, causing fouling in an LDPE-
TR.1 The fouling layer is highly insulating, causing heat
transfer restriction to the cooling jacket and thereby reducing
the reactor performance. The fouling layer formation can also
cause an increase in temperature around the affected location,
which can induce the ethylene gas molecule to decompose
and liberate a significant amount of heat. The reactor
consequently is overheated as the fouling layer thickens over
time according to a study by Buchelli et al.2 This poses a
significant threat to the safety in manufacturing facilities.

A high fouling level results in energy losses owing to
diminished thermal efficiency and additional capital costs,
specifically for the maintenance study, which includes the
cleaning of heat transfer (HT) equipment and the use of anti-
foulants. According to refs 3−6, fouling has various negative
consequences, such as abatement in product quality, including
the monomer conversion (XM) and melt flow index (MFI). A
low manufacturing performance reportedly impacted 0.25 to
30% of the gross domestic product.7−9 Kiparissides et al.10

discovered that when fouling builds up, the XM, molecular
weight (Mw), long-chain branching (LCB), and density
reduce, while the short-chain branching (SCB) and MFI
elevate.

Fouling formation on the inner reactor wall is difficult to
assess. It has only been described in a few earlier LDPE-

related technical papers.3 Fouling prediction is not systemati-
cally formulated in normal practice, and historical data is
underutilized for the goal of optimal control.1 Once the
product quality falls outside of the acceptable range, the
process parameters are manually adjusted to eliminate fouling
and restore the product quality. This manual operation is
usually slow and inefficient. The phase equilibria of the
polyethylene/ethylene system must be determined to model
the fouling mechanism. Fries et al.11 introduced a fouling
model based on the concentration of the foulant in the
reactor’s local wall cell.

The removal of the fouling layer of polymer adhered to the
inside wall of the reactor is referred to as defouling. The
defouling method, known as online cleaning, can be used
while the plant is still operating. In the functioning of LDPE
reactors, a typical fouling−defouling situation occurs. LDPE
TRs are subject to periods when the polymer layer is defouled
through online pressure cleaning or thermal shock.2 The
reactor fouls in the first period, inducing the values of the
fouling thickness layer to rise, while the reactor defouls in the
second, leading the fouling thickness layer to fall. Stabilizing
the reactor during these disturbance cycles is critical to
prevent reactor runaway and maintain the targeted polymer
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properties. In this scenario, the controller’s target is to keep
the input profile as close to a specific target profile as possible
while the reactor fouls and defouls. Furthermore, the polymer
MFI and XM variations should be kept within the acceptable
limits.12

LDPE reactors are typically made of long pipes (1−3 km)
with tiny inner diameters (5−10 cm) and thick reactor walls
(2−5 cm) that are separated into several reaction and cooling
zones.13 These multizone arrangements generate strong
multivariable interactions along the reactor, resulting in
complex operating procedures.14 One method for regulating
the LDPE TR is to use advanced process control (APC),
specifically model predictive control (MPC). Due to its
intrinsic multivariable control, explicit restriction management,

and numerous commercial tools (in modeling and controller
implementation), MPC is accepted by in the industry.15

The correctness of the process model is critical to the
performance of any model-based controller, such as MPC.
Since the control of polymer quality in the existence of fouling
can be seen as a challenging task in the plant, the LDPE
research themes focus primarily on developing a complete
polymerization model for predicting polymer quality and
fouling2,16 reactor control,17 and fouling touchstone monitor-
ing.2,10

There are a few studies on LDPE safety control in a
fouling−defouling situation. Zavala and Biegler18 demonstra-
ted that a tracking nonlinear model predictive control
(NMPC) can stabilize the reactor in the face of persistent
F−D scenarios and that the controller can accomplish strict

Figure 1. LDPE-TR: (a) schematic diagram of the LDPE TR32 and (b) Aspen Plus model.
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control of the MFI. The performance constraints of LDPE
reactors in the face of fouling disturbances were evaluated
using a first principle model (FPM) of TR. FPM was derived
based on the process’ mathematical mass, energy, and
momentum equations.19 Nevertheless, its evolution suffers
from mathematical complexity as a result of enormous sets of
differential and algebraic equations (DAEs). Furthermore, the
NMPC cleaning−fouling cycle was simulated using the
heuristic mode, in which a single parameter, namely, the
heat transfer coefficients (HTCs) for all reactor zones, was
scaled from their nominal value. Exogenous disturbances
(represented in the model as parameters) are defined when
the controller cannot capture the behavior of the HTCs.

