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Parkinson’s disease (PD) is characterized by massive degeneration of dopaminergic neu-
rons in the substantia nigra. Whereas the majority of PD cases are sporadic, about 5–10%
of cases are familial and associated with genetic factors. The loss of parkin or PINK1,
two such factors, leads to an early onset form of PD. Importantly, recent studies have
shown that parkin functions downstream of PINK1 in a common genetic pathway affect-
ing mitochondrial homeostasis. More precisely, parkin has been shown to mediate the
autophagy of damaged mitochondria (mitophagy) in a PINK1-dependent manner. However,
much of the work characterizing this pathway has been carried out in immortalized cell lines
overexpressing high levels of parkin. In contrast, whether or how endogenous parkin and
PINK1 contribute to mitophagy in neurons is much less clear. Here we review recent work
addressing the role of parkin/PINK1-dependent mitophagy in neurons. Clearly, it appears
that mitophagy pathways differ spatially and kinetically in neurons and immortalized cells,
and therefore might diverge in their ultimate outcome and function. While evidence sug-
gests that parkin can translocate to mitochondria in neurons, the function and mechanism
of mitophagy downstream of parkin recruitment in neurons remains to be clarified. More-
over, it is noteworthy that most work has focused on the downstream signaling events
in parkin/PINK1 mitophagy, whereas the upstream signaling pathways remain compara-
tively poorly characterized. Identifying the upstream signaling mechanisms that trigger
parkin/PINK1 mitophagy will help to explain the nature of the insults affecting mitochondr-
ial function in PD, and a better understanding of these pathways in neurons will be the key
in identifying new therapeutic targets in PD.
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INTRODUCTION
Over the past two decades, the identification of genes responsible
for complex neurodegenerative disorders has profoundly changed
our understanding of pathogenic mechanisms leading to neuronal
cell death. Whereas previous research focused on post-mortem
studies, analysis of the physiological function of causative genes
now allows us to focus directly on key cellular pathways involved
in pathology (1).

Among these pathways, dysregulation of mitochondrial qual-
ity control has emerged as a common theme for many neuro-
logical diseases and in particular for Parkinson’s disease (PD)
(2). Mitochondrial dysfunction has been a longstanding theme
in PD following observations that mitochondrial toxins such
as MPTP and rotenone could induce acute parkinsonism (3,
4) and that mitochondrial respiration was defective in the sub-
stantia nigra pars compacta (SNpc) of post-mortem PD patients
(5). Furthermore, the SNpc of patient brains has been shown
to have a higher occurrence of mtDNA deletions compared to
aged-matched controls (6, 7).

More recently, two PD-linked genes – parkin and PINK1 –
have been implicated in mitochondrial quality control, via the
degradation of dysfunctional mitochondria by autophagy (a
process termed mitophagy). This suggests that the mitochondrial

dysfunction observed in PD may be the result of compromised
mitochondrial quality control mechanisms. Most studies examin-
ing this process, however, have employed immortalized cell lines in
place of primary cell cultures, and few have studied it in neurons.
In this review, we summarize the evidence for a physiological role
for mitophagy in neurons, discussing the possible role of parkin
and PINK1 in such a pathway and its relevance to PD.

MITOCHONDRIAL DYNAMICS AND QUALITY CONTROL IN
HEALTH AND DISEASE
Mitochondria – double membrane-bound organelles originat-
ing from the symbiosis between an early eukaryotic cell and a
prokaryotic cell – are essential for generating energy through
the process of oxidative phosphorylation (OXPHOS) and also
play important roles in fatty acid metabolism, apoptosis, and
calcium-buffering (8).

Long regarded as individual, “bean-shaped” organelles, mito-
chondria are now understood as a dynamic, inter-connected
network, linked to other organelles and important players in
a myriad of cellular signaling pathways (9). By regulating the
connectivity and the size of the mitochondrial network, the cell
can regulate energy production and most other mitochondrial
processes (9). While the shape of the mitochondrial network is
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controlled by fusion- and fission-specific GTPases, the size of the
network is controlled by de novo mitochondrial biogenesis and
macroautophagy.

