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In chickens, early life exposure to environmental microbes has long-lasting impacts

on gastrointestinal (GI) microbiome development and host health and growth, via

mechanisms that remain uncharacterized. In this study, we demonstrated that

administrating a fecal microbiome transplant (FMT) from adults to day-of-hatch chicks

results in significantly higher body mass of birds and decreased residual feed intake

(RFI), implying enhanced feed efficiency, at 6 weeks of age. To assess the potential

mechanisms through which FMT affects adult bird phenotype, we combined 16S rRNA

gene amplification, metagenomic, and comparative genomic approaches to survey the

composition and predicted activities of the resident microbiome of various GI tract

segments. Early life FMT exposure had a long-lasting significant effect on the microbial

community composition and function of the ceca but not on other GI segments. Within

the ceca of 6-week-old FMT birds, hydrogenotrophic microbial lineages and genes

were most differentially enriched. The results suggest that thermodynamic regulation

in the cecum, in this case via hydrogenotrophic methanogenic and sulfur-cycling

lineages, potentially serving as hydrogen sinks, may enhance fermentative efficiency

and dietary energy harvest capacity. Our study provides a specific mechanism of action

through which early-life microbiome transplants modulate market-relevant phenotypes

in poultry and, thereby, may represent a significant advance toward microbiome-focused

sustainable agriculture.

Keywords: microbiome, poultry, microbiome transplant, hydrogen, archaea, methanogens, agriculture,

metagenome

INTRODUCTION

The poultry gastrointestinal (GI) microbiome metabolizes polysaccharides (1, 2), regulates
immunity (3), and provides energy as amino acids and short-chain fatty acids (SCFAs) (4, 5).
It is therefore a key determinant of developmental outcomes for all animals, including those of
agricultural importance (6). Over the last decade, the poultry GI microbiome has increasingly
become recognized as a functional system of the animal itself and a focal component of poultry
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husbandry influencing bird health, productivity, and food
safety (7–9). However, despite recent progress, a mechanistic
understanding of how the composition and activities of
complex GI microbial communities affect agriculturally desirable
phenotypes remains incomplete for poultry.

The primary energy sources for commercial chickens are
plant-derived carbohydrates. Unlike readily digestible starches,
non-starch polysaccharides (NSPs) may pass undigested to
the caecum because of their high structural variability as
an enzymatic substrate (10). The ceca, paired blind pouches
emerging at the junction of the ileum and colon, are anoxic
microbial habitats that host the highest microbial loads and
species diversity in the chicken GI tract and are the primary
site for carbohydrate fermentation into short-chain fatty acids
(SCFAs) and gases (11, 12). Other functions performed by this
understudied organ include water and electrolyte exchange (13)
and, based on the presence of cecal tonsils containing avian
immunoglobins as well as B and T cells, non-digestion related
immunological roles (14, 15). The plant-based diets of fowl have
led to evolutionarily selection for large ceca (16). Accordingly, the
ceca may represent an important symbiotic organ for the targeted
modulation of microbial energy harvest from the diet and certain
host phenotypes.

Recently, we reported that administering a fecal microbiome
transplant (FMT) to newly hatched chickens elicits long-lasting
microbial community changes in the ceca that are associated with
bird phenotypic changes later in life (17). These results suggest
that, through modulation of specific cecal taxa, key metabolic
pathways can be optimized, potentially leading to enhanced
community fermentative performance that physiologically
manifests as improved host phenotypes. Herein, we take a ‘top-
down’ approach, starting with significant differences in market
age (6-week-old) bird performance induced by a day-of-hatch
FMT and then use metagenomic and gene targeted surveys to
identify specific lineages and metabolic pathways associated
with these phenotypes. Noting that fermentations i) invariably
produce hydrogen gas while replenishing electron carriers
(18) and ii) are less thermodynamically favorable as the partial
pressure hydrogen gas increases (19), we explicitly consider
the role of hydrogen cycling as an overarching modulatory
mechanism for cecal fermentation efficiency.