It is preferable to set up an efficient strategy for developing
online control safety that includes an online fouling−defouling
mechanism and an internal model controller development.
Although FPM can produce precise prediction, the develop-
ment of such a model is expensive since it requires
maintenance (i.e., dealing with process unknowns), and is
only applicable to a particular unique process.15 The
implementation of an empirical model utilizing the nonlinear
(NL) model identification technique is an attractive
alternative to this challenge.20 Block-oriented (BO) modeling
is one of the existing NL model identification strategies.21

Furthermore, the identification approach for block-oriented
models is convenient as it involves little computational effort,
and it allows for the incorporation of existing process
knowledge.22

The BO (block-oriented) model class includes a variety of
configurations, including a linear dynamic system and an NL
static element. Wiener’s and Hammerstein’s models are the
most extensively applied block-oriented models. Both models
have been used in many case studies and have demonstrated
the ability to describe a wide range of NL systems, such as
biology and biochemical processes.23 Because of its transient
responsiveness and the dynamic modeling capabilities of its
NL portion, the Wiener model is preferable to the
Hammerstein model.24 Several researchers have previously
explored the applicability of the Wiener model with NMPC in
the literature25 for online process monitoring.

The development of a soft sensor model can help the online
control safety of the LDPE process to activate the defouling
action as a certain condition crosses the safety limit by
predicting a fouling thickness layer, which can help to capture
the fouling−defouling mechanism effectively. The multivariate
statistical technique neural network (NN) models such as
recurrent network (RN) and multilayer perceptron (MLP) are
applicable in soft sensor computational learning.26,27 There-
fore, the application of an NN model for fouling thickness
calculation in the LDPE TR is feasible.

The main goal of this work is to develop the neural Wiener-
based model predictive control (NWMPC) with an online F−
D mechanism as an effective online control safety technique
for handling the fouling effect in LDPE TR. In the presence of
F−D, the goal of NWMPC is to retain product quality, such
as MFI and XM, within strict product specifications. In
accordance with the reference value, the MFI variability is
fixed at <1%, while the F−D mechanism is activated by
controlling fouling thickness. The defouling is activated when
the fouling thickness crosses the safety limit (allowable fouling
thickness). The novelty of this research is the introduction of
NWMPC and fouling thickness estimator combination being

applied with the ASPEN simulator as NL controller for
handling the fouling of LDPE in TR.

2. MODELING OF THE LDPE TUBULAR REACTOR
AND FOULING THICKNESS LAYER
2.1. Process Description. The present LDPE TR model

is based on the work of Asteasuain et al.28 The reactor model
is based on an industrial reactor with a huge length/diameter
(L/D) ratio of above 20,000 and has been validated using
industrial data.29 The reactor runs at approximately 70 °C at
the input to around 325 °C at its peak. The pressure within
the reactor is roughly 2200 bar, with a 10% pressure drop
throughout the reactor. For the free radical polymerization
process to occur in the LDPE-TR, high-temperature and
-pressure operations are required. With a mixture velocity of
11 m/s, the reactor residence period is sufficient to ensure
that the gel effect phenomenon is negligible inside the wall of
the reactor.30Figure 1a depicts a schematic diagram of an
LDPE TR. According to the figure, the monomer (ethylene)
is introduced into the reactor together with oxygen, telogen,
and an inert stream. n-Butane is used as an inert solvent,
whereas oxygen is employed to enhance the polymerization
process by producing free radicals,.31 Propylene is utilized as a
telogen or chain transfer agent (CTA) in the mixture to
control the production of long polymer chains.28 Initiators are
used to initiate the polymerization process by decomposing
into free radicals that bond with ethylene molecules to form
active polymer chain molecules. tert-Butyl peroxypivalate
(TBPPI) is selected as the first initiator, and tert-butyl 3,5,5-
trimethyl-peroxyhexaonate (TBPIN) is selected as the second
initiator.29,31

The reactor was composed of five zones for simulation
purposes based on the placements of the reactor jacket and
initiator. Table 1 describes the reactor’s design specifications
and nominal operating conditions.
2.2. Reactor Modeling. The model of LDPE TR is

developed and validated in this work using the Aspen Plus
software. The TR in the Aspen Plus process flowsheet is
configured as a collection of RPLUG blocks that indicate the
reactor zones (i.e., zone 1, zone 2, zone 3, zone 4, and zone
5).33Figure 1b depicts the entire Aspen Plus flowsheet.

