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Gene co-expression network 
analysis identifies porcine genes 
associated with variation in 
metabolizing fenbendazole and 
flunixin meglumine in the liver
Jeremy T. Howard1, Melissa S. Ashwell1, Ronald E. Baynes2, James D. Brooks2, James L. 
Yeatts2 & Christian Maltecca1

Identifying individual genetic variation in drug metabolism pathways is of importance not only in 
livestock, but also in humans in order to provide the ultimate goal of giving the right drug at the right 
dose at the right time. Our objective was to identify individual genes and gene networks involved in 
metabolizing fenbendazole (FBZ) and flunixin meglumine (FLU) in swine liver. The population consisted 
of female and castrated male pigs that were sired by boars represented by 4 breeds. Progeny were 
randomly placed into groups: no drug (UNT), FLU or FBZ administered. Liver transcriptome profiles 
from 60 animals with extreme (i.e. fast or slow drug metabolism) pharmacokinetic (PK) profiles were 
generated from RNA sequencing. Multiple cytochrome P450 (CYP1A1, CYP2A19 and CYP2C36) genes 
displayed different transcript levels across treated versus UNT. Weighted gene co-expression network 
analysis identified 5 and 3 modules of genes correlated with PK parameters and a portion of these were 
enriched for biological processes relevant to drug metabolism for FBZ and FLU, respectively. Genes 
within identified modules were shown to have a higher transcript level relationship (i.e. connectivity) in 
treated versus UNT animals. Investigation into the identified genes would allow for greater insight into 
FBZ and FLU metabolism.

Drug use and how it is currently regulated in livestock has received increased attention due to animal welfare 
concerns, food safety and the prevalence of antibiotic resistance1. Furthermore, minimum withdrawal times are 
based on pharmacokinetic (PK) studies involving a small number of healthy animals and generalized to the entire 
population, which disregards factors that may alter drug metabolism such as disease status, breed or sex of the 
treated animal2–4. As a result, drug residue violation in food animals has become a global food safety concern4, 

5. Previous work has been conducted on variation in gene expression across pigs for multiple cytochrome P450 
genes with functions related to drug metabolism6, 7, although gene expression levels across the whole transcrip-
tome following drug administration has not been reported. The identification of genes or gene networks that 
display altered expression levels following drug administration and impact the metabolism of the drug not only 
provides insights into livestock drug metabolism, but also human drug metabolism. The commercial pig as an 
animal model in biomedical research has become increasingly relevant, due to the fact that the anatomy, genet-
ics and physiology reflect human biology more closely than classic animal models such as fruit fly, zebrafish 
and rodents8. Furthermore, the drug classes (i.e. common molecular mechanism of action) utilized in human 
medicine are also used to treat livestock therefore information generated from swine research could impact both 
livestock and human drug development and allow for more effective drug administration1. Therefore using the 
commercial pig as a model to gain insight into drug-metabolizing enzyme biology would allow for both livestock 
and human medicine to move closer to the ultimate goal of giving the right drug at the right dose at the right time.
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The drugs fenbendazole (FBZ) and flunixin meglumine (FLU) are utilized across a variety of livestock species, 
although they are not cleared for use in humans2. The broad-spectrum drug FBZ is utilized as an antihelmitic 
drug and is often administered as a feed additive. It undergoes CYP450-mediated oxidation and conjugation 
with glucoronide and sulfate9. Flunixin meglumine is a drug used for the control of pyrexia associated with swine 
respiratory disease and works by decreasing prostaglandin synthesis by inhibiting the cyclo-oxygenase enzyme10. 
The objective of the current study was to integrate gene co-expression networks, gene versus drug metabolizing 
parameter correlations and differential transcript analysis for animals administered FBZ or FLU to identify genes 
and gene networks that impact drug metabolism.