RESULTS AND DISCUSSION

FMT Induced Significant Differences in
Bird Phenotype
FMT-inoculated chicks showed significant improvements in
body weight gain (Figure 1A) and feed efficiency (Figure 1B)
6 weeks after inoculation. Inoculated male and female groups
gained an average of 7.5 and 4.5%, respectively, more weight
at 6 weeks of age relative to controls (Figure 1A). In addition
to weight gain, residual feed intake (RFI) is another important
metric for assessing feed costs and optimizing poultry production
(20). There are several quantitative trait loci (QTL) associated
with RFI (21) and duodenal transcriptomics has identified
genes related to digestibility, metabolism, and biosynthesis by

differential expression analysis between low and high RFI groups
(22, 23). Here, in addition to increased weight gain (Figure 1A),
mean RFI values were significantly lower (more efficient) in
the FMT-inoculated compared to the non-inoculated chickens
(Figure 1B).

Overview of Ileal, Jejunal, and Cecal
Microbial Community Profiles
A 16S rRNA gene ordination survey of microbial communities
across ileum, jejunum, and cecal GI segments showed that
ileum and jejunum communities from both experimental
groups were highly similar to each other, in contrast to cecal
communities that differed significantly according to FMT
administration (Supplementary Figure S1), corroborating
the separation of hindgut and foregut microbiota previously
reported for chickens (24). Significant differences between
experimental groups for cecal communities were observed
in both 16S rRNA gene and metagenomic-assembled gene
ordinations (Supplementary Figures S1, S2), suggesting that
FMT administration specifically changes the community
composition and functional profiles of the ceca but not the
foregut. Based on this result, we focused on 16S rRNA gene and
metagenomic comparative analyses of cecal communities to
explore potential mechanisms through which early life exposure
to FMTs leads to divergent adult bird phenotypes.

Effect of FMT Donor Genetic Line on Cecal
Microbial Structure and Function
To test the relative effects of FMT administration and host
genetics on cecal microbial community structure and functional
profiles, we performed independent PERMANOVA analyses
on each dataset (Supplementary Figure S2). As expected
from the PCoA ordinations showing a large fraction of the
variance explained by the FMT experimental group variable
(Figure 2), FMT administration was the most significant
factor in structuring community and predicted function
(Benjamini-Hochberg corrected PERMANOVA p < 0.001,
Supplementary Figure S1). The genetic line of the FMT donor
also affected the community structure (p < 0.012) and functional
profiles (p < 0.02), but only in low RFI birds receiving FMTs
from high RFI donors (Supplementary Figure S1), suggesting
that the genetic divergence of low and high RFI bird groups
(22, 23) may also enrich certain GI microbial lineages that
influence phenotype, although no significant differences were
observed for community composition or functional profiles
solely on the basis of genetic line for uninoculated birds
(Supplementary Figure S1).

FMT Enriched Lineages
Next, to identify specific differentially represented cecal taxa, we
used three approaches, phylogenetic assignment of metagenomic
assembly contigs (Supplementary Figure S3A), metagenomic
short reads (Supplementary Figure S3B), and 16S rRNA
gene libraries (Supplementary Figure S3C) and showed that
FMT administration resulted in Bacteroidetes enrichment
over Firmicutes in the ceca at 6 weeks of age (Figure 3). We
previously reported similar observations from two-week old
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FIGURE 1 | Phenotypes of FMT-inoculated vs. uninoculated control chickens. (A) Average body weight for inoculated and uninoculated male and female bird groups

over a 6-week period. Chicks received a single inoculum at day of hatch and were reared in identical conditions as described in the Methods section. Groups with

letter M and F refer to male and female chicks. (B) Residual feed index (RFI, actual feed intake relative to expected; lower values represent increased efficiency) for

each experimental group. Black horizontal bars depict the mean of all observations and blue horizontal bars depict the mean for birds sampled for metagenomic

sequencing. Differences of means were significant by Kruskal-Wallis or student’s t-test as indicated on the figure.

FIGURE 2 | Cecal microbial community structure based on (A) 16S rRNA gene OTU frequencies and (B) metagenomic functional gene profiles. High and low RFI bird

lines depicted as circles and triangles, respectively. Color depicts the inoculation state of the bird: coral = controls (not inoculated) and teal = inoculated. All inoculated

samples are also labeled with the genetic line (L: low RFI and H: high RFI) of the FMT donor and recipient, respectively. For both 16S rRNA-based microbial

community structure and for functional profiles, differences between inoculated vs. uninoculated groups were significant (p < 0.01) as determined by

Benjamini-Hochberg corrected PERMANOVA analysis as further described in the Supplemental Materials.