Mitochondria are the cellular site of OXPHOS, as well as many
other biosynthetic reactions. These essential processes generate, as
by-products, reactive intermediates, and oxidizing agents, which
in turn damage mitochondrial proteins and lipids (10). To this
end, distinct mitochondrial quality control mechanisms – the
degradation of unfolded mitochondrial proteins by mitochondrial
proteases, the elimination of selective cargo by mitochondria-
derived vesicles and the elimination of whole mitochondria by
mitophagy – function in response to the degree of mitochondrial
damage present (10–14).

Nowhere is the requirement for effective mitochondrial quality
control systems more important than in neurons, where high ener-
getic demands and need for high calcium-buffering capacity due
to action potential-driven calcium influxes rely heavily on proper
mitochondrial function (15). This mitochondrial dependence ren-
ders neurons especially vulnerable to mitochondrial damage, and,
in turn, efficient and properly functioning mitochondrial quality
control pathways are paramount to neuronal survival. Highlight-
ing this are genetic studies demonstrating the involvement of genes
regulating mitochondrial morphology – MFN2 and GDAP-1 in
Charcot-Marie-Tooth type2A, as well as OPA1in Optic Atrophy –
and mitochondrial quality control – AFG3L2 in Spinocerebellar
Ataxia type 28, parkin and PINK1 in PD – in neurodegenerative
disease (16–23).

THE PINK1/PARKIN PATHWAY: A LINK BETWEEN
MITOCHONDRIAL QUALITY CONTROL AND PARKINSON’S
DISEASE
It has been hypothesized recently that the decline in mitochondrial
function observed in PD may stem from the rapid deregulation of
mitochondrial quality control mechanisms in patients affected by
the disease (10, 24). Importantly, recent studies have implicated
two genes linked to autosomal-recessive juvenile parkinsonism
(AR-JP) in humans – PINK1, a mitochondrially targeted ser-
ine/threonine kinase, and parkin, an E3 ubiquitin ligase – in a
mitochondrial quality control pathway involving the degradation
of damaged mitochondria by autophagy.

Initial genetic evidence from Drosophila had suggested that
both parkin and PINK1 function in a common pathway regu-
lating mitochondrial morphology by promoting mitochondrial
fission – either by inhibiting the pro-fusion protein Fzo1 (the
major Drosophila mitofusin homolog) or by activating the pro-
fission protein Drp1 (25, 26). However, a clear consensus of how
these genes affect morphology in mammalian cells has yet to be
established (27–29). In regulating mitochondrial function, how-
ever, PINK1 has been shown to promote mitochondrial respiration
and increase mitochondrial membrane potential (∆ψm) (30–32),
with a specific link to complex I (33, 34), as well as proper calcium
homeostasis in mammalian cell lines (35–38).

Overwhelming evidence in mammalian cell lines has implicated
parkin and PINK1 in the mitophagic degradation of dysfunc-
tional, depolarized mitochondria. Upon ablation of ∆ψm by the
chemical uncoupler CCCP, the ∆ψm-dependent mitochondrial
import of PINK1 – a polypeptide that, basally, is rapidly turned

over by proteases once inside mitochondria – is halted, allow-
ing PINK1, bound to the TOM complex, to build up on the
outer mitochondrial membrane (39–42). Here, PINK1 recruits
parkin from the cytosol, in a manner dependent on functional
PINK1 kinase activity, and promotes parkin’s E3 ubiquitin lig-
ase activity, possibly through direct phosphorylation of parkin
by PINK1 (43–47). Once recruited to depolarized mitochondria,
parkin-dependent ubiquitination and proteasomal degradation of
outer membrane proteins – notably the mitofusins, VDACs, and
Miro – ultimately lead to autophagy, a step that possibly involves
the rupture of the outer mitochondrial membrane (43, 48–55).
PINK1-/parkin-dependent mitophagy enlists the canonical ATG
(aut ophag y-related gene) pathway, originally identified in yeast
(56). The ubiquitination of mitochondrial proteins by parkin has
been suggested to recruit ubiquitin-binding adaptor proteins, such
as p62/SQSTM1, to depolarized mitochondria (43, 57, 58). This
in turn was shown to induce mitochondrial clustering around
the nucleus (43, 57, 58), possibly facilitating the autophagy of
mitochondria by increasing their proximity to the endoplasmic
reticulum, a possible source of autophagic membranes. Although
PINK1/parkin mitophagy has not been fully characterized with
respect to the canonical ATG pathway, the requirement for LC3,
p62, and ATG5 suggests that depolarization-induced, PINK1-
/parkin-dependent mitophagy indeed makes use of the conserved
ATG pathway to remove damaged mitochondria.