Results
The genetic background of selected animals.  The pigs utilized in the current study were derived from a 
large resource population (n = 229) that were administered FLU or FBZ2, 7. The animals in the full resource popu-
lation were spread across 5 batches. Across all animals an initial dose of FLU or FBZ was administered to estimate 
PK parameters. A second dose was administered and one hour after drug administration, animals were sacri-
ficed and a liver sample was collected. The pigs chosen for the current study displayed extreme (i.e. fast or slow 
drug metabolism) drug clearance PK parameters for FLU (n = 20) and FBZ (n = 20). Furthermore, liver samples 
were collected from animals that did not receive any drug administered (UNT; n = 20). The pigs were crossbred 
females or castrated males and the breeds of the sires were Duroc (D), Hampshire (H), Landrace (L) or Yorkshire 
(Y). The number of animals within each drug, breed and sex class is outlined at the top of Fig. 1 under the 
Materials section. The range in clearance (L/h/kg) PK parameter values was 0.035 to 1.818 (mean = 0.27 ± 0.22) 
and 0.046 to 0.271 (mean = 0.12 ± 0.04) for FLU and FBZ, respectively. A low clearance value indicates the drug 
remains in the blood plasma longer as compared to an animal that has a higher clearance value. The variation 
across multiple PK parameters, including clearance, is displayed in Figures S1 and S2 for FBZ and FLU, respec-
tively. For the pigs selected in the current study, liver transcriptome profiles were generated from RNA sequenc-
ing (RNA-Seq). The degree of similarity in the transcriptome between animals administered either FBZ or FLU 
versus UNT based on to top 500 genes with the largest transcript standard deviation is outlined in Figure S3. As 
illustrated in Figure S3 there is evidence across both drugs that transcript levels were altered, based on 500 genes 
with the largest transcript standard deviation, for animals treated versus animals untreated.

Transcript level differences between treated and untreated animals.  Differential transcript anal-
ysis was conducted between animals administered FBZ or FLU versus UNT animals using the edgeR package11 

Figure 1.  Number of animals within each treatment and workflow of RNA-Seq data analysis. 1The 
pharmacokinetic (PK) phenotypes were half-life (T1/2; h), area under the plasma concentration-time curve 
from time zero to infinity (AUC0→∞; h*μg/mL), clearance (Cl; L/h/kg), mean residence time (MRT; h), volume 
of distribution at steady state (Vdss; L/kg), peak concentration (Cmax; μg/mL) and time at which maximum 
concentration occurs (Tmax; h). 2Refers to breed and D = Duroc; H = Hampshire; L = Landrace; Y = Yorkshire.
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(version 3.8.6). Genes with low transcript counts were removed from the analysis, which resulted in 11,877 genes 
remaining for analysis. The count data generated from RNA-Seq were normalized and transformed to counts 
per million (CPM). An overall contrast (i.e. across breed and sex) between FBZ or FLU versus UNT based on 
normalized CPM values were conducted along with pairwise contrasts within sex and breed. The effect of batch 
was accounted for in the breed and sex contrasts. Genes were investigated if they had false discovery rate (FDR) 
value less than 0.05.

The total number of genes that had significant transcript differences (FDR < 0.05) across animals administered 
a drug versus untreated was 819 and 1153 for FBZ and FLU, respectively. Annotated genes of high significance 
(FDR < 0.0001) within each drug were investigated and multiple CYP450 genes with functions related to Phase 
I drug metabolism were identified for FBZ (CYP1A1, CYP2A19, CYP2C36 and CYP4V2) and FLU (CYP1A1, 
CYP2A19, CYP2C36 and CYP7A1). Furthermore, genes involved in Phase II drug metabolism were identified for 
FBZ (HSD17B2 and MT1A) and FLU (HSD17B2). Expression profiles of significant transcript level differences 
across treated versus control involved in Phase I or II drug metabolism are outlined in Fig. 2. Of the genes found 
to be highly significant in the across breed and sex contrast for FBZ, the majority of the CYP450 genes were 
found to display significant (FDR < 0.0001) pairwise breed contrasts including CYP1A1, CYP2A19 and CYP2C36. 
Furthermore, an additional CYP450 gene, CYP2B22, that was not significant in the across breed contrast, was 
significant in the pairwise contrast for FBZ. For FLU, CYP2C36 displayed significant pairwise breed contrasts and 
two additional CYP450 genes that were not significant in the overall breed contrast, CYP2B22 and CYP2J34, were 
significant for the pairwise breed contrast. Multiple CYP450 genes displayed significant sex contrast differences 
for FBZ (CYP1A1 and CYP2B22) and FLU (CYP2B22, CYP2C36 and CYP7A1). Lastly, a small proportion of the 
genes were confirmed using qPCR and the results are outlined in Figures S4 and S5. Across all 7 genes tested, the 
fold change values derived from quantitative real-time PCR (qPCR) utilizing the full dataset were similar to the 
fold change values estimated utilizing the RNA sequence data generated on the subset of the animals.