Table 1. Tubular Reactor Design Specifications and
Nominal Conditions33

reactor parameters values unit

length/diameter (L/D) 27,800
internal diameter 0.05 m
number of zones 5
zone length (Lzi, i = 1...5) 60; 100; 180; 510; 540 m
inlet temperature 76 °C
inlet pressure 2250 atm
global heat transfer coefficient
(Ui, i = 1...5)

1088.568; 1088.568; 837.36;
628.02; 196.7796

W/m2K

mean jacket temperature (Tji,
i = 1...5)

168; 225; 168; 168; 168 °C

density of reacting mixture 530 kg/m3

monomer flow rate 11 kg/s
oxygen flow rate 6.8 × 10−5 kg/s
CTA flow rate 7.4 × 10−2 kg/s
inert flow rate 2.2 × 10−1 kg/s
initiator 1 flow rate 1.0 × 10−3 kg/s
initiator 2 flow rate 1.6 × 10−4 kg/s
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In the simulation model, initiators 1 and 2 are introduced
into the reactor at the start of zones 3 and 5, respectively. The
manipulated variable is the CTA flow rate, which is filled
independently from the primary feed stream. Perturbed-chain
statistical fluid theory (PC-SAFT) equation-of-state (EOS)
models specify the thermodynamic characteristics and phase
behavior of the LDPE polymerization process.34 The process
heat of polymerization is controlled by regulating the heat of
formation (DHFVK) of the polymer segment within Aspen
Properties. The DHFVK value specified in this calculation is
−2.669 × 107 J/kmol. DHFVK is the heat of formation, which
is estimated by using the Van Krevelen Group Contribution
Method to estimate the heat capacity and molar volume of the
polymer segment (and, thereafter, of polymers and oligomers)
inside Aspen Plus. Thus, this work estimates this value using
the heat polymerization of ethylene at 21,500 cal/mol28 via a
reverse-calculated method. Thus, the value for DHFVK and
heat of polymerization for ethylene is different. The Aspen
Plus component database contains all of the components
applied in this simulation.
2.3. Kinetic Mechanism. Under high pressure settings,

ethylene polymerization proceeded via a free radical
mechanism.35 The LDPE polymerization kinetic mechanism
is derived from the mentioned model in Asteasuain et al.,28

while its characteristics are depicted from the work of Agrawal
et al.31 and Muhammad et al.33 The LDPE polymerization
kinetic process is split into primary reactions: initiator
decomposition, chain initiation, chain propagation, chain
termination, and chain transfer.36 The kinetic mechanism
used in this work is expressed below:

I RInitiator decomposition 2 (0)m i
k

,
i

(1)

+O M ROxygen decomposition 2 (0)
k

2
o
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+ +R m M R mPropagation ( ) ( 1)
kp
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+ +R n P m P n R m

Chain transfer to polymer

( ) ( ) ( ) ( )
k tp

(5)

+ +R m S P m R

Chain transfer to transfer agent

( ) ( ) (0)
k ta

(6)

+ +R m S P m RChain transfer to solvent ( ) ( ) (0)
kts

(7)

+ +R n R m P n m

Termination by combination

( ) ( ) ( )
ktc

(8)

+ +R m P m RThermal degradation ( 1) ( ) (0)
k thd

(9)

R m R mBack biting ( ) ( )
kbb

(10)

The modified Arrhenius equations are used in Aspen Plus
to compute the kinetic rate constants for the free radical
reaction, as seen in eq 11:
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Table 2 shows the LDPE kinetic mechanisms and
properties considered in this study. Because the referred
work uses different modeling techniques than Aspen
modeling, the kinetic rate constants must be tuned
specifically.34 To supply the reactor temperature profile, the
efficiency of the initiators and oxygen has been retuned using
the Aspen Data Fitting technique. Furthermore, Aspen Design
Spec was utilized to compute the activation energy of the beta
scission reaction to achieve the average LDPE’s Mw.
2.4. Melt Flow Index Model. The MFI values in this

study are calculated using Rokudai and Okada’s37 empirical
formulation, as shown in eq 12:

= × ×gMFI 1.06 10 ( MWW)28 6.06 (12)

Based on many studies in estimating MFI for LDPE,12,37

the main prerequisite for estimating it is the weight average
molecular weight and branching index information. The
branching index determined from Dietrich et al.,38 a
comprehensive study of the similarly referred LDPE model,
is denoted by the value of g̃. Because the LDPE polymer
comprises complex branches, the branching index information
is indispensable; otherwise, no prevalent relationship can be
determined until the polymer’s rheology is characterized.39

The weighted average molecular weight (MWW, kg/kmol) is
derived in the Aspen simulation model utilizing the method of
moments. The Aspen Plus Dynamics model is attached with
the MATLAB Simulink environment to execute the equation.
The Aspen Plus Dynamics model is processed as a simulation
block on the MATLAB Simulink environment, and its output