Clearly, the ability to pharmacologically disrupt ∆ψm has
enabled the study of the PINK1/parkin pathway using a robust
and effective paradigm, although parkin-dependent mitophagy
has also been observed under less severe conditions. For example,
in fusion-deficient cells, parkin recruitment to depolarized mito-
chondria (arising from uneven fission) has been demonstrated
at the steady-state (50). Furthermore, in cells harboring severe
mtDNA mutations, parkin has been shown to selectively remove
dysfunctional mitochondria over time (59). However, a truly
robust, physiological assay with which to determine the effective-
ness of PINK1- and parkin-dependent mitophagy has remained
elusive.

TYPES OF MITOPHAGY UNDER PHYSIOLOGICAL
CONDITIONS
Selective mitophagy (depicted in Figure 1) is critical during the
development of cells that specifically degrade their mitochondria
as they mature. The most-studied example concerns red blood
cells (RBCs), which lose their mitochondria in order to transport
oxygen instead of consuming it (60). While it was long known
that RBCs are devoid of nuclei and organelles such as mitochon-
dria and Golgi apparatus (61), only recently have studies identified
mitophagy as the mechanism by which mitochondria are removed
(62). Mitophagy in RBCs occurs canonically, according to the con-
served ATG protein pathway (56), as well as through a redundant
ATG7-independent mechanism involving NIX/BNIP3L, a protein
related to Bcl-2 (63–65). Moreover, NIX/BNIP3L has been shown
to be an essential mediator of mitochondrial depolarization prior
to autophagy (66, 67).

The observation that both NIX- and parkin-/PINK1-
dependent mitophagy seem to rely on mitochondrial depolar-
ization as an upstream mechanism prior to autophagy suggests
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FIGURE 1 | Comparison of known mitophagy pathways (Reticulocytes,
PINK1/Parkin, and Fertilized oocyte) in four major steps. (1) Upstream
signaling or mitochondrial damage activates mitophagy pathways. (2) The
initial mitochondrial signaling or mitochondrial damage converges at a flagship
protein, which amplifies the signal. (3) Mitochondria are transported to
isolation membrane-rich sites and marked for either proteasomal or

autophagic degradation. (4) Mitochondria are enveloped by isolation
membranes and delivered to autophagosomes. ∆ψ, mitochondrial membrane
potential; LC3, microtubule-associated protein 1 light chain 3; LGG-1, LC3,
GABARAP, and GATE16 family 1; Mfn2, mitofusin 2; mtDNA, mitochondrial
DNA; NIX, NIP3-like protein X; PINK1, PTEN-induced putative kinase 1; Ub,
ubiquitin; VDAC, voltage-dependent anion channel.

Table 1 | Comparison of mitophagy pathways.

Parkin/PINK1 Reticulocytes Fertilized oocyte

Dependence on ATG family proteins Yes (LC3, ATG5) Yes (LC3) Yes (LGG-1)

Ubiquitination of mitochondria prior to autophagy Yes N/A No

Known, essential pathway components Parkin, PINK1, HDAC6 (88), Ubiquitin-proteasome system

(UPS) (48), VDAC1, 2, and 3 (89), Ambra1 (90), NIX (63)

NIX N/A

Loss of ∆Ψm Yes Yes N/A

Complete loss of mitochondria Yes Yes Yes

Type of mitophagy Reactionary (?) Programed Programed

a conserved mechanism among pathways (Table 1), whether
they are programed (reticulocyte differentiation) or reactionary
(parkin/PINK1). Indeed, NIX was found to be necessary for LC3
activation following ∆ψm loss and parkin recruitment to the mito-
chondria, suggesting it might be essential to the parkin/PINK1
mitophagy pathway (63). This also raises the possibility that
parkin and PINK1 function in a programed mitophagy pathway,
although it would be unlikely to involve RBCs, as one would then
expect parkin- or PINK1-associated PD patients to present with
anemia (68).