Figure 2.  Expression profiles of genes with known Phase I and II drug metabolism functions and highly 
significant (FDR < 0.0001) transcript differences across animals administered a drug versus untreated.

http://S4
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Gene network (i.e. module) identification.  A weighted gene co-expression network (WGCNA) and dif-
ferential transcript analysis was conducted using the count data generated from RNA-Seq. These two approaches 
were utilized in tandem in order to identify a subset of genes that impacted how an animal metabolized the drug 
based on its relationship with a PK parameter and displayed differences in transcript levels between animals 
administered FBZ or FLU versus UNT animals. The count data generated from RNA-Seq was transformed to 
reads per kilobase of transcripts per million-mapped (RPKM) and normalized, log2 transformed and adjusted 
for the batch effects prior to the analysis. Similar to the gene filtering used in the differential transcript analysis, 
genes with a low transcript count were removed and the remaining genes were normalized, which resulted in a 
total of 11,877 genes within each analysis. A subset of genes, referred to as modules, with correlated expression 
levels were generated within animals administered FLU and FBZ using the WGCNA package12 (version 1.42). 
All modules were assigned a color that will be hereinafter used to reference the modules and is depicted in the 
hierarchical clustering dendogram outlined in Figure S6. To determine if any of the modules were associated with 
a PK parameter, the correlation between module eigengenes (defined as the first principal component of a given 
module and represents the gene expression profiles in the given module) and each PK parameter were estimated 
across all modules and results across modules and PK parameters are outlined in Figures S7 and S8 for FBZ and 
FLU, respectively. Three and five modules were significantly correlated (|correlation| > 0.30 & P-value < 0.10) 
with a PK parameter and at least 10% of the genes displayed differential transcript levels for FLU and FBZ, respec-
tively. Relationships between the significance level of a gene based on the differential expression analysis and 
module membership (MM; defined as a measure of the strength of the gene belonging to the module) along with 
descriptive statistics for each significant module are outlined in Fig. 3. For the majority of the modules, genes 
with significant (FDR < 0.05) transcript differences between animals given a drug versus untreated were the most 
important genes (i.e. high MM value) in the module.

An enrichment analysis was conducted within each of the modules declared significant. For FBZ, three out 
of the five modules were enriched with GO annotations terms, while only one GO annotation was enriched for 
FLU and is reported in Table 1. The Cyan module was negatively correlated (−0.42; P-value = 0.06) with the FBZ 
clearance PK parameter and was enriched for processes related to lipid metabolism (GO-ID: 0006629). The num-
ber of genes contained within the cyan module was 116 and 25% of these genes displayed significantly different 
transcript levels across treated versus untreated. The magenta module contained 178 genes and was positively 
correlated (0.50; P-value = 0.01) with the time at maximum concentration for the FBZ metabolite (oxfendazole) 
and was enriched for response to endoplasmic reticulum stress (GO-ID: 0034976). Out of the 178 genes within 
the magenta module, 11% of the genes had different transcript levels across treated versus untreated. The brown 
module contained a large number of genes (n = 621) and 12% displayed significant different transcript levels 
across treated versus untreated. The brown module was negatively correlated (−0.44; P-value = 0.05) with the 
FBZ clearance PK parameter and was enriched for processes related to small molecule metabolism (GO-ID: 
0044281). Lastly, the grey60 module was negatively associated (−0.38; P-value = 0.04) with the mean residence 
time of FLU and was enriched for carboxylic acid metabolic processes (GO-ID: 0019752). The number of genes 
contained within the grey60 module was 81 and 15% of the genes displayed significantly different transcript 
levels across treated versus untreated. Expression profiles of genes with known GO-annotations and significant 
transcript differences across treated and untreated are outlined in Fig. 4. A heat map illustrating the correlation 
between normalized and batch-adjusted RPKM values across genes within the cyan, brown and magenta module 
for FBZ and grey60 module for FLU is shown in Figures S9, S10, S11 and S12, respectively.