Table 2. List of Kinetic Mechanisms and Parameters Used in This Study

kinetic mechanisms kinetic parameters efficiency

ko (1/s) Ea (J/kmol) ΔV (m3/kmol)

initiator 1 decomposition (ki) 1.00 × 1014 1.3241 × 108 0.0140 0.95
initiator 2 decomposition (ki) 1.00 × 1012 1.2393 × 108 0.0116 0.95
oxygen decomposition (ko) 1.60 × 1011 1.3361 × 108 −0.0121 0.25
chain initiation (kinit) 4.00 × 105 1.7431 × 107 −0.0168
propagation (kp) 4.00 × 105 1.7431 × 107 −0.0168
chain transfer to polymer (ktp) 5.20 × 104 3.6844 × 107 −0.0190
chain transfer to agent (kta) 7.00 × 104 1.8406 × 107 0.0000
chain transfer to solvent (kts) 7.00 × 104 1.8406 × 107 0.0000
thermal degradation (kthd) 7.70 × 109 8.7430 × 107 −0.0100
termination by combination (ktc) 8.70 × 108 1.5282 × 107 0.0092
back-biting (kbb) 1.20 × 1010 6.0537 × 107 0.0000
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(MWW) is computed using an approximation branching index
to determine the MFI values.
2.5. Reactor Model Validation. The validation results of

the reactor temperature profile according to zones are shown
in Figure 2. From the figure, the Aspen Plus model effectively

generates the reactor temperature profile with an R2 value of
0.981, which compares well with the industrial data provided
by Asteasuain et al.28 Furthermore, the simulated temperature
profiles resemble the temperature profiles of industrial
reactors, which have a rounded peak and a gradual decline.34

It is noteworthy that the Aspen Plus model outperforms the
mechanistic model from Agrawal et al.,31 which also used a
similar case study, in predicting the reactor temperature
profile. This is because the Aspen model used a fine-tuning
procedure for the kinetic parameters.

Table 3 summarizes the results of the LDPE final XM and
property validation. The table compares industry data with the

Aspen Plus model and the Agrawal model31 in terms of LDPE
XM, average Mw, and mixture density. According to the table,
the developed model correlates favorably to the industrial
data.28 The accuracy of the developed model to describe the
LDPE-TR is high as a result of the temperature and property
validation results.
2.6. Formation of the Fouling Thickness Layer. The

fouling resistance (tf) is calculated using the condition of
overall heat transfer coefficients (U, W/m2K). There are two
primary ways for determining U: first, Uclean using
correlations2 and second, using heat transfer system data
from a plant. The first technique relies on correlations of

dimensionless numbers derived from the component’s
physical characteristics and operating conditions. The second
method calculates Uplant using the heat transferred and the log
mean temperature discrepancy. Because plant data obviously
demonstrates a fouling behavior in the reactor, the fouling
thickness in the LDPE-TR can be examined using Uplant and a
heat-transfer model.2

As shown in the equation below, the equation for U takes
four resistances into account in series: those of the film on the
reaction mixture side, the reactor wall, the film on the
cooling/heating jacket side, and the fouling buildup, Rf
(fouling resistance, m2 K/W). In this study, the effects of
film and thermal resistance are considered to be constant
throughout the study. Thus, these assumptions (and
limitations) were applied in this study. It is worth noting
that the U coefficient is affected by variables that are
computed as functions of the time:

= + + +
U t h t

D
k

D
D h t

R t1
( )

1
( )

2.3
2

log
1

( )( )
( )

i j
D
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10

0
f

0

i
k
jjj y

{
zzz
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where D0 and D are the internal diameters of the jacket and
reactor, respectively, and kw is the thermal conductivity of the
wall. Lacunza et al.40 provide a review of HTC used in
ethylene polymerization. Calculating U under clean conditions
is possible with Rf = 0. Using eq 14, the HTC can be
calculated directly using the temperature differences and heat
transferred in the reactor.

=U
Q

A Tt
tlm

i
k
jjjjj

y
{
zzzzz

(14)

According to Buchelli et al.,2 the evaluation of the fouling
mechanism can be attained at a maximum in the cooling
zone’s terminal point. The U value is lower when the surface
is fouled. Equation 15 is used to calculate the fouling
resistance (Rf) value.

=R
U U
1 1
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where Ufouled refers to Uplant in Equation, whereas Uclean refers
to U in the equation with Rf = 0. The foulant resistance is
related to a foulant thickness (mm), tf given in eq 16,
assuming that the foulant is the polymer attached to the wall.
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= + × × +k P
T

0.274 2.91 10
10.47

polymer
5

(17)

where kpolymer (W/m·K) is the polymer thermal conductivity
and ri (m) is the inside reactor radius. The heat transfer
coefficients U (W/m2K) and temperature T (K) inputs of the
equation have a significant effect on tf, such as shown in
Figure 3. In the meantime, the pressure P (N/m2) remained
almost constant throughout the course. Based on the study of
Buchelli et al.,2 the fouling layer’s rise appears to be linear
over time with 0.00004 kg/s of calculated deposition rate
followed by a decrease of 2.083 × 10−5 mm/s fouling
thickness after defouling. To determine tf in eq 16, a direct
analytical approach is infeasible. It can be solved numerically
to develop an approximation model. As a consequence, the

Figure 2. LDPE reactor temperature validation profile.