birds administered a day-of-hatch FMT (17). Together, these
reports imply that FMT-elicited cecal community modulation
occurs rapidly (within 2 weeks) and persists up to typical
market age of broiler chickens. FMT also elicited significant
(p < 0.05) increases in the relative abundance of Epsilon-
and Delta-proteobacteria (Supplementary Figure S4) and
Methanobrevibacter spp., a hydrogenotrophic methanogenic
genus (25, 26) (Figures 3A,B). Despite being a rare community

member (∼<2% average relative abundance), based on
independent negative binomial (DESeq2) and linear (limma,
ANCOM-BC) models implemented on our 16 S gene dataset
(see materials and methods), Methanobrevibacter spp. was
highly differentially enriched in the ceca of FMT recipients
(Figures 3C,D, Supplementary Table S2). Despite the limited
ability of any model to fully control type I errors and false
discovery rates in compositional datasets (27), we note that
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FMT-driven Methanobrevibacter spp. enrichment is also
independently corroborated by the obvious presence of
Methanobacteria-assigned contigs generated exclusively from
FMT metagenomes (Figures 3A,B, Supplementary Figure S3).
The significant enrichment of Methanobrevibacter spp.
and Deltaproteobacteria [e.g., Desulfovibrio spp., a genus
representing potential syntropic partners (19)] highlights the
ecological importance of archaea in cecal fermentation energetics
and suggests that syntrophic interactions between archaeal and
bacterial partners may modulate the composition, activity, and
efficiency of the highly abundant cecal fermentative community
(18), influencing feed efficiency (28).

Next, using quality criteria (80% completeness and 10%
redundancy cut-offs) suggested elsewhere (29), we assembled
one Archaeal and seventeen Bacterial high-quality MAGs
from our cecal co-assemblies (see Supplementary Table S1).
More specifically, one Archaeal MAG, classified as a
Methanobrevibacter spp., and seven Bacterial MAGs (six
classified as members of the Bacteroidetes phylum and one
identified as a Deltaproteobacterial lineage) were recovered
from FMT inoculated co-assemblies while the control co-
assemblies yielded ten Bacterial MAGs (three assigned to the
domain Bacteria, five assigned to the Bacteroidetes phylum,
and two assigned as Firmicutes). As a survey of the chicken
cecal genomic landscape, we produced a bacterial phylogenomic
tree that includes 469 previously reported cecal MAGs (29),
91 genomes generated from cecal lab culture isolates, and our
bacterial MAGs (Supplementary Figure S7) using a 92 bacterial
core gene reconstruction model (30). This survey shows that
our bacterial cecal MAGs and lab isolates mostly represent
novel clades relative to a previous survey (29), expanding the
known phylogenomic diversity of cecal communities. Our single
Archaeal MAG (MAG_Arch1), underwent a separate focused
analysis, as described below.

Cecal Metabolic Activity and Genetic
Regulatory Pathway Predictions
Significant (p < 0.05) differences in metabolic pathway
predictions between our treatment groups were observed
for methanogenesis, Fe-Mn transport, and hydrogen- and
sulfur- cycling (Figure 4). The larger pathway categories
of core metabolism, carbon fixation, carbon degradation,
and fermentation were not significantly different between
experimental groups (Figure 4A).

Fermentation products, predominantly SCFAs, can be viewed
as the symbiotic currency between cecal microbiota and the
avian host (12). We show that, despite changes in the microbial
community structure elicited by the FMT, the genetic potential
for polysaccharide degradation and fermentations appears to
be conserved at the pathway level between experimental
groups. This was unexpected since enrichment of highly
abundant Bacteroidetes lineages in FMT samples (Figures 3C,D)
suggests that carbon degradation and/or fermentation-related
activities, metabolic hallmarks of the Bacteroidetes (31), may
differentiate experimental groups. To explore this further,
we explicitly tested for enrichment in genes involved in

the final step in the production of butyrate, a major GI
microbiome terminal metabolite crucial to host intestinal
health (32), from butyryl-CoA. The butyryl-CoA: acetate CoA-
transferase pathway or butyryl-CoA phosphorylation and final
transformation by butyrate kinase are the major penultimate
steps leading to the production of butyrate in fermentative
communities (33). We report that the butyryl-CoA: acetate CoA-
transferase pathway was enriched in the ceca of FMT birds
(Supplementary Figure S5), suggesting that subtle differences
in fermentation efficiencies may indeed be elicited by FMT
administration and may go unnoticed when examining the
experimental groups at the fermentative pathway-level. Butyryl-
CoA: acetate CoA-transferase butyrate production is reported
to increase acetate uptake and stoichiometric proton export
driving net ATP generation via oxidative phosphorylation at
mildly acidic pH (34, 35). Thus, FMT administration appears to
modulate the production of major GI microbiome fermentative,
symbiosis-linked, products such as butyrate.