Differences in connectivity between animals administered a drug versus untreated ani-
mals.  The connectivity of a gene is a measure of gene interactions between a given gene and all genes within 
the network. Furthermore, the previously described modules consist of a group of highly interconnected genes, 
and as a consequence of scale-free topology assumptions, will consist of many lowly interconnected genes and 
a few highly interconnected genes that are referred to as hub genes13. Three networks were constructed based 
on subsets of the RNA-Seq data and include animals administered FBZ or FLU and UNT. In order to identify 
hub genes within the previously defined significant modules, the difference in scaled connectivity between FBZ 
versus UNT and FLU versus UNT were estimated. Genes were investigated further if their absolute connectivity 
was greater than 0.6. When the differences between connectivity values was positive, it meant that genes were 
more highly connected in the treated group than in the untreated group. Conversely, a negative connectivity 
value designated genes that were more connected in the untreated group than in the treated group. Within the 
cyan, magenta and brown modules, 3 (CYP51, MSMO1 and SQLE), 3 (LOC100513955, LOC100525076, STX5) 
and 6 (H3F3A, HADH, HAO1, LOC100738422, OTC and SLC31A1) hub genes were identified for FBZ, respec-
tively. Furthermore, all connectivity values within the genes were positive meaning they were more connected 
in the treated than in the untreated group. Within the FLU grey60 module, 4 genes displayed positive connec-
tivity values (ECH1, ICAM2, LOC100520636 and PFKL) and 2 genes displayed negative connectivity values 
(LOC100516466 and LOC100739849). None of the declared hub genes displayed significant (FDR < 0.05) tran-
script differences. Expression profiles of hub genes across treated and untreated are summarized in Figure S13.

Lastly, in order to determine whether genes display similar connectivity values within the treated versus 
untreated groups, the distribution of differential connectivity values for genes within significant modules were 
compared between treated versus untreated. Differences between the distributions of the connectivity values 
between treated versus untreated were tested for significance using the non-parametric Kolmogrov-Smirnov test. 
The mean connectivity within genes for modules associated with PK parameters was always greater in the treated 
versus the controls as outlined in Fig. 5. Therefore, given the highly significant Kolmogrov-Smirnov test statistic 
(P-value < 0.001) the genes within a given module appear to have a higher degree of correlation in the presence of 
either drug compared to the untreated animals.
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Discussion
The current study utilized RNA sequence data to better understand how the liver transcriptome is impacted by 
FBZ or FLU administration and identify individual gene and gene networks that impact drug metabolism and 
clearance. The identification of genetic determinants and/or biological pathways that give rise to individual varia-
bility in drug efficacy and safety is a major challenge in the context of human medicine regarding current clinical 
practice, drug development and drug regulation14. Furthermore, in the context of animal derived foods, a recent 
article addressed the issues relating to establishing drug tolerance and withdrawal times for unhealthy animals 
and its inability to address the variation across animals and how disease status impact drug clearance4. Therefore, 
the identification of genes or sets of genes that result in variation in drug response not only has impacts on being 
able to more effectively administer drugs to livestock, but also to gain a better understanding of gene networks 
that are involved in drug metabolism.

The current study found multiple cytochrome P450 genes differentially expressed across treated versus 
untreated individuals in addition to evidence for differences in transcript counts within breed and sex. The CYP1, 

Figure 3.  Significant modules associated with Flunixin Meglumin (i.e. Panel A) or Fenbendazole (Panel B) and 
the number of significant differentially expressed genes within each module.
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CYP2 and CYP3 gene families are primarily involved in xenobiotic metabolism and display selective but overlap-
ping substrate specificity so that they can metabolize a large array of chemicals15. The expression of CYP450 gene 
products are influenced by a unique combination of mechanisms and factors including genetic polymorphisms, 
induction by xenobiotics, regulation by cytokines, hormones, sex and disease states16. Furthermore, multiple 
genetic variants have been found within the CYP450 family to impact drug metabolism and clearance and a 
review is outlined in Zanger & Schwab16. Across both FBZ and FLU, multiple genes within the CYP1, CYP2 and 
CYP3 gene families were found to have different transcript levels across treated individuals versus treated and 
they include CYP1A1, CYP2A19 and CYP2C36. The majority of CYP450 genes were suppressed when drugs were 
administered with the exception of CYP2C36. Furthermore, the CYP2B22 gene displayed differences in transcript 
levels across breed and sex for both FBZ and FLU. Previous work by Howard et al.7 found the CYP1A2 to be sig-
nificantly different across animals administered a drug versus untreated utilizing the same dataset, although the 
fold change was in the opposite direction. The dataset utilized in the RNA-seq study was a subset of the complete 
data set and therefore this may result in different fold change values due to the use of a smaller dataset.