Table 3. LDPE XM and Property Validation

properties

industrial data
Asteasuain et al.

(2001)28

Agrawal et
al.

(2006)31
error
(%)

Aspen
Model

error
(%)

XM (%) 30.0 29.7 1 29.5 1.7
number
average Mw
(g/mol)

21,900 21,901 0< 22,070 0.8

mixture
density (g/
mL)

0.530 n/a 0.565 6.6
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empirical model of tf with the input functions of U and T is
formulated as

=t
T
U

0.0006273 0.0004996f (18)

The validated data (U and T) from Aspen plus and the tf
from the empirical model are considered actual data, which
are then used to develop the soft sensor model.

3. SOFTWARE SENSOR FOR ESTIMATING FOULING
THICKNESS

The soft sensor model is built using the MATLAB neural
network (NN) identification technique. The FFNN (feed
forward neural network) model is extensively implemented in
chemical processes and engineering applications, attesting to
its ability to model NL systems.41,42 The NN model is trained
using the trainlm function in MATLAB, which is known as
Levenberg−Marquardt (LM) backpropagation. LM training is
the fastest available backpropagation technique available in
MATLAB. The MISO model is used in the development of
soft sensors. In this case, the holdout method is used for the
model cross-validation. First, 70% of the data is used during
the training process. Then, 15% of the data is employed for
validation during the training process (to prevent overfitting).
Finally, the rest of the data (15%) is used for the second
validation after the training is completed. To evade ill-
conditioned system modeling, all parameters are reformed by
data scaling using eq 19 below:43

=x
x x

x xscaled
ss

max min (19)

where x is the original value, xss is the steady-state value of the
parameter, xmax is the maximum value of the parameter, and
xmin is the minimum value of the parameter. The maximum
and minimum values are determined from this work
parametric analysis.

Table 4 lists the parameters for the soft sensor model. The
input parameters are listed in the order in which data

measurements from the Aspen Plus Dynamics model are
available. An input selection methodology is devised to select
the appropriate inputs for the soft sensor model.

The software sensor inputs (ANN model) are chosen using
the Pearson correlation coefficient (PCC) analysis. PCC is a
technique for selecting variables based on linear correlation of
the respective variables.44 The PCC results are listed in Table
5. The higher PCC value shows the higher correlation or
relationship of the input parameter with the output parameter.

Here, U, T, and polymer density are excited with minimum
and maximum changes from their steady-state value using a
uniform random number generator. For each model training
and validation purpose, 800 min of simulation time with a
sampling time of 0.1 min and a total of 8000 data points was
applied for building the NN model. Figure 4a−c depicts the
outcomes of input excitation from U, T in the cooling zone,
and polymer density under the specified range operating
condition. The regression plot for the NN model with the

Figure 3. The validated data (a) U and (b) T depicted from Aspen Plus with the (c) calculated tf.

Table 4. Parameters for Soft Sensor Model Input−Output
Selection

input parameters output parameter

initiator 1 flow rate fouling thickness
initiator 2 flow rate
CTA flow rate
heat transfer coefficient in zone 3
heat transfer coefficient in zone 4 (cooling)
heat transfer coefficient in zone 5
temperature of terminal point zone 3
temperature of terminal point zone 4 (cooling)
temperature of terminal point zone 5
polymer exit density
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best hidden neurons is shown in Figure 5. According to the
figure, the model has a high correlation with the target data
and a low disparity. The model fouling thickness has an R2

value of 0.999. Thus, with these validation results, the model
is found to be suitable for use in a soft sensor model study.

4. DEVELOPMENT OF ONLINE SAFETY CONTROL
USING MPC

To connect the MATLAB Simulink environment with Aspen
Plus Dynamics, the online safety control system is linked using
(Aspen Modeler) AMSimulation. Figure 6a shows the
implementation of the NW model in the MPC control
scheme. Figure 6b depicts a generic block diagram of the
model predictive control (MPC) workflow for online safety
control.

