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Abstract

Entamoeba histolytica is an obligate protozoan parasite of humans, and amebiasis, an
infectious disease which targets the intestine and/or liver, is the second most common
cause of human death due to a protozoan after malaria. Although amebiasis is usually
asymptomatic, E. histolytica has potent pathogenic potential. During host infection, the par-
asite is exposed to reactive oxygen species that are produced and released by cells of the
innate immune system at the site of infection. The ability of the parasite to survive oxidative
stress (OS) is essential for a successful invasion of the host. Although the effects of OS on
the regulation of gene expression in E. histolytica and the characterization of some proteins
whose function in the parasite's defense against OS have been previously studied, our
knowledge of oxidized proteins in E. histolytica is lacking. In order to fill this knowledge gap,
we performed a large-scale identification and quantification of the oxidized proteins in oxida-
tively stressed E. histolytica trophozoites using resin-assisted capture coupled to mass
spectrometry. We detected 154 oxidized proteins (OXs) and the functions of some of these
proteins were associated with antioxidant activity, maintaining the parasite's cytoskeleton,
translation, catalysis, and transport. We also found that oxidation of the Gal/GalNAc impairs
its function and contributes to the inhibition of E. histolytica adherence to host cells. We also
provide evidence that arginase, an enzyme which converts L-arginine into L-ornithine and
urea, is involved in the protection of the parasite against OS. Collectively, these results
emphasize the importance of OS as a critical regulator of E. histolytica's functions and indi-
cate a new role for arginase in E. histolytica's resistance to OS.

Author Summary

Reactive oxygen species are the most studied of environmental stresses generated by the
host immune defense against pathogens. Although most of the studies that have
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occur at the protein level, only a few studies have investigated the oxidation status of these
proteins. Infection with Entamoeba histolytica is known as amebiasis. This condition
occurs worldwide, but is most associated with crowded living conditions and poor sanita-
tion. The parasite is exposed inside the host to oxidative stress generated by cells of the
host immune system. The nature of oxidized proteins in oxidatively stressed E. histolytica
has never been studied. In this report, the authors present their quantitative results of a
proteome-wide analysis of oxidized proteins in the oxidatively stressed parasite. They
identified crucial redox-regulated proteins that are linked to the virulence of the parasite,
such as the Gal/GalNAc lectin. They also discovered that arginase, a protein involved in
ornithine synthesis, is also involved in the parasite's resistance to oxidative stress.

Introduction

Amebiasis is a parasitic infection of the intestines and is mainly caused by fecal contamination
[1]. Although 90% of infected individuals are asymptomatic, amebic dysentery affects 50 mil-
lion people in India, Southeast Asia, Africa, and Latin America and amebiasis is the cause of at
least 100,000 deaths each year [2, 3]. Following excystation within the small intestinal lumen,
trophozoites colonize the large intestine and they usually reside in the colon as a non-patho-
genic commensal in most infected individuals. Due to as yet unidentified causes, these tropho-
zoites can cause amebic dysentery, become virulent and invasive, and migrate to the liver, via
the portal veins, where they cause hepatocellular damage.

Following host invasion, invading E. histolytica trophozoites are challenged by oxidative
stress (OS) and nitrosative stress (NS), which originate from fluctuations in ambient oxygen
tension in the intestinal lumen and the generation of reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS) by cells of the immune system. Once formed, these reactive species
can oxidatively damage proteins and change their structural conformation and functional
activity [4], [5], [6]. The parasite's complex response to OS involves modulation of a large num-
ber of genes which encode proteins that are associated with signaling/regulatory and repair/
metabolic pathways and proteins whose exact functions are still unknown [7]. It has been
recently reported that the expression of these genes is regulated by a recently identified tran-
scription factor that binds to a specific promoter motif of hydrogen peroxide (H,0,)-respon-
sive genes [8]. It has also been reported that those genes in E. histolytica which confer
resistance to OS also contribute to its virulence [9]. Since antioxidant enzymes, such as catalase,
glutathione reductase, and y-glutamyl transpeptidase, are missing from E. histolytica's enzyme
resource [10], one of the functions of proteins, such as the 29-kDa peroxiredoxin [11] and the
iron-containing peroxide dismutase [12], is to protect the parasite against OS. Since OS glycol-
ysis is inhibited and metabolic flux is redirected towards glycerol production in oxidatively
stressed E. histolytica trophozoites, these findings suggest that the glycerol synthesis pathway is
a component of the parasite's metabolic antioxidative defense system [13]. Despite these infor-
mative data on the parasite's response to OS, our knowledge on the identity of oxidized pro-
teins in E. histolytica is still incomplete. Here, we report the results of a study whose aim was to
identify and to determine the biological relevance of oxidized proteins (OX) in E. histolytica
using resin-assisted capture (RAC) coupled with mass spectrometry (MS) [14].

The results of this analysis revealed 154 OXs which include antioxidant proteins, cytoskele-
ton proteins, protein involved in translation, and transport proteins. We also found that oxida-
tion of cysteine residues in the carbohydrate recognition domain (CRD) of the 260-kD
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heterodimer and multifunctional virulence factor of E.histolytica, Gal/GalNAc lectin (gl),
impairs its ability to adhere to host cells. We also found that arginase, the enzyme which con-
verts L-arginine into L-ornithine and urea, confers resistance to OS in E.histolytica.

Methods
Microorganisms

E. histolytica trophozoites strain HM-1:IMSS were grown under axenic conditions in Dia-
mond's TYI S-33 medium at 37°C. Trophozoites in the exponential phase of growth were used
in all experiments.