A second type of programed mitophagy consists of the elimina-
tion of paternal mitochondria in the fertilized oocyte (69). While
the notion that mitochondrial DNA is inherited uniquely from the

mother has been long established, only recently have studies in C.
elegans found that the degradation of paternal mitochondria, as
well as its mtDNA, occurs through mitophagy (70–72). Whereas
autophagy of paternal mitochondria was demonstrated to rely on
the ATG-associated machinery for mitochondrial degradation, it
was also shown that mitochondrial ubiquitination does not appear
prior to engulfment, as opposed to mitophagy occurring during
reticulocyte maturation and the parkin/PINK1 pathway (Table 1).
However, further work on autophagy of paternal mitochondria,
clarifying whether mitochondria are depolarized prior to engulf-
ment, remains to be done; it would be interesting to see if parkin
and PINK1 are implicated in this pathway, possibly by exam-
ining the occurrence of autophagy of paternal mitochondria in
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fertilized ova of parkin- or PINK1-null mice. Interestingly, parkin-
and PINK1-null flies both show mitochondrial abnormalities in
embryonic development, characterized by swollen or vacuolated
nebenkern – spheres encompassing two giant mitochondria in the
developing fly spermatid – which result in male sterility (73–75).
These findings suggest that, in spermatogenesis, parkin and PINK1
may have a role in mitophagy-related events.

In essence, it seems that many mitophagic pathways utilize the
canonical ATG-associated machinery, yet differ both in the man-
ner through which mitochondria are signaled for autophagosomal
engulfment and in upstream signaling mechanisms. In the case of
parkin-/PINK1-dependent mitophagy, it is the latter that is poorly
defined, and it is plausible that a programed mitophagic pathway,
utilizing parkin and PINK1, exists in mammals and contributes
to PD pathogenesis. In addition, we have already described that
PINK1 can accumulate on mitochondria upon disruption of mito-
chondrial import in the absence of depolarization (39), suggesting
that several upstream mechanisms may impinge on a canonical,
programed parkin/PINK1 mitophagic pathway.

MITOPHAGY IN PARKINSON’S DISEASE
Although studies examining parkin-/PINK1-dependent mitophagy
as a quality control mechanism have relied heavily on the use
of chemical uncouplers in heterologous cell culture (42, 43, 45,
47, 50), the existence and relevance of such a pathway in neu-
rons has remained elusive, based on a handful of studies relying
predominantly on parkin overexpression (76–78). Alarmingly,
other groups were unable to show recruitment of overexpressed
parkin in neurons following mitochondrial depolarization (79),
or showed that endogenous parkin failed to mediate mitophagy in
neurons and cultured cells (80).

As described previously, complete autophagy of the mito-
chondrial network can occur in many cell types in response to

intrinsic or extrinsic signals. Neurons, however, cannot switch to
glycolytic metabolism (as an ATP-generating mechanism) dur-
ing acute mitochondrial stress, and hence are utterly dependent
on mitochondria for energy production (81, 82). Therefore, it is
unlikely that molecular pathways have evolved to remove the whole
mitochondrial network following mitochondrial damage in neu-
rons. Moreover, it has been shown that neurons divert glucose away
from glycolysis to the pentose phosphate pathway – in order to
maintain a high level of reduced glutathione – and instead generate
ATP predominantly through OXPHOS (83, 84). As such, disrup-
tion of the OXPHOS process by uncouplers or other mitochondrial
toxins results in a bioenergetic crisis inherent to neurons, and may
contribute to the ambiguity surrounding findings concerning the
PINK1/parkin pathway obtained from this cell type.