When contrasted to the actual process by the Aspen Plus
Dynamics model, the internal model works as the ideal
process condition. Neural Wiener (NW) and state space (SS)
are the internal models investigated in this study. A model
mismatch is the difference between the two outputs, which is

produced by process disturbance or uncertainty. A set point
(or reference) signal is delivered to the controller to indicate
the model mismatch. The model mismatch signal indicates the
current state of the process, while the set point signal
represents the desired state of the process. Both signals are
generated using an optimization strategy within the MPC
algorithm to create the optimal process input that can lead the
process to the target condition. The soft sensor monitors the
fouling thickness dynamic, which triggers the defouling
scenario when the fouling thickness exceeds the permissible
maximum value, tf > 3.5 mm. The defouling scenario is carried
out by online cleaning for approximately 4 h, as noted by an
increase in U value and a decrease in tf.

The development of the neural Wiener MPC (NWMPC) in
this work follows a structure that is similar to that of the given
MPC scheme but with a few transformations. To begin, the
output measurement is utilized to immediately update the
process model without the requirement of an observer
because the Aspen model can give process state measure-
ments. Second, in the optimizer’s cost functional algorithm,
the current controller utilizes just output reference tracking
and modifications in manipulated variables. Generally, MPC
can control the process with these two cost functions
satisfactorily.45 These cost functions are resolved via an
online optimization approach to deliver the trajectory of the
controller output. The selection of the process model type is
the primary factor that distinguishes nonlinear MPC (NMPC)
from linear MPC (LMPC). The NMPC uses the neural
Wiener (NW) model as its process model in this study, which
is referred as neural Wiener MPC (NWMPC).

In this scheme, three MVs (initiator 1, initiator 2, and CTA
flow rate) are utilized to control two CVs (LDPE XM and
MFI), resulting in a multi-input multi-output (MIMO)
system. In addition, the NW model block serves as the

Table 5. PCC Results for Parameter Outputs

input parameters PCC fouling thickness

initiator 1 flow rate 0.278
initiator 2 flow rate 0.127
CTA flow rate 0.277
heat transfer coefficient in zone 3 0.188
heat transfer coefficient in zone 4 (cooling) 0.993
heat transfer coefficient in zone 5 0.012
temperature of terminal point zone 3 0.231
temperature of terminal point zone 4 (cooling) 0.970
temperature of terminal point zone 5 0.302
polymer exit density 0.721

Figure 4. Process input excitation data: (a) U, (b) T in the cooling zone, and (c) polymer density.
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MPC process model, inducing model mismatch that updates
the MPC controller at each sampling period. SSMPC is also
designed to compare the performance using a similar control
scheme. By switching the NW model for the SS model, the
SSMPC control scheme can be acquired.
4.1. Identification Technique. The Weiner model

identification using the linear−nonlinear (L−NL) technique
is used in this research.46 In accordance with the method, the
first step is to collect a set of dynamic data. To obtain this
data, perturbations of the Aspen Plus Dynamics model are
carried out. The intermediate signal is then specified as the
data set’s output. A Wiener model linear block can be
represented by the state space model as follows:

+ = +

=

A B

C

x k x k u k

v k x k

( 1) ( ) ( )

( ) ( ) (20)

Once the linear block has been identified, the model output
signal is used as the input signal for the NW static NL block
identification. In this scenario, the identification of NL
processes is performed using the MATLAB NN toolbox and
a single layer feed forward fitting NN ( f itnet) model. The
output of the NN model, y(k), is written as follows:

= +
=

y k w w z k( ) ( ( ))
i

K

i i0
1

2

(21)

where

= +z k w w v k( ) ( )i i i,0
1

,1
1

(22)

In the equation, the network bias is represented by w0, and
the network weight is specified by wi, j

1 and wi, j
2 for the first and

second layers, respectively. In addition, v(k) represents the
state space model output signal, φ denotes the network NL

transfer function (i.e., hyperbolic tangent sigmoid), and K
signifies the number of hidden nodes.

To determine the number of hidden nodes, the iterative
validation approach is used. The NN model is trained using
Levenberg−Marquardt (LM) backpropagation, and an early
stopping mechanism is utilized to avoid the network from
overfitting during the training process. The ultimate result of
the NW model is exhibited as follows:

= + + [ ]
=

y k w w w w Cx k( ) ( ( ) )
i

K

i i i0
1

2
,0

1
,1

1

(23)

4.2. Controller Development. In this paper, the
optimizer of the NWMPC controller employs sequential
quadratic programming (SQP). The MATLAB optimization
tool fmincon function is used to run the SQP optimization
program. The quadratic objective function used in the MPC
control scheme is presented in eq 24.