Interestingly, some insertion sequences (ISs), the smallest
and most common autonomous transposable elements
(36), phylogenetically assigned to the Bacteroidaceae were
also differentially enriched in the FMT samples relative to
controls (Supplementary Figures S6A,B). Drastic expansion
in IS elements loads are generally associated with genome
rearrangement and reduction (36). Our results thus suggest a
degree of on-going genome specialization, a result of symbiotic
associations in cecal communities of FMT recipients.

Communal Hydrogenotrophy: A
Mechanism of Cecal Fermentative
Optimization?
We exclusively detected in the cecal communities of FMT
recipients a methanogenic archaeal lineage (Methanobrevibacter
sp.), sulfate reducing bacteria (SRBs; known archaeal
syntrophic partners such as Desulfovibrio spp.), and mcrA
genes, markers for archaeal methanogenesis (Figures 3, 4,
Supplementary Figures S4, S7). Methanogen gene markers
and methane production have been previously detected in
chicken ceca and feces, respectively (37, 38). Additionally,
there is a report of lower methane production and lower feed
efficiency in goslings following a caecectomy (39). Building
upon these important previous results, our work is the first, to
our knowledge, to explicitly consider the thermodynamic role
played by archaeal methanogens in the poultry cecum associated
with significant effects on phenotype. Methanogenic archaea
compete with SRBs for common substrates such as acetate and,
in fermentative environments, H2, concomitantly generating
sulfide and methane (18). Sulfate reduction by SRBs and
microbial catalysis of sulfur-containing amino acids in proteins,
including methionine, cysteine, homocysteine, and taurine,
as reported from humans (40) and rat ceca (41), potentially
render the avian ceca a net sulfidic environment. In our data,
Epsilonproteobacteria and the potential for sulfide oxidation, a
characteristic activity of this lineage, were exclusively detected
in the FMT group (Figures 3, 4, Supplementary Figure S4).
Intriguingly, sulfide, thiosulfate, and elemental sulfur oxidation
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FIGURE 3 | Microbial community composition and relative abundance of taxa with significantly different relative abundances between inoculated and uninoculated

groups. (A) Phylogenetic assignment of all contigs assembled from FMT metagenomes. (B) Phylogenetic assignment of all contigs assembled from control

metagenomes. (C) Differentially enriched lineages in controls and FMT recipients. (D) Percent abundance of each significantly differentially abundant lineage in FMT

inoculated and uninoculated controls.

by Epsilon-proteobacteria must be coupled to the reduction of
oxygen or nitrate (42). Interestingly, hydrogenotrophic growth
with elemental sulfur reduction, a likely redox couple in the cecal
environment, has been reported for Epsilonproteobacterial
isolates from seafloor hydrothermal habitats (42). This
suggests the possibility that cecal Epsilonproteobacteria are
predominantly hydrogen oxidizers in the ceca. In FMT
birds, the concomitant enrichment of archaeal methanogens,
hydrogenotrophic Delta- and Epsilon-proteobacteria, and the
increased prevalence of NiFe hydrogenases specific to these

lineages (Figure 5), strongly suggest hydrogen cycling as a
key ecological process in FMT-linked cecal communities that
may influence the emergent phenotypes of the host, as further
discussed below.

Cecal Hydrogen Cycling and Fermentative
Modulation
SCFA production rates and profiles depend on the partial
pressure of H2 resulting from its production and consumption by
hydrogenases of fermenters and hydrogenotrophs, respectively
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FIGURE 4 | Predicted completion of KEGG metabolism modules for (A) all cecal metagenomic assemblies. (B) Predicted metabolism modules from (A) with

significant (student t-test, p-value < 0.01) differences between FMT inoculated birds and controls.
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FIGURE 5 | Hydrogenase gene survey. (A) pHMM-based hydrogenase survey of all cecal metagenomes. Circle size and color reflect the number of detected gene