Thus, two important questions arise from the controversy sur-
rounding the relevance of the PINK1/parkin pathway in neurons:
(1) whether or not parkin is recruited to depolarized mitochon-
dria in these cells and, if so, (2) what is the physiological role
of this recruitment in neurons? While parkin recruitment was
shown to be robust and reproducible in immortalized cells, the
data indicate that this is more variable in neurons. This is not
so surprising since neuronal culture protocols carry many more
variables than those for immortalized cells. When analyzing data
from the five studies on parkin-/PINK1-dependent mitophagy in
neurons (Table 2), we find that many components of neuronal
media could influence parkin translocation. Cai and colleagues
used inhibitors of apoptosis in their neuronal culture (the cas-
pase inhibitor Z-VAD-FMK) to counter the effects of high doses
of chemical uncouplers triggering apoptosis in an environment
devoid of protective glia. While these conditions do lead to parkin
translocation in neurons, they may also mask the normal physi-
ological reaction of neurons to gross depolarization of the mito-
chondrial network. It is unlikely that neurons have evolved to

Table 2 | Comparison of data on Parkin/PINK1-dependent mitophagy in neurons.

Cai et al. (76) Joselin et al. (77) Seibler et al. (78) Van Laar et al. (79) Rakovic et al. (80)

Neuronal type Cortical Cortical IPS-derived

dopaminergic neurons

Cortical IPS-derived dopaminergic

neurons

Glial bed Yes No No No No

Days in vitro 8–10 8 – 9 –

Apoptotic inhibitors Z-VAD-FMK No No No No

B-27 Yes No – Yes Yes

Uncoupling agent + time of

exposure

10 µM CCCP 24 h 5 µM CCCP 4 h 1 µM Valinomycin 12 h 10 µM CCCP 6 h 1 µM Valinomycin 12 h

% Cells with parkin

recruitment

30% 70% N/A (increased

colocalization)

No CCCP effect

25% basal

N/A

Quantified parkin-dependent

mitophagy

No No No (reduced mtDNA

copy numbers)

N/A Yes (no parkin-dependent

mitophagy)

Endogenous parkin

recruitment

Yes N/A N/A No N/A

PINK1 dependence N/A Yes Yes N/A Yes
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adapt to this type of insult, and apoptosis may be the physio-
logical response. Interestingly, in the study (77) that showed the
highest percentage of parkin translocation (about 70%), it was
found that recruitment was dependent on the absence of antiox-
idants (in the form of the B-27 supplement) in the media. Taken
together, these factors might explain why some groups (79) were
not able to detect significant parkin translocation upon mitochon-
drial depolarization in neurons. Importantly, parkin translocation
was also much slower (12–24 h) in the study that used B-27 than
in studies without it (4 h). This indicates that neuronal cultures
containing antioxidant supplements may counteract the action of
chemical uncouplers. It would however be important to deter-
mine if, under growth conditions lacking antioxidants, neurons
can survive over long time periods following mitochondrial depo-
larization. In light of these recent studies, we conclude that parkin
can translocate to mitochondria in neurons following depolar-
ization, given the proper culture conditions. However, most of
these studies did not quantify mitophagy following parkin translo-
cation (76–78). While Seibler and colleagues found that parkin-
positive cells have reduced mitochondrial DNA copy numbers after
exposure to CCCP, they did not rule out decreased mitochondr-
ial biogenesis as a possible mechanism. This raises the question
of whether parkin translocation proceeds to mitophagy in neu-
rons, or plays another role. Rakovic and colleagues addressed this
question by looking at the degradation of a number of mitochon-
drial proteins both at the outer membrane, the inner membrane,
and the matrix. Surprisingly, they found that even when over-
expressing parkin in induced pluripotent stem (iPS) cell-derived
dopaminergic neurons, parkin does not promote mitophagy upon
mitochondria depolarization. However, given that the kinetics of
parkin recruitment to mitochondria seem considerably slower
in neurons (70% recruitment at 4 h) than in immortalized cells
(100% at 2 h) (Table 3), it is plausible that mitophagy may pro-
ceed more slowly and may not be detectable at 16 h with the
1 µM valinomycin used by Rakovic and colleagues. Again, one
obvious issue may be that incubating neuronal cultures with chem-
ical uncouplers for an extended period may induce apoptosis.
Adding apoptotic inhibitors may circumvent this limitation, allow-
ing for the study of parkin-dependent mitophagy in neurons on
a longer time scale, as shown by Cai and colleagues. Whereas this
allowed them to show colocalization between autophagic markers
and mitochondria in isolated events, Cai and colleagues did not
quantify them in parkin-overexpressing versus mock-transfected
neurons.