= { [ + ]}

+ { [ + + ]}

=

=

J W E k i

W u k i u k i

min ( )

( ) ( 1)

u k i

P

y

i

P

u

( ) 1

2

0

1
2

(24)

The predicted error term, Ê, can be defined (for next
prediction horizon step) as follows:

+ + +E k Y k Y k( 1) ( 1) ( 1)r (25)

where Yr is the desired set point and Ỹ is the corrected
prediction over the prediction horizon, P. Ỹ can be acquired
by:

+ + + +Y k y k k( 1) ( 1) ( 1) (26)

Figure 5. Regression plot for fouling thickness.
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where ŷ(k + 1) is referred to as uncorrected prediction and
ε(k + 1) = y(k) − ym(k) is the model mismatch term.
4.3. Tuning Method. The prediction horizon (P), control

horizon (M), output weighting (or error penalty) matrix, and
input rate weighting (or move suppression) matrix are the
four tuning parameters for a specific MPC. The guidelines of
Seborg et al.47 are used to select the prediction and control
horizon settings. The rules are 5 ≤ M ≤ 20 and N/3 < M < N,
where N represents the model horizon. The model horizon

can be determined using NΔt = ts, where Δt is the sampling
time and ts is the settling time of the open-loop response.
When the control horizon M is expanded, the MPC gets more
rigorous, which necessitates greater computational work. To
account for the complete influence of the most recent input
motion, the prediction horizon is usually set to P = N + M. As
the control horizon decreases, the controller becomes more
rigorous.

Figure 6. Scheme diagram of MPC: (a) neural Wiener model in NMPC control scheme and (b) online control safety scheme with Aspen Plus
Dynamics inside MATLAB Simulink.

Figure 7. Regression plot for LDPE XM (Y1) for the (a) neural Wiener model (b) state space model.
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After the P and M parameters have been finalized, the MPC
controller is tuned using the MATLAB MPC Tuning Advisor
based on a linear version of the process. The output weighting
and input-rate weighting matrix in the software are modified
to yield the best performance using the Integral Absolute
Error (IAE) performance indicator. After obtaining an
acceptable performance with the tuning software, the
initiatory tuning settings are re-evaluated during the online
closed-loop simulation. At this phase, the controller is
improved using a heuristic technique, with only the output
tuning weight that is changing.48

5. RESULTS
5.1. Model Identification Results. Each training and

validation data set has yielded a total of 4080 min of LDPE
TR simulation results. Excitation inputs include the initiator 1
flow rate, initiator 2 flow rate, and CTA flow rate, as well as
response, LDPE XM, and MFI outputs in each data set. The
identification of the neural Wiener model involves two
different model identification processes: state space and NN
identification. The model order is determined using Hankel
singular values during state space model identification. The
state space model of the sixth order is determined based on
the Hankel singular value test. The number of hidden neurons
chosen for the NN model is nine, which has the lowest mean
square error (MSE) from the validation data test. Figure 7
depicts the NW model identification results as a regression
plot. According to the figure, the majority of the output data
agrees with the target (validation) data based on the low
disparity distribution of the data points along the fit line. The
coefficient of determination (R2) analysis is used to evaluate
the model’s performance. According to the figure, both
parameters fit the validation data well, with an R2 value of
0.989 for LDPE XM and R2 value of 0.986 for MFI output. In
the NWMPC control scheme, the validated NW model can be
implemented as the process model.

The results for SS and neural Wiener (NW) model
identification display the LDPE XM and MFI in a scaled
form, respectively. The steady-state condition is represented
by the value ″0″. MATLAB calculates the fit line, which
represents the linear correlation of both data. According to
Figure 7a, the NW model’s output data is spread more
imminently throughout the diagonal line (Y = T) than the SS
model. This indicates that the estimation from the NW model
fits the original data better than the SS model. The SS model
has drawbacks in capturing the maximum and minimum
region of the data, as evidenced by its imprecise data
distribution at both extremities in Figure 7b. Based on R2

calculations, the NW model has R2 = 0.9889, which is higher
than the SS model, which has R2 = 0.9509.

Figure 8 depicts the regression plots of the NW and SS
models for predicting MFI values. In comparison to the SS
model, the NW model output data distribution is denser along
the fit line, as shown in the figure. The residuals in the SS
model output data are higher, spreading widely from the fit
line and being congested at the minimum values. Thus, the
NW model outperforms the SS model in predicting MFI
values, with R2 = 0.9860 versus R2 = 0.6693 for the linear
model.
5.2. Online Safety Control Results. In this case, the

NWMPC controller is tested in a grade transition under
fouling and F−D conditions. These tests are carried out to
evaluate the controller in terms of tracking set points and
handling process uncertainties in the presence of a fouling
effect. A state space MPC (SSMPC) is used as a comparison
to assess the performance of the NWMPC controller. The
SSMPC is created by utilizing only the linear block (i.e., state
space) of the NW model.