homologs per hydrogenase category. (B) Phylogenetic assignment and predicted function for hydrogenase gene homolog categories from FMT inoculated and control

cecal metagenomes.
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(43, 44). The hydrogenase profiles in our experiment were
dominated by NiFe (Group 4) and FeFe (Groups A and
B1B3) hydrogenases, involved in H2 generation from energy
conversion and H2 splitting coupled to electron shuttle
reduction (45, 46), respectively (Figure 5A). Based on taxonomic
assignments of hydrogenase genes (Figure 5B) NiFe Group
4 and FeFe Group A and B1B3 hydrogenases, lineages
that may generate H2 in the ceca of FMT-inoculated birds
include Bacteroidetes, Firmicutes, Deltaproteobacteria, and, to
a lesser extent, Chloroflexi and Spirochetes. Of the four
other hydrogenase groups detected in this survey, two were
exclusively observed in FMT-inoculated communities, and are
both H2-consuming hydrogenases (Figure 5A). Archaeal Mn-
reducing cytoplasmatic NiFe hydrogenases (Groups 3a and
3c), involved in hydrogenotrophic methanogenesis (47), were
only observed in the cecal communities of FMT-inoculated
birds (Figure 5). Similarly, oxygen-tolerant cytoplasmic Group
1 NiFe hydrogenases, involved in hydrogenotrophic respiration
coupled to sulfate, metals, and other oxidants (48), were enriched
in FMT communities. Interestingly, a Group 1 hydrogenase
sequence, detected exclusively in FMT-inoculated communities,
is of Epsilonproteobacterial provenance (Figure 5B). This
observation supports a potential hydrogenotrophic role (coupled
with elemental sulfur reduction) for some Epsilonproteobacteria
in the cecal communities of FMT-inoculated birds. Overall, our
results suggest that net H2 gas consumption by hydrogenotrophic
organisms promotes additional hydrogen formation, electron
carrier replenishment, and continued fermentation (44). We
note that FMT-elicited microbial hydrogen cycling may provide
a thermodynamic advantage that, over a commercial chicken’s
lifetime (∼6 weeks), could explain significant increases in adult
bird weight and feed conversion efficiency relative to controls.
These results, to our knowledge, document the first described
mechanism linking FMT inoculation, cecal hydrogen cycling,
and emergent avian host phenotypes.

Avian-Microbe Hydrogen Mutualism:
Archaeal Streamed-Lined Genomes and
Evolutionary History
Despite the low abundance of Archaea in the ceca,
Methanobrevibacter spp. are the most differentially enriched
lineage in the FMT-inoculated communities (Figure 3,
Supplementary Table S2). To better understand their genomic
context, a near-complete metagenomic-assembled genome
(MAG; MAG_Arch1) was recovered from FMT-inoculated
samples and phylogenomically compared to 15 publicly available,
host-associated, Methanobrevibacter genomes (Figure 6).
MAG_Arch1 is most closely related to a Methanobrevibacter
woesei, a strict hydrogenotrophic methanogen isolated from
goose fecal enrichments (25), and more distantly related to
non-fowl hosted members of this genus (Figure 6). An mcrA
gene sequence assigned to the Methanobacteriales order, (of
whichMethanobrevibacter is a member), with 100% similarity to
the mcrA of MAG_Arch1, was also independently detected from
FMT metagenomic assemblies (Supplementary Figure S6).
Collectively, our metagenomic observations corroborate 16S
rRNA gene survey reports of methanogenic lineages (37) and

active methane production (38) in cecal material collected
from 56 to 72 week-old layer chickens. Methanobrevibacter
genomes recovered from fowl are significantly smaller than
those recovered from non-fowl hosts (Figure 6). Their genomes
(1.6Mbp in size, encoding 1,600 proteins for MAG_Arch1)
are comparable to that of Methanothermus fervidus V24ST

(1.24 Mbp encoding 1,300 proteins), one of the smallest known
free-living Archaea (49). This highly streamlined genomic
architecture, in addition to low ORF-normalized pseudogene
loads and high gene coding densities (Figure 6), as reviewed
elsewhere (50, 51), strongly suggests that these fowl-associated
Archaea are highly specialized cecal symbionts.