DNA constructs

For the construction of the pJST4-arginase expression vector, arginase was amplified by poly-
merase chain reaction (PCR) using the primers, Arginase Kpnl and Arginase BglII (table 1).
The PCR product was subcloned using the pPGEM-T Easy vector system (Promega) and then
digested with the restriction enzymes Kpnl and Bgl II. The digested DNA insert was cloned
into the E. histolytica expression vector pJST4 which had been previously linearized with KpnI
and Bgl II. The pJST4 expression vector (pcontrol) contains a tandem affinity purification tag
for use in protein purification and identification [15]. This CHH-tag contains the calmodulin
binding protein, hemagglutinin (HA), and histidine (His) residues and its expression is driven
by an actin promoter. This vector was used as control in our experiment in order to exclude
the possibility that the CHH tag is responsible for the phenotypes of the arginase-overexpres-
sing strain. A previously described protocol was used to transfect E. histolytica trophozoites
[16].

Viability assay

E. histolytica trophozoites (1x10°) were exposed to 1 mM, 2.5 mM, 5 mM, 7 mM, or 10 mM
H,O, for 60 minutes at 37°C. At the end of the exposure, a 10-pl aliquot of each culture was
stained with eosin (0.1% final concentration), and the number of living trophozoites was
counted in a counting chamber under a light microscope. Resistance of the control, trophozo-
ites overexpressing arginase and pcontrol trophozoites to OS was measured by calculating the
median lethal dose (LDsg) of hydrogen peroxide (H,O,) by linear regression analysis using
Microsoft Excel. The assay was repeated three times with two replicates in each assay.

Determination of intracellular ROS levels

Control and oxidatively stressed E. histolytica trophozoites were incubated with 0.4 mM (final
concentration) 2,7-dichlorofluorescein diacetate (H2DCFDA; Sigma) for 15 minutes in the
dark. The cells were washed twice in phosphate buffered saline (PBS; pH 7.4) and immediately
examined under a Zeiss Axio Scope.A1 fluorescence microscope. Intracellular ROS levels were
determined by measuring fluorescence intensity using the Image] software [17].

Table 1. Oligonucleotides used in this study.

Primer Name
Arginase Kpn1
Arginase Bgl11

Sequence Direction Restriction site-underline
GGTACCATGCAATTTGAAAAAGTTA Sense Kpnl
AGATCTACACTTTATACCAAAAAGTG Antisense Bglll

doi:10.1371/journal.pntd.0004340.t001
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Detection of OXs by OX-RAC

E. histolytica trophozoites (5x10”) were incubated with 2.5 mM H,0, for 60 minutes at 37°C.
At the end of the incubation, a total protein extract was prepared by lysing the oxidatively
stressed trophozoites with 1% Igepal (Sigma) in PBS. OXs in the extract were detected by
OX-RAC using a previously described protocol [14] with minor modifications. Briefly, the
total protein extract (9 mg) was incubated in mixture of 50 mM N-ethylmaleimide and 2.5%
sodium dodecyl sulfate (SDS) for one hour at 50°C with frequent vortexing in order to block
the free thiols. The proteins were then precipitated with three volumes of cold 100% acetone
and incubated at -20°C for 20 minutes. The mixture was centrifuged at 1820g for five minutes,
and the pellet was then washed three times with 70% acetone (3 volumes) and then resus-
pended in HENS buffer which contains 100 mM HEPES, 1 mM EDTA, 0.1 mM neocuproine,
and 1% SDS). The resuspended samples were added to 80 ul thiopropyl sepharose 6B resin (GE
Healthcare) in the presence or absence of dithiothreitol (DTT, final concentration 10 mM).
DTT is a reducing agent, which enables the oxidized thiol group of cysteine to bind to the resin
by forming disulfide bonds between the reduced thiol groups of the proteins and the thiol
group of the resin. The samples were rotated in the dark at room temperature for 1-2 hours,
and then overnight at 4°C. The resin was washed four times with 1 ml HENS buffer, and then
twice with 1 ml HENS/10 buffer (1:10 HENS buffer). Captured proteins were eluted with 30 ul
HENS/10 buffer which contained 100 mM 2-mercaptoethanol for 20 minutes at room temper-
ature, and the proteins in each eluent were resolved on a 12.5% SDS-PAGE gel. Each gel was
then stained with silver (Pierce Silver Stain) and each gel slice was independently analyzed by
MS.

In-gel proteolysis for MS-based protein identification

The proteins in each gel slice were reduced with 2.8 mM DTT (60°C for 30 minutes), modified
with 8.8 mM iodoacetamide in 100mM ammonium bicarbonate in the dark at room tempera-
ture for 30 minutes, and digested overnight in 10% acetonitrile and 10 mM ammonium bicar-
bonate with modified trypsin (Promega-Biological Industries, Israel) at 37°C. The resulting
peptides were resolved by reverse-phase chromatography on 0.075 x 200-mm fused silica
capillaries (J&W Scientific, Agilent Technologies, Israel) packed with Reprosil reversed phase
material (Dr. Maisch GmbH, Germany). The peptides were eluted at flow rates of 0.25 pl/min
on linear gradients of 7-40% acetonitrile in 0.1% formic acid for 95 minutes followed by eight
minutes at 95% acetonitrile in 0.1% formic acid. MS was done by an ion-trap mass spectrome-
ter (Orbitrap, Thermo) in a positive mode using a repetitively full MS scan followed by colli-
sion-induced dissociation (CID) of the seven most dominant ions selected from the first MS
scan. The MS data was analyzed using the Proteome Discoverer software version 1.3 which
searches the Ameba section of the NCBI-NR database and the decoy databases (in order to
determine the false discovery rate (FDR)) using the Sequest and the Mascot search engines.

Classification of OXs according to their protein class

The OXs were classified according to their protein class using the PANTHER software (Protein
ANalysis THrough Evolutionary Relationships) Classification System (http://www.pantherdb.
org/) [18].