To overcome the limitations of in vitro neuronal cultures, Sterky
and colleagues crossed MitoPark mice – which develop progressive
parkinsonism and mitochondrial abnormalities stemming from
the ablated expression of mitochondrial transcription factor A in
dopaminergic neurons (85) – with parkin knockout mice. These
mice did not show increased neurodegeneration or accumulation
of damaged mitochondria, suggesting that parkin had no role in
degrading damaged mitochondria (86). Moreover, they overex-
pressed parkin in the MitoPark mouse and found that parkin was
not recruited to mitochondria at the steady-state. While these data
suggest that parkin may not be involved in mitophagy in the brain
in vivo, it is noteworthy that the mitochondrial defects of MitoPark
mice have not been fully characterized, and, as such, the mitochon-
dria of these mice may not be sufficiently depolarized to stabilize

Table 3 | Comparison of parkin recruitment in immortalized cells

versus neurons.

Immortalized Cells

(HeLa, Hek293T,

SH-SY5Y, MEFs)

Neurons

(primary,

IPS-derived)

Mean time of parkin recruitment

upon ∆Ψm depolarization (more

than 30% cell with parkin on

mitochondria)

30 min (50) 4 h (77);

6 h (79);

12 h (78);

24 h (76)

Dependence on PINK1 Yes Yes

Survival after long-term exposure

to chemical uncouplers

Yes N/A; use of

apoptotic

inhibitors (76)

Complete removal of

mitochondria

Yes N/A

PINK1 levels and trigger parkin recruitment. Interestingly, a recent
study by Vincow and colleagues demonstrated that parkin null flies
exhibit a slower turnover of mitochondrial proteins (87). More-
over, they showed that electron transport chain (ETC) protein
turnover is especially affected in both parkin and PINK1 single-
null flies, suggesting that, under physiological conditions, parkin
and PINK1 might have a specific role in regulating the levels of
ETC proteins, as opposed to the complete removal of mitochon-
dria following depolarization in cell lines. In light of these results, it
is clear that further studies will be required to test whether parkin
promotes mitophagy in neurons and what are its consequences
in vivo.

CONCLUSION
Parkin and PINK1 are the first two PD-associated genes to be
implicated in a common genetic pathway. More specifically, the
association of parkin and PINK1 in a common mitochondrial
quality control pathway has consolidated the hypothesis that
mitochondrial defects are central to PD pathogenesis. How-
ever, the physiological relevance of such a pathway in neu-
rons requires further investigation. Moreover, neuronal parkin
and PINK1 may play roles in mitochondrial homeostasis other
than degrading damaged mitochondria, such as regulating ETC
protein turnover. Upon review of the few, pioneering studies
that have aimed to clarify these questions, we conclude that,
although it is robust and implicates many other players sub-
sequent to parkin recruitment, the parkin/PINK1 mitophagy
pathway still lacks proper upstream signaling characteriza-
tion. This is reflected in the inability to find a consensus
on the proper conditions with which to study this path-
way in a more disease-relevant cell type. We also conclude
that, while redistribution of parkin to depolarized mitochon-
dria has now been shown in neurons, the physiological role of
such recruitment – specifically, whether or not this proceeds to
mitophagy – remains elusive. By understanding the physiolog-
ical function of parkin and PINK1 in neurons, future studies
will undoubtedly reveal key molecular mechanisms underlying
neurodegeneration and hence novel therapeutic targets for the
treatment of PD.
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