Methanobrevibacter and
Performance-Related Outcomes in
Vertebrates: An “Ancestral Link”?
Well-preserved dinosaur fossils date the anatomical and
physiological emergence of the avian GI tract to the Early
Cretaceous (52). Thus, ancient andmodern ceca are fermentative
hotspots and redox-optimal niches for hydrogenotrophic
methanogenesis that represent a 160-million-year-old history of
microbe-avian mutualism. The presence of Methanobrevibacter
spp. has been correlated with performance-related outcomes in
avian (this study), mammalian (53–55), and reptilian (56) hosts.
Methane is a potential therapeutic gas capable of suppressing
inflammation, oxidative stress, and apoptosis in inflammatory
bowel disease animal models (57). Methane generation has also
been recently proposed as a biologically universal adaptive stress
response (58), highlighting the central role that methane cycling
may play in microbe-animal mutualism.

Various aspects of modern poultry husbandry (e.g.,
biosecurity protocols and single age cohorts) constrain microbial
inoculation of commercial poultry relative to wild populations.
Notably, after a single generation in captivity, grouse have
been reported to have significantly less diverse microbial
communities and atrophied cecal micromorphology relative to
non-captive controls (59). Also, significant differences in the
GI microbiome have been shown between feral and domestic
chickens. For example, microbial alpha diversity of the cecal
microbiota was higher for commercial than for feral chickens
and microbial metabolic pathways for L-proline biosynthesis
were enriched in the feral group (60). Domestication (effective
captivity) in the case of chickens, changes the ecological
context, particularly microbial exposure (61) at different life
stages that may result in divergent trajectories of microbial
succession. We posit that FMT administration in our experiment
mimics ancestral environmental microbial exposure (e.g., early
contact with methanogens, which to our knowledge are not
vertically transmitted) and results in an optimized microbial
ecological function in the chicken ceca. In a natural setting,
where chicks are brooded under the wings of their mothers,
early-life exposure may also occur via coprophagy (62). Optimal
cecal microbial community establishment and succession (e.g.,
the promotion of specific FMT-delivered lineages serving as
cecal hydrogen sinks) may result in enhanced NSP digestion,
fermentation, and SCFA production that can modulate the avian
host phenotype.
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FIGURE 6 | Phylogenomic tree depicting the closest phylogenetic relatives of MAG Arch1. Side panel depicts percent completion prediction for various metabolism

modules associated with fermentative and methanogenic activity. The schematics to the right depict the animal host source of each genome in the tree.

Ecology of Red Jungle Fowl: Implications
for Modern Poultry Rearing
Further supporting our “ancestral link” hypothesis, field reports
of wild Red Jungle Fowl (RJF, Gallus gallus) from the
Kanchanaburi province in Thailand, one of the earliest sites
of RJF domestication, make the following observations: i) RJF
are exclusively observed in or around bamboo forests, ii) newly
hatched, downy-coated chicks eat termites as their primary food
source, and iii) adult bird diets are omnivorous, but primarily
feed on plant materials (various fruits and bamboo, rice, bean,
and grass seeds) and secondarily, insects (including termites,
ants, beetles) (63). This report ecologically contextualizes the
main findings of our study as follows: Newly hatched chicks
in the ancestral environment are continuously exposed to
methanogenic assemblies, specifically, Methanobrevibacter spp.,
and their syntrophic partners (e.g., Desulfovibrio spp.) that
abound in the hindguts of bamboo infesting termites (64). This
early-life exposure to methanogenic communities, through chick
termite foraging, likely primes the cecal microbiota for efficient
hydrogen cycling and optimal fermentation of plant-sourced
materials, the primary diet of adult birds.

The ecology of RJF, the wild stock of all domesticated
chickens (Gallus gallus domesticus), reinterpreted through
our phenotype-linked metagenomic results provides important
insights regarding the effects of direct-fed microbials on poultry.

In nature, optimization of the adult GI microbiome for a
plant-derived carbohydrate rich diet begins with continuous
exposure to complex methanogenic communities, playing a
role in hydrogen cycling and fermentative output, through the
termite rich diet of young chicks. Our early-life FMT exposure
experiment mimics the ecological microbial exposure pattern
of wild RJF and suggests that minimal early-life modification
in commercial chicken rearing may be able to optimize
cecal fermentative activities, resulting in the enhancement
of agriculturally desirable bird phenotypes. Such approaches
could provide valuable alternatives to the use of antibiotics as
growth promoters.