Adhesion assay

The adhesion of oxidatively stressed trophozoites to HeLa cell monolayers was measured using
a previously described protocol [19]. Briefly, trophozoites (2x10°) were exposed to 2.5 mM
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H,O, for 20 minutes at 37°C, washed twice with Dulbecco's modified Eagle's medium
(DMEM) without serum, added to wells that contained fixed HeLa monolayers in 1 ml of
DMEM without serum, and incubated for 30 minutes at 37°C. The number of adherent tropho-
zoites was determined by counting the number of trophozoites that remained attached to the
HeLa cells after gentle decanting (twice) of the non-adherent trophozoites with warm (37°C)
DMEM under a light microscope.

Determination of E. histolytica motility

The Costar Transwell System (8-um pore size polycarbonate membrane, 6.5-mm diameter,
Corning Inc, Corning, NY, USA) was used to determine trophozoite motility [20]. Briefly,
24-well culture plate was filled with serum-free Diamond’s TYI-S-33 medium (500-pl per
well). A transwell insert was then inserted into each well. Control and oxidatively stressed (2.5
mM and 1 mM for one hour at 37°C) trophozoites were washed three times in serum-free Dia-
mond’s TYI-S-33 medium, and then suspended in serum-free Diamond’s TYI-S-33 medium.
A 500-pl aliquot of the suspension (26x10° trophozoites/ml) was then loaded into the transwell
inserts. The 24-well culture plate containing the transwell inserts was then placed in anaerobic
bags (Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan), and incubated for three hours
at 37°C. At the end of the incubation, the inserts and culture medium were removed from the
24-well culture plate, and trophozoite migration was determined by counting the number of
trophozoites that were attached to the bottom of the wells of the 24-well culture plate.

Purification of Gal/GalNAc lectin by affinity chromatography
Gal/GalNAc lectin was purified using a previously described protocol [21]

Oxidation of purified Gal/GalNAc lectin

Aliquots (5 pg) of purified Gal/GalNAc lectin were incubated with either 0.1 mM or 2.5 mM
H,O, for ten minutes at 37°C. The Gal/GalNAc lectin was then incubated with 10 pl D-galac-
tose-coated agarose beads (Thermo Scientific-Pierce) overnight at 4°C. At the end of the incu-
bation, the beads were washed in 20 volumes of PBS and then boiled in Laemmli sample buffer.
The amount of Gal/GalNAc lectin that was released from the beads was determined using
SDS-PAGE gel electrophoresis and silver staining (Pierce).

Detection of oxidized Gal/GalNac lectin

Aliquots (5 pg) of purified Gal/GalNac lectin [21] were treated with 1 mM H,0, for ten min-
utes at room temperature in order to introduce carbonyl groups into protein side chains. Using
the OxyBlot Protein Oxidation Detection Kit (Millipore, Israel) [22], the carbonyl groups are
derivatized with 2,4-dinitrophenylhydrazine (DNPH). The DNPH-treated Gal/GalNac lectin
was separated by SDS-PAGE, transferred onto a nitrocellulose membrane and then detected by
a specific antibody against the dinitrophenyl (DNP) moiety of the OXs. The nitrocellulose
membrane has been stripped and probed with a polyclonal Gal/GalNAc lectin antibody (a kind
gift from of N. Guillen, Pasteur Institute, Paris, France) to confirm that equal amounts of puri-
fied Gal/GalNac lectin were loaded on the gel.

Determination of protein synthesis by surface sensing of translation
(SUNSET)

SUNSET was performed using a previously described protocol [23]. Briefly, trophozoites
(2x10°/ml) that were treated with 2.5 mM H,O, for 15 minutes at 37°C and untreated control
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trophozoites were incubated with 10 pg/ml puromycin (Sigma), a structural analog of tyro-
syltRNA, for 20 minutes. For pretreatment of the trophozoites with cycloheximide (Sigma), the
trophozoites were incubated with 100 ug/ml cycloheximide for five minutes before adding
puromycin. The trophozoites were lysed using 1% Igepal (Sigma) in PBS. Puromycin was
detected by immunoblotting using a monoclonal puromycin antibody (12D10 clone, Milli-
pore). Protein quantification was measured by band intensity (densitometry) using Image]
software [17].

Determination of arginase activity

Arginase activity in E. histolytica crude lysate was spectrophotometrically measured by quanti-
tying the amount of urea that is generated when L-arginine is hydrolyzed by arginase using a
previously described protocol [24]. Briefly, 10* trophozoites were dissolved in 100 yl of 0.1%
Triton X-100 (Sigma) in the presence of 50 uM L-3-carboxy-2,3-trans-epoxypropionyl-leucyla-
mido(4-guanidino)-butane (E-64) (Sigma), a cysteine protease inhibitor. The lysate (50 pl) was
mixed with 50 pl of Tris-HCI (50 pM; pH 7.5) which contained 10 mM MnCl,, and then acti-
vated by heating for ten minutes at 55°C. The hydrolysis of L-arginine by arginase was initiated
by adding 25 pl L-arginine (0.5 M; pH 9.7) to a 25 pl aliquot of activated lysate. After a 30-min-
utes incubation at 37°C, the reaction was stopped by adding 400 pl of an acid solution mixture
(H,SO4: H3PO4: H,O = 1: 3: 7). The urea concentration in the mixture was measured at 570
nm after adding o.-isonitrosopropiophenone (25 pl, 9% in absolute ethanol) to the mixture,
heating the mixture for 45 minutes at 100°C, and incubating the mixture in the dark for ten
minutes at room temperature.