Multiple modules were identified that were correlated with PK parameters across both FBZ and FLU. For 
FBZ, three out of the five modules were enriched with GO annotation terms. The Cyan module was enriched 
for processes related to lipid metabolism and negatively correlated (−0.42) with the clearance PK parameter. 
Altered lipid metabolism levels across individuals can give rise to altered lipid profiles within the body and altered 
CYP450 expression levels, which would then impact the bioavailability of the drug and the proportion bound 
in the plasma17, 18. Genes that were differentially expressed within the lipid metabolism annotation term were 
associated with cholesterol and bile acid metabolism and included AACS, ACAT2, ACSS2, CYP7A1, APOA5, 
FDPS, TM7SF2, MSMO1, HMGCS1 and EBP. Bile acids have been shown to be important regulators in drug dis-
position19 and the CYP7A1 gene is the initial and rate limiting step in the catabolism of cholesterol to bile acids20.  
Previous research has shown that the level of bile acids can alter the blood concentrations across multiple 
lipophilic drugs when given orally, which therefore impact the pharmacokinetic parameters of the drug21–23. 
Furthermore, fenbendazole is eliminated through bile into feces in rats and mice24 and therefore any alterations in 
the level of bile salts could alter clearance of the drug. The impact of bile acid is likely to be influenced to a greater 
degree when administered orally instead of intravenously, which was the route utilized in this study. However, 
if enterohepatic recirculation occurs, which has been shown to occur in sheep25, bile acids may play a role in 
metabolizing FBZ.

The magenta module was enriched for processes related to endoplasmic reticulum (ER) stress and positively 
correlated (0.50) with the time at maximum concentration for the FBZ metabolite, oxfendazole. Gene expression 
profiles within the module that had different transcript levels across treated versus untreated are outlined in Fig. 4 
and illustrate the upregulation of these genes in the liver of animals administered FBZ. Accumulation of unfolded 
proteins in the ER induces stress and is a cellular mechanism that aids in protecting the ER, first by recruiting 
ER-resident stress proteins and, if conditions don’t improve, the apoptotic response process is initiated26. The induc-
tion of ER stress due to FBZ administration has been found in cancer cell lines27 and prolonged oxfendazole admin-
istration has been shown to induce apoptosis in meiotic spermatocytes and altered ER in the Sertoli cells in rats28.  
Some of the major genes in the ER stress pathway, as outlined in Chow et al.29, were differentially expressed across 
treated versus untreated and include DDIT3, HSPA5 and HYOU1.

The Brown module was enriched for processes related to small molecule metabolism and was negatively corre-
lated (−0.44) with the FBZ clearance. There were a large number of genes (n = 62) within the enriched annotation 
term and therefore only the ones with a high module membership and/or significant transcript differences across 
treated versus untreated will be discussed. Most drugs, including FBZ and FLU, are classified as small molecules 
and therefore processes related to small molecule metabolism should be impacted following drug administration. 
The UGDH gene product is critical in hepatic tissue for endoplasmic reticulum-localized Phase II detoxifica-
tion of lipophilic hormones and xenobiotics by glucuronidation30. Furthermore, multiple genes were within the 
module with processes related to phase I drug metabolism including dehydrogenases (ADH4, ALDH5A1 and 
HSD17B4) and flavin containing monooxygenases (FMO1).

Lastly, the grey60 module was enriched for processes related to carboxylic acid metabolism and was neg-
atively associated (−0.38) with the mean residence time of FLU. Flunixin meglumine is a non-steroidal 
anti-inflammatory drug (NSAID) and, like many NSAIDs, is a carboxylic acid-containing compound. The 

Drug
WGCNA 
Module GO-term

Number of 
genes with 
GO term in 
Module

Number 
of genes in 
term

False 
DiscoveryRate 
(FDR)

Fenbendazole

Cyan Lipid Metabolic 
Process 18 330 1.65E-04

Magenta
Response to 
Endoplasmic 
Reticulum Stress

15 80 3.24E-07

Brown Small Molecule 
Metabolic Process 62 456 2.19E-06

Flunixin Grey60 Carboxylic Acid 
Metabolic Process 11 243 2.80E-02

Table 1.  Overview of the most significant overrepresented GO terms associated with the modules using 
WGCNA.
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carboxylic acid moiety of FLU undergoes conjugation prior to being eliminated in the urine. Furthermore, 
FLU mediates its effects through inhibition of the cyclooxygenase enzyme and has been previously found to 
be impacted by cholesterol levels31. Two genes were included in this module related to cholesterol levels in the 
plasma (SREBF1, APOA5). Gene expression profiles within the module that had different transcript levels across 
treated versus untreated are outlined in Fig. 4, which illustrate the up-regulation of these genes within the group 
given FLU.