CONCLUSIONS

Methanogens and sulfur-cycling Proteobacteria were enriched

in the cecal communities of performance-enhanced FMT

inoculated birds and likely function as hydrogen sinks that serve

the collective thermodynamic needs of primary fermenters. We
propose that enhanced potential for hydrogen disposal in the
cecum, elicited by FMT transplantation, increases fermentation
efficiency. This provides a direct advantage to the bird by
allowing the catabolic use of otherwise indigestible fibers and
provides a plausible microbial mechanism through which FMT
administration results in enhanced, and agriculturally desirable,
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bird phenotypes. These results may suggest novel categories
of pre- and probiotics that can enhance antibiotic-free poultry
production. Our work explicitly considers the GI microbiome
as a basic element of the production system of food animals
and provides a new evidence-based paradigm in food animal
husbandry, grounded in eco-genomics, offering new frontiers for
sustainable agriculture.

MATERIALS AND METHODS

Experimental Design
The design of the inoculated group was a factorial design
crossing genetic line between donors and recipients of fecal
microbiome transplants (FMTs) administered once to newly
hatched chicks (see Supplementary Figure S2 for a graphical
summary). Genetic line for each bird (Arkansas Randombred)
was classified as High Relative Feed Index (HRFI) or Low
Relative Feed Index (LRFI), referring to low or high feed
efficiency, respectively [Note: low RFI means lower amount of
feed consumed than expected (i.e., higher efficiency) and high
RFI means higher amount of feed consumed than expected (i.e.,
lower efficiency)]. In total, there were 40 inoculated chicks (20
female, 20 male) and 63 uninoculated chicks (35 female, 28 male)
as controls. Of these, 34 birds were used for 16 S rRNA gene
surveys (15 uninoculated and 19 inoculated) of jejunum, ileum,
and cecum contents. Thirty of the same birds (16 uninoculated
and 14 inoculated) were used for metagenomic sequencing of
cecal contents only. See Supplementary File 1 for full details.

To prepare the inoculum, GI tracts from donors were collected
via necropsy at 6 weeks of age. Immediately following necropsy,
intact ceca were transferred to an anaerobic chamber where
cecal contents and mucosal scrapings of the cecal walls were
collected. Cecal inocula were slowly frozen to −20 deg C and
then stored at −80 deg C until use. Immediately prior to
inoculation, donor material was thawed and mixed in a 1:3
ratio (w:v) with sterile PBS and 0.2mL of this suspension was
administered once to day-of-hatch chicks via oral gavage with
a 1mL syringe and gavage needle, as previously described (17).
Following inoculation, chicks were reared in standard floor pens,
segregated by treatment group. Standard feed formulated by
the UGA feed mill was provided ad libitum with starter feed
(23.0% crude protein, 6.0% crude fat, 2.5% crude fiber, 1.0%
calcium, 0.48% available phosphorus; ca. 3,100 kcal/kg) for the
first 2 weeks, and subsequently switched to grower feed (21.0%,
crude protein, 6.5% crude fat, 2.4% crude fiber, 1.0% calcium,
0.45% available phosphorus; ca. 3,200 kcal/kg). At 6 weeks of
age, inoculated and control birds were humanely euthanized by
cervical dislocation after electrical stunning and the jejunum,
ileum, and ceca removed via necropsy.

Standard measures of bird performance were collected
through the experiment. These included weekly body weight
gain, feed consumption, and relative feed index (RFI).

DNA Extraction and Sequencing
Approximately 0.25mg of intestinal contents were used for DNA
extraction with the MoBio (Carlsbad, CA) Power Soil DNA
extraction kit following manufacturers recommendations. PCR

using the primers 519F (5
′

-CAGCMGCCGCGGTAATWC-3
′

)

and 926R (5
′

-CCGTCAATTCCTTTRAGGTT-3
′

) was
conducted as previously described (9, 65, 66) with a barcoding
scheme detailed elsewhere (67). Amplicons were normalized
with the Invitrogen SequalPrep kit (Carlsbad, CA) and sequenced
on the Illumina MiSeq using the 2× 250 bp v2 kit.