HPLC analysis of amino acids in culture supernatants and intracellular
amino acids

The amino acid levels in culture supernatants were analyzed by high-performance liquid chro-
matography (HPLC) using a previously described protocol [24] in which the proteins in the
culture supernatant are first precipitated with methanol, and the amino acids are derivertized
using o-phthalaldehyde (OPA) in an alkaline medium. Briefly, 200 ul of culture supernatants
are added to an 800-pl mixture of methanol and internal standard (homocysteic acid). After
centrifugation, the samples are loaded into the HPLC autosampler, which converts the samples
to fluorescent derivatives (by mixing them with OPA) before their injection into the columns
(C-18). AJASCO FP 1520 fluorescence detector at an excitation wavelength of 360 nm with
emission detection at 455 nm was used to separate, detect, and quantify the fluorescent deriva-
tives. For quantification of the intracellular amino acids, trophozoites (10”) were lysed in 1 ml
of trichloroacetic acid (TCA) 10% for 30 minutes at 4°C, and centrifuged, and the pH of the
supernatants was adjusted to 12 using 10N NaOH. The amino acid concentration in the super-
natants was then measured by HPLC on two biological replicates.

"H-NMR spectroscopic analysis of putrescine in trophozoite lysates

The quantification of putrescine in the trophozoite lysates was performed using 'H- nuclear
magnetic resonance (NMR) spectroscopy as previously described [25, 26]. Two biological repli-
cates were used for each measure. Briefly, 400 pl H,O was used to dissolve the lysate and mixed
with 200 pl buffer solution containing the internal standard TSP (3-trimethylsilyl-[2,2,3,3-D,]-
1-propionic acid) (Sigma-Aldrich). All NMR spectra were obtained at 600.27 MHz at a temper-
ature of 310 K, using a Bruker Avance-II 600 NMR spectrometer operated by TOPSPIN 3.2
software (Bruker Biospin GmbH). Spectral referencing was done relative to the TSP signal
(final concentration 0.33mM). Data analysis (identification) was done using AMIX v3.9.14
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software (Bruker Biospin GmbH) as previously described [25, 26]. The quantification was per-
formed using the software package CHENOMX (version 8.1).

Results

Characterization of oxidized proteins in oxidatively stressed E.
histolytica trophozoites

When E. histolytica trophozoites strain HM-1:IMSS were incubated with 1 mM, 2.5 mM, 5
mM, 7 mM, or 10 mM H,O, for 60 minutes at 37°C, the calculated LD50 of H,O, is 5.5 + 0.1
mM (Table 2) and the intracellular ROS levels in living trophozoites are high (Fig 1A). Based
on these results, we selected 2.5 mM as the H,O, concentration to oxidatively stress trophozo-
ites in our various assays because this concentration is not lethal (85% of the trophozoites are
viable; S1 Fig), the intracellular ROS levels are relatively low (Fig 1A), and OXs are formed
(this work). We then used OX-RAC coupled to label-free quantification LC-MS for the detec-
tion and quantification of OXs in the lysate of oxidatively stressed trophozoites (Fig 1B). A pro-
tein was considered to be oxidized when its relative amount in the DTT-treated lysates was at
least two times greater than that in the untreated lysates (Fig 1C). We identified 154 proteins
that met this condition (S1-S3 Tables). These 154 proteins were then classified (Fig 1D) using
PANTHER sequence classification tool [27, 28]. The protein classes were phosphatases (exem-
plified by phosphoinositide phosphatase (EHI_141860); transporters (exemplified by plasma
membrane calcium-transporting ATPase, EHI_030830); membrane traffic proteins (exempli-
fied by putative vacuolar sorting protein, EHI_025270); chaperones (exemplified by Hsc70-in-
teracting protein, EHI_158050); hydrolases (exemplified by arginase, EHI_152330);
oxidoreductases (exemplified by superoxide dismutase, EHI_159160); enzyme modulators
(exemplified by Ras family GTPase, EHI_058090); lyases (exemplified by tRNA pseudouridine
synthase, EHI_151650); transferases (exemplified by histone acetyltransferase, EHI_152010);
nucleic acid binding proteins (exemplified by 13 kDa ribonucleoprotein-associated protein,
EHI_104600); ligases (exemplified by ubiquitin-conjugating enzyme family protein,
EHI_070750); kinases (exemplified by galactokinase, putative, EHI_094100); isomerases
(exemplified by cysteine synthase A, EHI_024230); cytoskeletal proteins (exemplified by actin-
binding protein, cofilin/tropomyosin family, EHI_168340) and proteases (exemplified by
methionine aminopeptidase, EHI_126880). In order to evaluate the consistency of MS-based
identification of OXs, the purified heavy subunit of Gal/GalNac lectin (Hgl) was exposed to 1
mM H,O, for ten minutes and its oxidation was confirmed independently by using the Oxy-
Blot kit. The presence of carbonyl groups was detected using a specific antibody which recog-
nizes the DNP moiety in the purified lectin that has been exposed to H,0, and treated with

Table 2. LDsq of H,O; in E. histolytica trophozoites strain HM-1 IMSS, trophozoites overexpressing
arginase and pcontrol trophozoites.