The connectivity of genes within each module was also computed separately for the treated and untreated ani-
mals in order to determine if the genes displayed a higher degree of connectivity in the treated versus untreated 
animals. It is hypothesized that upon drug administration the interaction among genes within a module should 
increase over that of an untreated module. Across all modules genes within the modules displayed a higher con-
nectivity value than the untreated gene connectivity values. Furthermore, candidate hub genes within each mod-
ule were identified based on the differential connectivity estimate. For the cyan module, which was enriched 
with lipid metabolism genes, 3 genes with functions related to cholesterol metabolism were identified (CYP51, 
MSMO1 and SQLE). A hub gene within the magenta module, STX5, has been shown to play an important role in 
the ER stress response that precedes apoptotic cell death and has been shown to regulate the targeting and fusion 
of carrier vesicles within the ER32. The candidate hub genes identified in the current study and the increased con-
nectivity with the treated group for the modules identified will need to be validated in other populations.

The current study has integrated gene co-expression networks, gene versus drug metabolizing parameter cor-
relations and differential transcript analysis across animals administered FBZ or FLU versus UNT to provide 
new insights into individual gene and gene networks that impact drug metabolism. Alterations in the transcript 
profile within the liver following FBZ and FLU administration were seen. More importantly, alterations within a 
specific set of genes contained within identified modules were seen following drug administration and these mod-
ules were significantly correlated with drug PK parameters. Further investigation into genes that had significant 

Figure 4.  Expression profiles of genes with significant differences in transcript levels across animals 
administered Flunixin Meglumine (Panel A) and Fenbendazole (Panel B) versus untreated animals within 
modules associated with pharmacokinetic phenotypes.
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transcript differences and genes contained within modules enriched with biologically relevant functions will 
allow for greater insight into how FBZ and FLU are metabolized and may lead to more effective treatments for 
livestock and humans.

Methods
Animals.  This study was approved by the NCSU Institutional Animal Care and Use Committee (IACUC) and 
all experiments were performed in accordance with relevant guidelines and regulations. The samples and phe-
notypes utilized were derived from a population of animals generated to investigate the phenotypic and genetic 
variability related to FBZ and FLU drug metabolism and is described in detail by Howard et al.2, 7. Briefly, the 
animals in the full dataset were crossbred nursery females and castrated male pigs spread across 5 batches. The 
animals were split into batches due to insufficient pen space for all the animals. Within each batch animals were 
randomly placed into UNT, FLU or FBZ. The sires of the pigs were comprised of 4 separate breeds and were reg-
istered National Swine Registry boars mated to a common sow population at the North Carolina State University 
Swine Education Unit. The drugs, FBZ or FLU, were administered via IV administration in order to remove 
inter- and intra-individual variability often observed with extravascular routes of administration9, 33. An initial 
dose (FBZ dose: 1 mg/kg; FLU dose: 3 mg/kg) was given in order to collect blood samples across a 48-hr period, 
which was then utilized to estimate PK parameters. A non-compartmental analysis of drug and metabolite plasma 
concentration versus time profiles was performed with PK modeling Phoenix® software (version 1.1; Pharsight, 
Cary NC, USA), as outlined previously by Howard et al.2. Parameters derived from PK modeling included the 
area under the plasma concentration–time curve from time zero to infinity (AUC0→∞; h*μg/mL), clearance (Cl; 
L/h/kg), half-life (T1/2; h), mean residence time (MRT; h), the volume of distribution at steady state (Vdss; L/kg), 
peak concentration (Cmax; μg/mL) and time at which maximum concentration occurs (Tmax; h). After 48 h a sec-
ond dose was given and, one hour after drug administration, animals were sacrificed via captive bolt and a liver 
sample from the right lateral lobe was collected and placed in RNA Later (Qiagen, Valencia, CA, USA). A liver 
collection sample of 1 hour was chosen based on a compromise between the two drugs on the maximal levels of 

Figure 5.  Cumulative density function (CDF) of differential connectivity values between animals administered 
Flunixin Meglumin (FLU; Panel A) and Fenbendazole (FBZ; Panel B) versus untreated (UNT) animals within 
modules associated with pharmacokinetic phenotypes and the significance based on the Kolmogrov-Smirnov 
test.
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metabolite and drug levels in the plasma and is the concentration verse time plots are outlined in Howard et al.7. 
Previous work by Howard et al.2 has shown that negligible amounts of the drug and metabolite remained in the 
blood plasma after 48 hours and therefore the carry over effect from the first dose should be minimal.