Sequence Quality, Trimming, and Assembly
Metagenomic and 16 S rRNA targeted paired-end Illumina
libraries were inspected for quality parameters and repetitive
sequences using the FastQC software package (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter
trimming and low-quality sequence removal was performed
using the tool Trimmomatic version 0.39 (68) using the
following parameters: -phred33, Illumina adapter removal,
min length:36, sliding window 4:15. A de novo metagenomic
co-assemblies for individual bird metagenomes, separate
inoculated and controls, and all metagenomes were performed
using merged forward and reversed adapter trimmed sequences
with metaSPAdes v.3.14.1 (69) and subsequently analyzed as
described below.

Metagenomic Assembled Genomes
Metagenomic assembled genomes (MAGs) were binned from
independent FMT inoculated and non-inoculated assemblies
using Metawrap (70) under default binning parameters. The
resulting MAGs were optimally consolidated using DASTool
(71) and visually inspected using Anvi’o v5 (72).Completeness
and redundancy of each of the final bins was assessed using
CheckM (73).

16S rRNA Gene Clustering, Taxonomic
Assignment, and Differential Enrichment
Testing
Operational Taxonomic Units were generated from high quality
16 S rRNA gene sequences using the Usearch pipeline (74) and
representative sequences were classified against SILVA release
138 (75). The following R packages, which include both negative
binomial and linear regression models, were used for exploring
experimentally-driven differential enrichment of microbial taxa:
DeSeq2 (rlog transformed per-sample shrinkage of fold-change)
(76), limma (TMM normalized and empirically Bayes smoothed
Limma-Voom analysis) (77), and ANCOM-BC (78).

Metagenomic Short Read Taxonomy, ORF
Calling, Annotation, and Gene-Targeted
Analyses
Taxonomic and functional analyses of unassembled
metagenomic reads were performed using the Kaiju pipeline
for taxonomy (79) against the NCBI non-redundant database.
Open reading frame (ORF) identification and, subsequently,
prokaryote predicted protein product annotations were
performed with Prodigal v2.6.1 (80) implemented in Prokka
(81). All ORFs were also aligned against theNCBI non-redundant
(nr) database (accessed in November 69) using BLASTp (82)
for closest homolog taxonomy and functional annotation
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supplementation. Targeted single gene homolog searches were
performed using BLASTp 2.2.30+ (E-value threshold = 1E−30,
min. identity = 50%) against predicted protein sequences
inferred from unbinned metagenomic contigs. Lastly, we
developed a python executable tool implementing libraries of
profile HiddenMarkovModels (pHMMs) representingmicrobial
catabolism genes called LithoGenie (https://github.com/Arkadiy-
Garber/LithoGenie) and used it to search for hydrogenase gene
homologs across metagenomes. Additional information on
LithoGenie development and implementation is found in the
Supplementary Materials and methods section. Taxonomic
assignment of predicted hydrogenases was done based on closest
hits to the NCBI nr protein database using BLASTp and standard
algorithm parameters. To assess coverage as a proxy for gene
abundance, quality-trimmed short metagenomic reads were
mapped to our de novo assembled genes using Bowtie2 (83).
Results were concatenated into read count tables for downstream
statistical analyses using the R package vegan (84) implemented
in phyloseq (85). Ordination visualization was performed as
Principal Coordinate Analysis (PCoA) on Bray-Curtis distances
for 16S rRNA genes frequencies and total ORFs independently.
Differences between inoculated and uninoculated groups
were formally tested using a Benjamini-Hochberg corrected
PERMANOVA analysis and a significance cut-off of p < 0.01.

Pathway Completion Estimates
Predicted protein products were annotated against the KEGG
database (86) via GhostKOALA (87) with the following
parameters: taxonomy group, Prokaryotes; database,
genus_prokaryotes; accessed February 2021. The output
annotation file was used for pathway completion assessment
and visualization using KEGG-decoder.py (88). Paired Student’s
t-test was used for testing significant differences (p <0.05) in
mean completion estimates for all metabolic pathway categories.

Methanobrevibacter spp. Comparative
Genomic Analysis
The archaeal phylogenomic tree was generated using the
GToTree package (89). Briefly, our MAG and other related
public genomes classified as Methanobrevibacter spp. were ran
against a GToTree’s “Archaea” HMM collection of domain-
specific single copy genes resulting in a Muscle (90) concatenated
protein alignment subsequently trimmed with TrimAl (91).
FastTree2 (92) was used for tree construction and visualizations
were performed on FigTree (https://github.com/rambaut/
figtree). IS transposase family sequences were identified
as previously described for metagenomic annotation and
pseudogene detection was performed using pseudofinder (93).
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