Strain LDso of H202 (mMM)
E. histolytica trophozoites strain HM-1:IMSS 5.5+0.1
pcontrol trophozoites 5.1£0.1
arginase-overexpressing E. histolytica trophozoites 6.2+0.08

Data are expressed as the mean and standard error of mean of three independent experiments that were
performed in duplicate. The means of the different groups for three independent experiments were
compared using an unpaired Student’s t test. The LDso of HM-1 IMSS or pcontrol trophozoites was
significantly different (p<0.05) from that of the arginase-overexpressing trophozoites.

doi:10.1371/journal.pntd.0004340.t002
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Fig 1. Analysis of oxidized proteins in E. histolytica after resin-assisted capture. A. Detection of intracellular ROS level. Control and oxidatively
stressed trophozoites were incubated with 0.4 mM (final concentration) 2,7-dichlorofluorescein diacetate for 15 minutes in the dark and then examined by
fluorescence microscopy. The number in the top left side of each picture indicates the concentration of H,O.. The number in the bottom of each picture
indicates the mean fluorescence for 20 cells according to a measure performed by image J. B. Methodology of OX-RAC. The scheme has been adapted from
[14]. C. Silver staining of oxidized proteins. E. histolytica trophozoites strain HM-1:IMSS were treated with H,O, for 60 minutes at 37°C and a total protein
lysate was prepared by lysing the H,O-treated trophozoites with 1% Igepal (Sigma) in phosphate buffered saline. The oxidized proteins in the cell lysates
were subjected to resin-assisted capture (RAC) in the presence of 10 MM DTT (+DTT) or the absence of DTT (-DTT). D. Functional categories of all oxidized
proteins. Oxidized proteins in E. histolytica were classified according to the protein class they encode using PANTHER sequence classification tool.

doi:10.1371/journal.pntd.0004340.9001
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DNPH (Fig 2A). As expected, carbonyl groups were not detected in purified lectin that was not
exposed to H,0, and treated with DNPH.

According to the PANTHER statistical overrepresentation test which compares classifica-
tions of multiple clusters of lists to a reference list, very significant enrichment (fold
enrichment > 5 and P > 2.42x10°°) was found for proteins involved in the process of transla-
tion, such as the 60S ribosomal protein L9-like protein (EHI_193080) and the 13 kDa ribonu-
cleoprotein-associated protein (EHI_104600).
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Fig 2. H,0, inhibits the adhesion of E. histolytica to HeLa cells. A. Confirmation of OX-RAC data about the oxidation of the Hgl by using the OxyBlot
protein oxidation detection kit. This figure displays a representative result from two independent experiments. B. E. histolytica trophozoites strain HM-1:IMSS
were grown in Diamond’s TYI-S-33 medium and exposed to H,O, for 20 minutes before their incubation with a fixed HeLa cell monolayer for 30 minutes at
37°C. Data are expressed as the mean * standard deviation of three independent experiments that were performed in triplicate. The adhesion of the HoO-
treated trophozoites was significantly different (p<0.05) from the control (100%) according to the results of an unpaired Student’s t-test in which statistical
significance was set at 5%. C. Repartition of the carbamidomethylated cysteine residues in the Hgl as an indication of their oxidation status. These residues
were mostly located in the cysteine-rich region (C-rich) in the carbohydrate recognition domain (CRD) and in the cysteine-tryptophan domain (CW) and were
absent in the cysteine-free domain (CF). D. Dose-dependent inhibition of Gal/GalNAc lectin binding to D-galactose-coated agarose beads by H,O,. Gal/
GalNAc lectin was purified by D-galactose affinity chromatography and incubated with different concentrations of H,O, for 10 minutes at 37°C. The binding to
galactose-coated agarose beads was determined by SDS-PAGE gel electrophoresis and silver staining. This figure displays a representative result from two
independent experiments.

doi:10.1371/journal.pntd.0004340.9002
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The results of a previous study showed that (a) gene expression of oxidatively stressed E. his-
tolytica trophozoites triggers a stress response in which 185 genes are upregulated and 102
genes are downregulated and (b) these genes are involved in signaling/regulatory processes,
metabolic/repair processes, energy metabolism, the stress response, and transport [7]. We
found that some of the OXs in the oxidatively stressed trophozoites are involved in the stress
response, transport, and metabolism. Of all the proteins that were found to be oxidized and all
the genes whose expression had changed in the oxidatively stressed trophozoites, EHI 179080
(sulfate adenylyltransferase) was the only common gene.

Cysteine residues are the predominant targets of oxidation or S-nitrosylation in redox-sen-
sitive proteins. We have recently identified 142 S-nitrosylated (SNO)-proteins in E. histolytica
after its exposure to NO [21]. 21 proteins were shared in our OX-RAC and SNO-RAC analysis
(Table 3). The shared proteins include rubrerythrin, protein disulfide isomerase and iron-con-
taining superoxide dismutase which have been associated with resistance to OS [12, 27-29]
and the Gal/GalNac lectin, a cell surface protein which is involved in binding of E. histolytica
troohozoites to host cells [17,18].

Regulation of the Gal/GalNAc Lectin by OS

In order to gain information on the consequence of oxidation on the activity of some of the
proteins that were identified in the OX-RAC analysis, we decided to focus our analysis on the
function of the oxidized Gal/GalNac lectin. The Gal/GalNac lectin consists of Hgl (170 kDa)
and a light subunit (Lgl) (35/ 31 kDa). Hgl mediates E. histolytica adherence, and indirect evi-
dence suggests that Lgl plays a role in E. histolytica virulence [13,19]. The occurrence of Hgl
among the OXs (see S2 Table) and SNO proteins ([21] and Table 3) suggests that OS and NS
affect the parasite's adherence. In order to test this hypothesis, we compared the ability of

Table 3. Common proteins in the OX-RAC analysis (this study) and SNO-RAC analysis [21].