Experimental Design.  The animals in the current study were selected from the full dataset with the aim to 
maximize the variability across animals in whole genome transcript levels that were related to drug metabolism. 
This was accomplished by selecting treated animals that were at the tails of the distribution for the clearance PK 
parameter within each. The untreated animals were selected randomly and balanced across breed, sex and batch, 
because PK parameter estimates were not available in these individuals. The majority of the effects are balanced 
across treatment groups and breed, although the sex class is slightly unbalanced for FLU, which was due to insuf-
ficient numbers of females within the Yorkshire breed so that an additional male was chosen instead. The number 
of sires within each breed class was chosen to be as uniform as possible in order reduce the effect of a breed con-
trast being influenced by a sire effect. Lastly, not all breeds were represented within each batch.

RNA-Sequencing data, editing and normalization.  The RNA-Seq samples were prepared following 
the manufacturer’s recommendation using the TruSeq RNA Sample Prep (Illumina, Hayward, CA, USA). Samples 
were sequenced on the Iseq platform, dividing the 60 samples across 7 lanes (i.e. 4 lanes with 9 samples and 3 
lanes with 8 samples). Prior to alignment, sequence reads were trimmed to remove possible adapter sequences 
and nucleotides with poor quality (error rate < 0.5). After trimming, sequence reads shorter than 30 nucleotides 
were discarded. Remaining reads were aligned to the pig reference genome sequence assembly34 (Sscrofa10.2) 
using the CLC Genomics Server program (Qiagen, Valencia, CA, USA). The total number of uniquely mapped 
reads per sample was 22,260,237 and on average across samples, 17,683,594 were mapped.

Differential Expression and Co-Expression Network Analysis.  In order to ensure that genes asso-
ciated with drug metabolism at PK levels were identified, a gene co-expression network analysis was conducted 
along with a differential transcript analysis. The total number of genes prior to any data editing across the 60 
samples was 35,252. The data editing and normalization procedure was done using the Bioconductor package 
edgeR11 (version 3.8.6). The read counts per gene were normalized to counts per million (CPM). Previous studies 
have shown that genes with low expression levels are less reliable13, 35, therefore genes with CPM values above 1 
in at least 5 samples were kept. The final number of genes utilized across all analysis was 11,877. Furthermore, 
in order to account for the compositional differences between the libraries, CPM values were normalized based 
on the trimmed mean of M-values normalization procedure. Transcript levels were also expressed as RPKM and 
determined for each gene and sample using the rpkm function within the edgeR package11 (version 3.8.6). The dif-
ferential transcript analysis used the CPM values and the gene co-expression network used the RPKM values. The 
RPKM value was used for the gene co-expression network to minimize the effect of gene length bias when relat-
ing expression levels across genes, whereby longer genes will be sequenced deeper than shorter genes36. Within 
each drug, clustering of samples by transcript count (transformed to log2 CPM) was evaluated for the animals 
given the particular drug and untreated animals across batches using the plotMDS function in the Bioconductor 
package limma37 (version 3.22.7). This function uses 500 genes that have the largest standard deviation transcript 
levels between samples to construct the Euclidian distance between each pair of samples.

Differential transcript analysis on the 11,877 genes remaining after gene filtering was conducted using edgeR11 
(version 3.8.6). Two separate analyses were conducted to identify across breed and sex transcript differences and 
within breed or sex differences. The first stage was conducted to identify genes that had different transcript levels 
across treated versus untreated animals utilizing normalized CPM values based on a model that accounted for the 
batch effect. The second stage of the analysis identified genes with transcript levels that differed across breed and 
sex after drug administration using normalized CPM values. The following contrasts were used for each pairwise 
breed contrast within a drug:

− − −Treated Untreated Treated Untreated( ) ( ),Breed A Breed A Breed B Breed B

and the sex contrast within each drug:

− − − .Treated Untreated Treated Untreated( ) ( )Male Male Female Female

The effect of batch was accounted for in the breed and sex contrasts. Genes were investigated if they had FDR 
values less than 0.05.