Aspen Plus Dynamics is used to simulate the LDPE TR
model, which runs concurrently with MATLAB Simulink
during the simulation. Table 6 displays the tuning outcomes

for SSMPC and NWMPC. The initial tuning parameters of
the MPC controllers are derived via calculation47 and offline
simulation with the MATLAB MPC Tool.

5.2.1. Grade Transition under a Fouling Effect. The
process of changing the operating parameters of a reactor to a
specific polymer grade based on a predetermined product
recipe is known as grade transition. Figure 9 depicts the
performance of the SSMPC and NWMPC in handling the
step change grade transition operation in the presence of a
fouling effect. According to Figure 9a, NWMPC reaches new
grade MFI faster and with a quicker rise time than SSMPC.
The fast CTA controller is set in the first 20 min (refer to
Figure 9b for the MV profile). Because there is a rate
limitation on the CTA flow rate, NWMPC decreases the flow
rate of its initiators, as shown in Figure 9d,e.49 Polymer MFI
can be enhanced by lowering initiator flow rates. Furthermore,

Figure 8. Regression plot for MFI (Y2) for the (a) neural Wiener model (b) state space model.

Table 6. MPC Tuning Parameters

parameters SSMPC NWMPC

prediction horizon (P) 45 45
control horizon (M) 5 5
output weighting 0.11, 0.09 1.1, 2.0
input rate weighting 1.5, 1.2, 1.2 1.5, 1.2, 1.2
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as shown in Figure 9b, the decrement in initiator flow rates
has a little effect on LDPE conversion. Based on the error
analysis, NWMPC produces IAE values of 4.937 and 0.0683,
respectively, for the MFI and LDPE conversion profiles, while
SSMPC produces IAE values of 7.609 and 0.013. As a result,
NWMPC is able to control the LDPE grade transition using
optimized controller outputs, allowing for quicker grade
transition and lower resource consumption (CTA and
initiators).

In terms of control stability and feasibility of the NWMPC,
the Karush−Kuhn−Tucker (KKT) conditions are evaluated.
Since the optimization process (in the controller) is
performed successfully in the MATLAB Simulink environ-

ment, the KKT conditions have been met. Thus, it is safe to
say that the control scheme is also stable and feasible.

5.2.2. Fouling−Defouling Mechanism. Figure 10 depicts
the estimated heat transfer coefficient (HTC) and fouling
thickness of a fouled TR under an F−D scenario. The HTC
decreases on a regular basis as fouling accumulates with
increasing fouling thickness. When the fouling thickness, tf,
reaches the maximum limit of 0.35 mm at 497 min, the
defouling mechanism activates the online cleaning to reduce
fouling tf, thereby improving heat transfer.

The effect of F−D on the reactor outputs and MV profile is
shown in Figure 11. Both controllers are able to tackle the F−
D condition, as shown in Figure 11a, with SSMPC displaying

Figure 9. Comparison of grade transition control for NWMPC and SSMPC: (a) MFI profile, (b) CTA flow rate profile, (c) conversion profile,
(d) initiator 1 flow rate profile, and (e) initiator 2 flow rate profile.

Figure 10. Heat transfer coefficient (a) and estimated fouling thickness (b) under the fouling−defouling scenario.
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a minor divergence in the MFI profile. In the MFI profile,
NWMPC generated an IAE value of 4.937 compared to
SSMPC’s ISE value of 7.609. In Figure 11c, both controllers
perform similarly in terms of polymer XM maintenance
despite the fact that NWMPC uses more initiator than
SSMPC (see Figure 11d). Based on the error analysis in the
XM profile, both controllers produce comparable IAE, with
NWMPC 0.0683 and SSMPC 0.0919. Similar findings can be
found in the study of Zavala and Biegler18 of NMPC
performance in the presence of F−D inside an LDPE TR. As
a result, the controllers demonstrate a successful activation of
the F−D mechanism within the reactor.

6. CONCLUSIONS
The development and performance evaluation of the neural
Wiener MPC (NWMPC) in regulating a high-pressure LDPE
TR are presented. A soft sensor model is developed with the
NWMPC control scheme (NWMPC-SS) to address the
fouling and defouling operation in the plant. This control
system is crucial because it offers the required stability and
security for safe plant operation. In the LDPE TR, the
NWMPC is proven to be fast, stable, and robust under various
control scenarios. The use of a soft sensor model in
conjunction with NWMPC enables the online monitoring
and controlling of the F−D processes. The soft sensor model

is added to the NWMPC control scheme separately and can
be operated independently if necessary. The NWMPC-SS
demonstrates its control solution for NL processes in the
polymer industry with safety concerns.
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