Accession Description
183232225 Plasma membrane calcium-transporting ATPase
67469645 Hsc70-interacting protein
67481145 Rab family GTPase
67474574 hypothetical protein
67462443 NA modification enzymes, MiaB-family
67472683 rubrerythrin
67469707 Rho family GTPase
67477041 Ras family GTPase
67465045 60S ribosomal protein L18a
5689218 serine acetyltransferase
67482289 peptidyl-prolyl cis-trans isomerase
67465747 60S ribosomal protein L7
67481543 40S ribosomal protein S13
183234048 alcohol dehydrogenase
67465285 Iron-containing superoxide dismutase
67464751 ARP2/3 complex 20 kDa subunit
67465767 Galactokinase
67481663 Hal
183232524 adenylyl cyclase-associated protein
67478039 hypothetical protein
52421800 protein disulfide isomerase

doi:10.1371/journal.pntd.0004340.t003
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untreated and oxidatively stressed trophozoites to adhere to HeLa cells [13]. We found that the
binding of the oxidatively stressed trophozoites to the HeLa cell monolayer was significantly
less than that of the untreated trophozoites (65% and 85%; Fig 2B). Previous research results
show that the cysteine-rich region (CRR) of the Hgl and the CRD are important for the binding
activity of the lectin [19, 20]. Our MS analysis of OXs indicates that many carbamidomethy-
lated cysteine residues, that possibly represent oxidized cysteines, are located in the CRR and in
the CRD of Hgl (Fig 2C). When we investigated the binding ability of oxidized Gal/GalNAc
lectin, we observed that H,O, prevents the binding of the Gal/GalNAc lectin to the galactose
beads (Fig 2D).

Effect of OS on E. histolytica motility

Motility is important for E. histolytica survival and pathogenicity, and requires a dynamic actin
cytoskeleton [30]. The presence of cytoskeleton-associated proteins, such as the ARP2/complex
20kDa subunit, among the OXs (S2 Table) and the SNO- proteins ([21] and Table 3) suggests
that the parasite's motility is redox-regulated. We tested this hypothesis by comparing the
migration of control and oxidatively stressed trophozoites: the migration of the oxidatively
stressed trophozoites was significantly less than that of the control trophozoites (Fig 3).

Effect of OS on protein synthesis

Inhibition of translation is a typical response of cells exposed to stress conditions [31, 32],
and such inhibition may avoid constant gene expression during error-prone environments.
We recently reported that NS inhibits protein synthesis in E. histolytica [33]. The presence of
the 60S ribosomal protein L7, the 60S ribosomal protein L18a and the 40S ribosomal protein
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Fig 3. Effect of H,O, on E. histolytica motility. The motility of control and oxidatively stressed E. histolytica
trophozoites was investigated using a transwell assay (see material and methods for details). The motility of
control trophozoites that were not exposed to H,O, was set at 100%. Data are expressed as the

mean * standard deviation of three independent experiments that were repeated twice. The motility of the
H.O.-treated trophozoites was significantly different (p<0.05) from that of the controls according to the results
of an unpaired Student’s t-test in which statistical significance was set at 5%.

doi:10.1371/journal.pntd.0004340.9003
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S13 among the OXs (S2 Table) and SNO proteins ([21] and Table 3) suggest that oxidation is
similar to S-nitrosylation [21], in that it regulates the translation of proteins in the parasite. In
order to test this hypothesis, we used SUnSET [23][33, 34] to determine protein synthesis.
We found that protein synthesis is strongly inhibited in oxidatively stressed trophozoites and
that the level of inhibition is comparable to that found in cyclohexamide-treated trophozoites
(Fig 4) [35].

Overexpression of arginase confers resistance to OS

We previously reported that the enzymatic conversion of L-arginine to L-ornithine is an signif-
icant source of L-ornithine for E. histolytica and that arginase activity is essential for the resis-
tance of the parasite to NS [24]. The presence of L-arginase among the OXs raises questions
about the regulation of its activity by OS and its involvement in the resistance of the parasite to
OS. In order to obtain information about the effect of OS on arginase activity, we measured
arginase activity in control and oxidatively stressed trophozoites using a previously described
assay [24]. We found that arginase activity is markedly inhibited (90% inhibition) in the oxida-
tively stressed trophozoites (Fig 5). In order to establish whether arginase gene expression is
involved in the resistance of the parasite to OS, we decided to upregulate its expression (Fig 5).
We detected modest arginase activity in arginase-overexpressing trophozoites and no arginase
activity in control trophozoites that were exposed to 2.5 mM H,0, for 15 minutes (Fig 5). We
found that the arginase-overexpressing trophozoites are more resistant to OS (LDs5, 6.240.08
mM) than the control trophozoites (ICsy LDsg 5.1+0.1 mM) (table 2). We also found that the
intracellular arginine concentration in the arginase-overexpressing trophozoites (53 + 5 uM)
was significantly lower than that in the control trophozoites (13619 pM). No significant differ-
ence in the intracellular ornithine concentration in the arginase-overexpressing trophozoites
(616+7 uM) and the control trophozoites (577+15 uM) was detected. In contrast, we found
that the intracellular concentration of putrescine in the arginase-overexpressing trophozoites
(293+20 nmol/mg protein) was significantly higher than that of the control trophozoites (123
+3 nmol/mg protein).

1 2 3 4
175 kDa-

58 kDa- -
_\

Fig 4. Effect of H,O, on E. histolytica protein synthesis measured using puromycin-labeled proteins.
Lane 1: Trophozoites were treated with 10 ug/ml puromycin (lane 1), not treated with puromycin (lane 2),
treated with 2.5 mM H,0O, for 15 minutes and then labeled with 10 pg/ml puromycin for 20 minutes (lane 3)
and treated with cycloheximide (100 pg/ml) before puromycin labeling (lane 4). The extracts were separated
by denaturing electrophoresis and analyzed by immunoblotting with a monoclonal puromycin antibody 12D10
clone. An actin immunoblot is shown as the loading control.