Pigs administered either FBZ or FLU were utilized to identify gene co-expression networks correlated with 
PK phenotypes. Furthermore, modules were checked to determine the frequency of genes that had significant 
differences in CPM values based on the previous analysis in order to ensure biologically relevant modules were 
identified. Prior to the analysis, log transformed RPKM values were corrected for the group effect using the 
removeBatchEffect function from the Bioconductor package limma37 (version 3.22.7). An un-signed co-expression 
network was built using the WGCNA package12 (version 1.42). An adjacency matrix within each drug was cre-
ated by calculating the Pearson’s correlations between all genes that remained after quality control and raised to 
a soft-threshold power (β) of 18. The power β was chosen utilizing the pickSoftThreshold() function within the 
WGCNA package12, which is based on the scale-free topology criterion38. The average scale-free topology index 
(R2) was 0.91 and 0.89 for FBZ and FLU, respectively. To identify modules of co-expressed genes, a topological 
overlap-based dissimilarity matrix38, 39 (TOM) was constructed using the adjacency matrix. The dissimilarity 
TOM was used as input for the average linkage hierarchical clustering algorithm, which resulted in a clustering 
tree (dendrogram). Clusters of highly interconnected genes (i.e., set of genes co-expressed), referred to as mod-
ules, were determined as branches of the dendrogram using the Dynamic Tree-Cut algorithm40. Furthermore, 
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the module eigengene was used to represent each module and was calculated by the first principal component 
in order to capture the maximal amount of variation of each module. Modules whose eigengenes were highly 
correlated (r > 0.85) were further merged into a single module. The aforementioned steps were completed using 
the one-step network construction and module detection function within the WGCNA package12 (version 1.42) 
and the following major parameters: maxBlockSize of 15000, minModuleSize of 30, reassignThreshold of 0 and 
mergeCutHeight of 0.15.

After modules were constructed within each drug, correlations between module eigengenes and PK param-
eters were estimated. Modules whose correlations were greater in absolute value than 0.30 and a significance 
value less than 0.10 were kept and investigated further41. The final step prior to gene annotation was to only 
keep modules that had at least 10 percent of the genes displaying significant (FDR < 0.05) transcript differences 
across animals administered a drug versus untreated animals. The previous steps were utilized to select potential 
biologically relevant modules that displayed transcript level variability across samples for downstream analyses.

Genes of interest within the modules were prioritized based on the strength of a gene’s MM, connectivity value 
and significance based on the previous differential expression analysis results. The connectivity (measure of gene 
interaction with other genes) of all genes within modules passing the previous threshold was determined using 
the softconnectivity function within the WGCA package12 (version 1.42). The MM parameter is a measure of the 
strength of a particular gene’s membership in a module obtained by correlating the gene’s expression profile with 
the module eigengene of that given module41. Genes within modules that passed the previous steps were anno-
tated using the Bioconductor package biomaRt42, 43 (version 2.22.0). Gene ontology44 (GO) term enrichment tests 
were performed for each individual module and compared to a background set of all genes expressed in the liver 
using the Blast2Go software45. Significance was declared for any GO term that had a FDR value of less than 0.05. 
Lastly, multiple genes were chosen based on their differential expression, module membership and differential 
connectivity to be confirmed in the full dataset (n = 69 FBZ; n = 72 FLU; n = 40 UNT) using qPCR across both 
FBZ and FLU. The genes included ABCC3, CYP2A19, CYP4V2, CYP7A1, GSTA1, LCN2 and CA3. A linear mixed 
model that has a similar framework as Steibel et al.46 and is described in detail by Howard et al.7 was utilized 
and contrasts similar to the pairwise breed contrasts in the differential expression analysis were constructed. 
Significance was adjusted using the Bonferroni correction due to multiple breed/sex comparisons.

The connectivity of a gene is a measure of gene interactions, in the form of co-expression, between a given 
gene and all genes within the network. Furthermore, depending on the state of the phenotype, treated versus 
untreated, the connectivity of a gene may be altered and, biologically, describes different active pathways in 
treated versus untreated animals. Within each module, an adjacency matrix was computed for the respective 
network (i.e. FLU or FBZ treatment group), as described previously in the WGNCA section, and for each gene the 
connectivity value was estimated. Only genes that were contained within modules of interest were investigated. 
The connectivity value is the sum of the adjacency values to all other genes within the module and is divided by 
the maximum connectivity value within the network, which constrains the range of values between 0 and 1. In 
order to identify hub genes, the difference in the connectivity value for the treated and untreated network for 
each gene was estimated. Genes were investigated further if their absolute connectivity was greater than 0.613. In 
order to determine whether genes display higher connectivity values within the group administered a drug versus 
untreated individuals, networks were constructed for treated (i.e. FBZ or FLU) and untreated within each mod-
ule. The distribution of differential connectivity values were compared within each module across treated (i.e. 
FBZ or FLU) and untreated. Differences between the distributions of the connectivity values within each module 
between treated versus untreated were tested for significance using the non-parametric Kolmogrov-Smirnov test.
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