doi:10.1371/journal.pntd.0004340.9004
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Fig 5. Overexpression of arginase confers resistance to OS. Arginase activity was measured in crude
lysates that were prepared from control and arginase-overexpressing E. histolytica trophozoites exposed or
not to OS. Data are expressed as the mean + standard deviation of three independent experiments that were
repeated twice. The arginase activity of the arginase-overexpressing trophozoites was significantly different
(p<0.05) from the control (100%) according to the results of an unpaired Student’s t-test. The arginase activity
of the oxidatively stressed arginase-overexpressing trophozoites was significantly different (p<0.05) from the
oxidatively stressed control according to the results of an unpaired Student’s t-test. Arginase activity in the
control trophozoites was 120 pymol urea/min/mg proteins.

doi:10.1371/journal.pntd.0004340.9005

Discussion

The current understanding of the antiamebic effect of OS [36] has greatly beneficiated from
previous omics studies [13] [7] on the response of E. histolytica to OS. However, these studies
did not address the nature of OXs in oxidatively stressed E. histolytica trophozoites. We
decided to use OX-RAC coupled to MS [14] to generate new data about OXs in E. histolytica.
Some of the proteins that we identified in our OX-RAC analysis of OXs are of particular inter-
est because (i) they have an important function in the parasite's physiology and/or virulence
and (ii) their activity is regulated by OS in other organisms.

The first notable OX that we identified in our OX-RAC analysis is the cysteine-rich (C-rich)
region (amino acids 356-1143) and a CRD (amino acids 895-998) of Hgl [20]. We recently
showed that S-nitrosylation of cysteine residues in the CRD inhibits the galactose binding
activity of the Gal/GalNAc lectin and contributes to the reduced binding of NO-treated tro-
phozoites to their target cells [21]. In this study, we found that carbamidomethylated cysteine
residues are also located in the CRR and the CRD of the lectin. This result suggests that oxida-
tion of these cysteines is responsible for the loss of galactose-binding activity of the Gal/Gal-
NAc lectin.

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004340 January 6, 2016 13/21
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We found that cytoskeletal proteins are oxidized in oxidatively stressed trophozoites. For its
invasion into the host's tissues, E. histolytica relies on its dynamic actin cytoskeleton [37], [38].
Oxidation of the actin cytoskeleton can modulate its cellular functions in mammalian cells [39]
[40] [41] and the results of proteomics studies in human peripheral blood mononuclear cells
have previously identified actin as an oxidation target [42]. Actin oxidation inhibits its poly-
merization [43] [44] and leads to cytoskeletal rearrangements [45]. According to previous
reports, the cysteines in actin are some of the most susceptible targets of oxidation [45] and
their oxidative modification is the likely cause of cytoskeletal rearrangements in oxidatively
stressed mammalian cells [46] [47] [48]. Actin is a highly conserved protein among species
[49]. The actin of rats and E. histolytica share a number of oxidized amino acid residues
(Metyq, Met,;) which are located in actin—actin contact regions [50] suggesting that actin oxi-
dation is part of the process that results in the inhibition of the transwell migration that we
observed in the oxidatively stressed trophozoites.

We detected strong enrichment of OXs which are components of the parasite's translational
machinery, such as ribosomal proteins and elongation factors. This finding is in agreement
with the results of a recent study in yeast cells, in which it was reported increases in ribosomal
proteins and elongation factors due to oxidative thiol modifications following a short-term
exposure to H,O, [51]. At first glance, this finding is also in agreement with the inhibition of
protein synthesis in oxidatively stressed E. histolytica trophozoites (this work) and mammalian
cells [52]. However, a recent report suggests that the oxidation of components of the transla-
tional machinery is not the direct cause of the inhibition of protein synthesis, but rather a
global, enzymatic downregulation of almost all tRNA species in OS [53]. It will be interesting
to determine whether the same enzymatic downregulation of tRNA species also occurs in oxi-
datively stressed E.histolytica.

An additional group of OXs which we identified are the oxidoreductases, which includes the
iron-containing superoxide dismutase. OS induces the expression of this protein [12] and the
protein can form adducts with metronidazole metabolites [54]. In E.coli, iron-containing
superoxide dismutase is inactivated by H,O, via a reaction of H,O, with the iron at the active
site that generates a potent oxidant which attacks tryptophan residues [55]. It has been recently
showed for Trypanosoma superoxide dismutase (Fe-SODB) that Cys(83) in Fe-SODB acts as
an electron donor that repairs the tyrosyl radical (Tyr35-Os) via intramolecular electron trans-
fer in order to prevent inactivation of Fe-SODB by peroxynitrite, which is produced by immu-
nostimulated macrophages [56]. Interestingly, this Cys(83) is conserved in E. histolytica's iron-
containing superoxide dismutase and Cys(83) was detected by MS as a carbamidomethylated
cysteine residue which strongly suggest that it has been oxidized. Based on this data, it is tempt-
ing to speculate that Cys(83) in E. histolytica's iron-containing superoxide dismutase is crucial
for protecting the protein against inactivation by H,O,,

The phosphatases are another group of OXs which we identified in our OX- RAC analysis.
This group includes the protein-tyrosine phosphatases (PTP). Two PTPs have been cloned
from E.histolytica, EnPTPA and EhPTPB. EhPTPA but not EhPTB is strongly up-regulated in
trophozoites that have been recovered from amebic liver abscesses suggesting that EhnPTPA is
involved in the parasite’s virulence. [57].

The regulation of phosphatase function by OS is well documented [58-60]. PTPs are char-
acterized by an 11-residue signature motif (I/V)HCXAGXXR(S/T/G) in their active site [61].
The oxidation of the catalytic cysteine in this signature sequence leads to their reversible inacti-
vation. Remarkably, the cysteine at the catalytic site of E. histolytica's ENPTPA (IKGIKLNGP-
PITHCSAGLGRSGTFI) was detected as a carbamidomethylated cysteine residue by MS, and
this finding strongly suggests that it has been oxidized. Accordingly, we surmise that E.
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histolytica EnPTPA activity will be inhibited by OS and in the future, it will be interesting to
study the consequence of this inhibition on the parasite’s virulence.

Another group of OXs which we identified in our OX- RAC analysis are the transport pro-
teins and this group includes plasma membrane calcium-transporting ATPase. Ca®*-ATPases
regulate intracellular calcium levels in eukaryotic cells and are thus essential to the correct
functioning of the cell machinery. Calcium is also important in numerous cellular processes in
E.histolytica, such as development and virulence [62, 63]. Five putative Ca**-ATPases, which
could be important in the regulation of the cytoplasmic calcium concentration, have been
recently identified in E. histolytica [64]. Ca®*- ATPases are very sensitive to OS and undergo
functional and conformational changes when exposed to oxidants [65]. It is possible that the
same observation applies to the E. histolytica Ca2+-ATPases identified in our Ox-RAC analysis
of oxidized proteins.

Arginase (EHI_152330) is a hydrolase which we identified as being oxidized in our
OX-RAC analysis. Whereas arginase activity has been associated with resistance to NS in vari-
ous unicellular parasites including E. histolytica [24, 66, 67], its involvement in OS resistance
has never been investigated. In this study, we found that overexpression of arginase protects E.
histolytica against OS. The inhibitory effect of OS on arginase activity has also been found in
Helicobacter pillory [68]. Only three cysteine groups are present in Eharginase and their role in
the enzyme's activity is unknown. A clue about their role may be deduced from the results of a
previous study which found that arginase activity was inhibited in erythroleukemic K562 cells
that were exposed to aurothiomalate, a gold analog that can specifically react with a protein sul-
phydryl group to form a thiol-gold adduct [69]. Since this finding suggests that one or more of
the cysteine residues in arginase are essential for its activity, we surmise that Eharginase activity
is also dependent on the presence of cysteine residues.

A possible mechanism to explain why arginase overexpression protects E. histolytica against
OS involves the strong reduction of intracellular arginine that we detected in the arginase over-
expressing trophozoite. We presume that this reduction might be due to the conversion of argi-
nine into ornithine by the excess of arginase and from ornithine into putrescine by ornithine
decarboxylase (ODC) [70-72]. This presumption is supported by the higher intracellular con-
centration of putrescine found in the arginase-overexpressing trophozoites compared with that
of the control trophozoites. ODC is the only enzyme of polyamine biosynthetic pathway that
has been reported to exist in E.histolytica, [73, 74] [70]. Putrescine has been linked to OS resis-
tance and one of the proposed mechanism of OS resistance is based on its polycationic nature
that enables it to couple with nucleic acids and membrane phospholipids. Putrescine is also
free radical scavenger and an antioxidant [75]. Putrescine probably plays the same antioxidant
role in E. histolytica but in absence of an efficient inhibitor of E. histolytica's ODC (a-difluoro-
methylornithine, which is a potent irreversible ODC inhibitor in many organisms) is not effec-
tive against E. histolytica ODC [70]), this hypothesis cannot be directly tested.

We found a very weak overlap between the results of this OX-RAC analysis of OXs and the
results of an transcriptomics analysis of oxidatively stressed trophozoites [7]. This weak overlap
indicates that the parasite's response to OS occurs at two different levels. One level is protein
oxidation and the second level is a global change in gene expression which is characterized by
the expression of general stress response-related proteins, such as heat shock proteins (HSPs)
[8]. Another explanation is that oxidized proteins are not immediately expressed to replenish
the parasite's cellular needs but are recycled through reduction processes. Such recycling may
be done by EhPDI, an oxidoreductase that catalyzes oxidation, reduction and isomerization of
disulfide bonds in polypeptide substrates [76]. A third explanation is that proteins which are
encoded by OS response genes are resistant to inactivation by oxidation and for this reason
they were not detected by OX-RAC. This explanation appears not to apply to chaperone-like
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heat-shock proteins or ubiquitin-conjugating enzymes because their expression is upregulated
by OS [7] and oxidation inhibits their activity [77, 78].

We identified 21 common OX and SNO proteins (Table 3). With the exception of the Gal/
GalNac lectin (this work), the effect of oxidation or S-nitrosylation on their activity/function
has yet to be determined. This effect may be complex and often antagonist. For example, the
activity of mammalian protein disulfide isomerase [79] and prokaryotic iron-containing super-
oxide dismutase [80] is inhibited when they are S-nitrosylated. In contrast, S-nitrosylation of
superoxide dismutase and protein phosphatase 1B prevents their inactivation by OS [81, 82].
Thioredoxin must be S-nitrosylated for it to be an efficient antioxidant in plants [83]. It has
been suggested that OXs and SNO proteins are mediators between stress pathways that are
induced by OS and NS [84]. A good candidate for such mediator function is a member of the
Ras-family GTPase, one of the common OX and SNO proteins which we identified in this
study. Ras-family GTPases are involved in cell proliferation and their activity in mammalian is
regulated by both S-nitrosylation [85] and oxidation [86].

To conclude, we inform on the presence of many novel OXs in oxidatively stressed E. histo-
Iytica trophozoites. Of these oxidized proteins, we discovered that (a) protein oxidation can
regulate the activity of an important virulence factor of E.histolytica, namely Gal/GalNAc lec-
tin, and (b) a protective role for arginase against OS. OX-RAC detects, enriches, and identifies
OXsby detecting their oxidized cysteine residues, and it is possible that some of the OXs may
not have been detected because of oxidation of other amino acid residues, such as methionine
and tyrosine [87]. Finally, we envisage that these results will pave the way for further studies on
the activity of OXs in E. histolytica.
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